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An Adaptive Method for Camera Attribution Under
Complex Radial Distortion Corrections
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Abstract— Radial distortion correction, applied by in-camera
or out-camera software/firmware alters the supporting grid of the
image so as to hamper PRNU-based camera attribution. Existing
solutions to deal with this problem try to invert/estimate the
correction using radial transformations parameterized with few
variables in order to restrain the computational load; however,
with ever more prevalent complex distortion corrections their
performance is unsatisfactory. In this paper we propose an
adaptive algorithm that by dividing the image into concen-
tric annuli is able to deal with sophisticated corrections like
those applied out-camera by third party software like Adobe
Lightroom, Photoshop, Gimp and PT-Lens. We also introduce a
statistic called cumulative peak of correlation energy (CPCE) that
allows for an efficient early stopping strategy. Experiments on
a large dataset of in-camera and out-camera radially corrected
images and on a in-the-wild dataset of images from smartphones
show that our solution improves the state of the art in terms of
both accuracy and computational cost.

Index Terms— Image forensics, source attribution, PRNU,
photo response non-uniformity, radial correction, distortion
correction, PCE, adaptive processing.

I. INTRODUCTION

DURING the past years, camera fingerprints based on the
Photo Response Non-Uniformity (PRNU) have gained

broad popularity in forensic applications thanks to their ability
to identify the device that captured a certain image. The PRNU
is a multiplicative spatial pattern that owes its uniqueness
to manufacturing imperfections that cause sensor elements
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to have minute area and substrate material differences that
make them capture different amounts of energy even under a
perfectly uniform flat field [1]. Applications of the PRNU in
multimedia forensics go beyond camera identification from
images [2] or videos [3], as they have also been used in
detecting inconsistencies that reflect image manipulations [4].

Unfortunately, the fact that the PRNU can be accurately
modeled as a white random process explains its sensitivity
to geometric transformations that alter the image coordinates.
Unless those transformations are reverted, standard detection
statistics will perform poorly as they are roughly based on
cross-correlations that yield very small values under grid
misalignment. In the literature several methods have been
proposed to deal with those spatial transformations, including
digital zoom [5], video stabilization [6], high dynamic range
(HDR) processing [7], and radial distortion corrections [8],
[9]. It is in the context of the latter that we have developed
the methodology presented in this work.

Radial distortion correction aims at digitally removing the
distortion introduced by the camera lens. This kind of pro-
cessing is becoming more pervasive as devices increase their
computing capabilities; in-camera correction is now common
in compact models, tablets and smartphones. On the other
hand, out-camera corrections can be performed with powerful
software like Adobe Lightroom, which are able to invert
distortions almost perfectly by matching the model of the lens
mounted on the camera. This is not done by applying conven-
tional radial distortion models such as barrel or pincushion but
by making use of complex models (i.e., with a large number
of parameters). As a consequence, existing methods [8], [9]
relying on models with at most two parameters will only
partially succeed in dealing with camera attribution under
these complex out-camera processing. Increasing the number
of model parameters often constitutes an undesirable path
because reverting the distortion corrections entails a grid
search whose computational load grows exponentially with the
number of unknowns.

In this work we propose a novel approach to PRNU-based
camera attribution under radial distortion corrections that
is able to deal with complex models without significantly
increasing the computational burden. The main idea is to
divide the image under test and the PRNU into a series of
concentric annuli that are thin enough to be locally describable
with a simple (i.e., linear or cubic) distortion model which
allows for an equally simple inverse transformation. The annuli
are traversed sequentially by keeping track of the cumulative
peak-to-correlation energy ratio (CPCE), which is a statistic
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introduced in this work and used to decide whether the radially
corrected test image contains the reference PRNU. In fact, the
sequential nature of the procedure makes it possible to imple-
ment an early stopping strategy to declare a match without
having to process all the annuli and thus saving computa-
tional time. Another key feature of our method is adaptivity:
instead of carrying out a wide-interval search for the distortion
parameters describing each annulus, an adaptive Least-Mean-
Squares-like predictor updates the parameters of the previously
processed annulus in order to narrow down the current param-
eter search. This leads to a large computational efficiency
without giving up flexibility. In order to steer the search we
propose and justify mathematically a new objective function.

Different variants of our method are evaluated in terms
of accuracy and speed. We compare our method with the
state of the art in [8] and [9] on a large dataset com-
posed of images taken with: 1) compact devices and radially
corrected in-camera, and 2) a reflex camera and radially cor-
rected out-camera using different software tools. Our results
show considerable performance improvements, especially on
low-resolution images and in presence of complex radial
distortion corrections. We also show an application of our
method in discovering new device attribution matches that
would otherwise be assigned to the null hypothesis in a
database of smartphone images [10].

The rest of the paper is organized as follows: Sect. II
provides the mathematical background and formulates the
addressed problem. Sect. III discusses the relevant state of
the art. Sect. IV is devoted to discussing the proposed method
which in Sect. V is validated and compared with [8] and [9].
Finally, Sect.VI presents our conclusions.

II. PROBLEM FORMULATION AND MODELING

A. Notation

The images considered in this paper can be either gray-scale
or RGB; however, since the processing for the latter is carried
out separately for each color channel, for notational simplicity
we discuss the case of mono-channel images and later explain
how the three channels are combined in the case of RGB.
Bi-dimensional signals will be denoted with boldface. For
every such signal, a domain S ⊂ Z2 will be specified;
for instance, a signal X with domain SX is a collection of
values X i, j ∈ R defined for all locations (i, j) ∈ SX . For
the case of images of size M × N , the original domain is
I = {1, · · · ,M} × {1, · · · , N } ⊂ Z2; however, we will often
find ourselves working with domains that are subsets of I.
We will denote by D2 half of the diagonal of domain I
measured in pixels. Notice that the set I can be expressed
as I = B ∩ Z2, with B ⊂ R2 denoting the image bounding
box.

The inner product of two signals X and Y with respective
domains SX and SY can be defined by extending the Frobenius
product of matrices as ⟨X,Y⟩

.
=

∑
(i, j)∈S X i, j Yi, j , where

S = SX ∩ SY is assumed to be non-empty. The Frobenius
norm of X with domain SX induced by this inner product is
||X||

.
= ⟨X,X⟩ =

∑
(i, j)∈SX

X2
i, j . The product of signals X

and Y, denoted by X ◦ Y, is the element-wise product, i.e.,

(X ◦ Y)i, j = X i, j · Yi, j and is defined for all (i, j) ∈ SX ∩SY .
The multiplicative inverse of X is denoted by X◦−1 and is
such that (X◦−1)i, j = X−1

i, j . For a signal X with domain SX ,
we denote by X̄ a constant signal with the same support as
X and whose value is the sample mean

∑
(i, j)∈SX

X i, j/|SX |,
where |SX | denotes the cardinality of SX . The normalized
cross-correlation (NCC) between X and Y is defined as

ρ(X,Y) =
⟨X − X̄,Y − Ȳ⟩

||X − X̄|| · ||Y − Ȳ||
, (1)

with the inner product and norms defined as above.
Given a signal X with rectangular domain I and a vector

s = (s1, s2) ∈ Z2, we denote by C(X, s) the cyclic shift of
X by vector s, so that the (i, j)th component of C(X, s) is
X(i+s1)modM,( j+s2)modN . Note that the domain of C(X, s) is
also I. Finally, the all-zeros image is denoted by 0.

B. PRNU Estimation

As previously indicated, the PRNU is a multiplicative
noise-like signal that serves as a sensor fingerprint [1], [5].
Because the PRNU is a very weak signal, it is necessary
to separate it from both the true image and other noise
components. If I0 denotes the image in absence of noise, and
K is the PRNU, it is possible to derive the following simplified
model [11]:

I = I0 + I0 ◦ K +2, (2)

where 2 is uncorrelated with both I0 and K, and summarizes
noise components of different nature, and all signals are
defined over I. The fingerprint K of a camera can be extracted
from L images I(l), l = 1, · · · , L , taken with the camera
under analysis. Let W(l) denote the noise residual obtained
by applying a generic denoising filter F(·) to the lth image
I(l), as

W(l)
= I(l) − F(I(l)), l = 1, · · · , L . (3)

For RGB images, (3) is applied to each image color channel
and the results converted into gray-scale using the standard
linear combination [12]. In this case, W(l) will denote the
resulting combined residual. All our reported experiments have
been carried out on color images, using Mihcak’s wavelet-
based denoiser [13] for it yields an excellent trade-off between
performance and complexity. Then, the PRNU can be esti-
mated as follows [11]:

K̂ =

( L∑
l=1

I(l) ◦ W(l)

)
◦

( L∑
l=1

I(l) ◦ I(l)
)◦−1

. (4)

The estimate so obtained is customarily post-processed to
remove some systematic artifacts that are present in most
cameras. Here, we will follow [11] and apply a mean-removal
operation by columns and rows, and a Wiener filter in the DFT
aimed at removing periodic spatial artifacts. Similarly to (3),
for color images the fingerprints are estimated separately for
each channel and then linearly combined into gray-scale [12];
in this case, K̂ denotes the result of this conversion. Given
an image under investigation I and its corresponding residual
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W .
= I − F(I) a binary hypothesis test can be formulated to

decide whether I contains a certain PRNU K′ for which an
estimate K̂

′
is available. We will denote the null hypothesis of

this test (i.e., I does not contain K′) by H0 and the alternative
(i.e., I contains K′) by H1.

The most popular decision statistic for the test is the
Peak-to-Correlation Energy ratio (PCE) which computes the
peak cross correlation between the test image residual W
and the estimated PRNU K̂

′
from the candidate camera, and

normalizes it by an estimate of the correlation noise under
H0 [12].

For non-cropped images the PCE simplifies to

PCE(K̂
′
,W) =

sgn(ρ(K̂
′
,W)) · ρ2(K̂

′
,W)

1
|I\S|

∑
s∈I\S ρ

2(K̂
′
,C(W, s))

, (5)

where, following the improvement proposed in [14], we have
included the sign of the NCC to exclude negative values
that would be never expected under H1. In (5) S is a
cyclic exclusion neighborhood of (0, 0) of small size (e.g.,
11 × 11 pixels) to avoid contamination from cross-correlation
peaks when estimating the cross-correlation noise under H1.
Noticing that for every s, ||C(W, s)−C(W, s)|| = ||W−W̄||,
and letting W̃ .

= W − W̄, (5) can be alternatively written as

PCE(K̂
′
,W) =

ssq(⟨K̂
′
, W̃⟩)

1
|I\S|

∑
s∈I\S⟨K̂

′
,C(W̃, s)⟩2

, (6)

where we have assumed that the mean of K̂
′

is
zero due to the zero-meaning operation discussed above,
and the signed-squared function ssq(·) is such that
ssq(x) .= sgn(x) · x2.

C. Lens Distortion Models

To describe radially symmetric barrel/pincushion distortions
we adopt the same models presented in [8] and explained
in [15], [16], and [17]. If we denote the coordinates before and
after the radial distortion by (x, y) and (x ′, y′), xrespectively,
the invertible geometrical mapping Tα is given by

Tα : R2
→ R2

(x, y) 7→ (x ′, y′) (7)

where

x ′
= x p + (x − x p)(1 + αr2); (8)

y′
= yp + (y − yp)(1 + αr2), (9)

and (x p, yp) is the optical center of the image and r2 .
= [(x −

x p)
2
+(y− yp)

2
]/D2

2 is the normalized squared radial distance
from point (x, y) to the optical center. This normalization by
D2

2 is for convenience, so that r = 1 corresponds to half of
the image diagonal [8]. Parameter α ∈ R in (8-9) models the
type of radial distortion: α > 0 for pincushion distortion, and
α < 0 for barrel distortion. Alternatively, given (x p, yp) and
assuming that Tα(x p, yp) = (x p, yp), the transformation can
be written in normalized polar coordinates. Since the phase
is preserved under Tα(·), with a slight abuse of notation we

will drop the phase component and sometimes write the radial
transformation as Tα : R+

∪ {0} → R+
∪ {0} such that

r ′
= Tα(r) = r(1 + αr2). (10)

More complex radial corrections [9], [18] can be expressed
through an nth order model:

r ′
= Tα(r) = r

(
1 +

n∑
i=1

αir2i

)
, (11)

where α
.
= [α1, · · · , αn]

T is a real parameter vector. In this
paper, we consider that all radial corrections that cannot be
expressed or well approximated with less than three non-null
parameters are “complex”. It is also important to remark that
parameter vector α often depends on the camera settings, such
as the lens type or the focal distance, so images taken with the
same camera may experience different distortion corrections.

Again, with some abuse of notation, and following [8],
given a signal X with domain SX , the mapping Y = Tα(X)
is produced as follows. Let X′ be the signal with domain
SX ′ = Tα(SX ) such that, for every (u, v) ∈ SX , and with
(u′, v′) = Tα(u, v), X ′

u′,v′ = Xu,v . Then, given an ouput
domain SY , the signal Y = Tα(X) is obtained by interpolating
the signal X′ defined on S ′

X at the points in SY . Of course,
precautions must be taken when specifying SY so that the
interpolation is computable at all points in SY . This aspect
will be made clearer in Sect. IV, when we present our method.

D. Direct and Inverse Approaches to PCE Computation

When the image under analysis has been subjected to
a radial distortion correction, the statistic PCE(K̂

′
,W) is

expected to perform poorly under H1 in the hypothesis test,
because the grids supporting K̂

′
and W will not coincide

(recall that the PRNU has a very narrow spatial autocorrelation
function).

The approach explored in [8] is to take into account the dis-
tortion correction when computing the PCE. If the parameter
vector α of the radial mapping is known, there are essentially
two possibilities, which we will term direct and inverse. In the
direct approach, the candidate PRNU K̂

′
is transformed in

order for its grid to match that of W. Then, the test statistic
becomes

PCEdir(α)
.
= PCE(Tα(K̂

′
),W), (12)

where the domain IT of Tα(K̂
′
) is the largest rectangu-

lar subset of I for which the interpolation is computable
(see discussion at the end of Sect. II-C) and, accordingly,
IT replaces I in the denominator of (5).

In the inverse approach W is mapped back to the original
domain, so that its grid coincides with that of K̂

′
. Then, the

test statistic in this case is

PCEinv(α)
.
= PCE(K̂

′
, T −1

α (W)). (13)

where, as above, the domain IT of T −1
α (W) is the largest rect-

angular subset of I for which the interpolation is computable
and IT replaces I in the denominator of (6).
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Fig. 1. Values of α maximizing PCEinv(α) vs inner radius of the annulus.
Values are linearly interpolated. Canon 1200D camera with EF-S 10-18mm
lens, corrected with Adobe Lightroom. Focal length: 10mm. Shutter speed:
1/100 sec. Aperture: f7.1. ISO 800. The PRNU is estimated with 20 natural
images all taken with those settings.

Since one is interested in finding the best possible match, [8]
suggests using the following statistic

PCEmax(α)
.
= max{PCEdir(α),PCEinv(α)}. (14)

When the parameter vector α is not known, which is often
the case in practice, it must be estimated. In [8] this is done
by maximizing the test statistic in (12-13), which makes sense
from a maximum likelihood point of view. Let A ⊂ Rn be
the set of feasible vectors α; then, the statistic used in the
hypothesis test is

PCE∗
max

.
= max

α∈A
PCEmax(α). (15)

For the case of scalar α in (10) the inverse radial correction
T −1

α (W) needed in (13) can be approximated via the Lagrange
Inversion Theorem [19, 3.6.6.] which yields

r = T −1
α (r ′) = r ′(1 − αr ′2

+ 3α2r ′4
+ O(r ′6)). (16)

Using the approach described above, the radial correction
can be approximately inverted in many practical cases by
finding the optimal value of α [8]. However, when more
complex radial corrections as in (11) have been applied, a sin-
gle parameter α may be not sufficient. To illustrate this fact,
we consider the example of an image of size 3456×5184 taken
with a Canon 1200D camera using a Canon EF-S 10-18mm
as lens and radially corrected with Adobe Lightroom (with
settings for the mounted lens, using the strongest correction).
We partitioned the image into non-overlapping annuli of width
64 pixels and found for each annulus—through exhaustive
search—the value of α that maximizes PCEinv(α) in (13),
where inversion is done via (16). The result is plotted in Fig. 1
as a function of the inner radius of the annulus. As it is quite
apparent, there is a dependence of α with r that indicates that
one parameter alone is not sufficient to describe the radial
transformation and that a more intricate relationship—even if
parametric—must be sought.

III. STATE OF THE ART

The PCE is very sensitive to the correct alignment of
the locations corresponding to the estimated PRNU and the
residual; this means that unless a value of α very close to the

Fig. 2. PCEmax as a function of α for a Panasonic DMC-ZS7 camera.

true one is used in the mappings in (12) or (13), the resulting
PCE will be very small, and hypothesis H1 is likely to be
rejected when it is in force. To illustrate this phenomenon,
in Fig. 2 we show the function PCEmax(α) for an image taken
with a Panasonic DMC-ZS7 camera, shutter speed: 1/400 s,
aperture: f4.4, focal length: 19.5 mm, and ISO 100. The
stepsize in α is 2 · 10−3. As we can observe, under H1 the
function is very spiky, with the consequence that a sufficiently
dense grid must be used; otherwise, it is easy to miss the peak.
In addition, this spikiness precludes the use of gradient-based
algorithms, because they would only work in the very close
vicinity of the peak.

Therefore, any search grid in the parameter space has to be
fine enough to be able to locate the maximum. The method
in [8] considers that the transformations (both the direct and
the inverse) are parameterized by a scalar α and starts by
selecting a search interval [−A, A] which is progressively
made finer so that at each iteration k, with k = 1, · · · , kmax,
a grid with 2k

+ 1 points is generated. Note that at the k + 1-
th iteration only 2k new points are produced. A threshold
τ1 is set so that if, after all kmax iterations, no α exists
in the grid such that PCEmax(α) > τ1, then the search is
stopped and a mismatch is declared (i.e., H0 is decided).
At every iteration, PCEmax is maximized over all grid points;
this requires computing it only for the new points. Let α◦

denote the grid point for which the maximum is obtained;
if at some iteration PCEmax(α

◦) > τ1, then the search stops
and the algorithm proceeds to the second stage in order to
refine the value of α◦. However, in order to speed up the
process, the maximization skips the exhaustive enumeration
of all grid points provided that k > 4 whenever α† is found
such that PCEmax(α

†) > τ2 (with τ2 > τ1). In this case, the
algorithm proceeds to the second stage by searching around
α†. The second stage takes the value of α with which the
first stage was exited and constructs an interval with its two
neighboring points in the grid. If k∗ is the exit value of k
for the first stage, then this interval has width A/2k∗

−1. Next,
a golden section search is performed until the width of the
interval is approximately 1/(8D2), with D2 the half-diagonal
of the image. Let α∗ be the value found with the golden
section search; then, if PCEmax(α

∗) > τ3 hypothesis H1 is
accepted, else, H0 is declared. The thresholds suggested in [8]
are τ1 = 15 and τ2 = τ3 = 75, and kmax = 7. To reduce the
computational load [8] downsamples the signals by a factor of
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two in each dimension; since this has an impact on accuracy
in some cases, in the experimental section, we will consider
both the downsampled (DS) and non-downsampled versions.

The method in [9] takes a different approach to perform the
inversion of radially-corrected barrel distortions by employing
the so-called linear patterns that are present in the residuals
and are due to artifacts of the capturing device. These patterns
are typically removed towards source attribution, but when
kept, they serve as pilot signals that may be used to infer the
radial distortion correction. The feature that is used to steer
the parameter estimation is the energy of the linear pattern,
defined for a given residual W as E(W)

.
= ||c||2+||r||2, where

c and r are vectors containing respectively the column and
row averages of W. Then, considering the set of fourth-order
transformations Tα(r) = r(1 + α2r2

+ α4r4), where α =

(α2, α4), the method in [9] seeks to maximize E(T −1
α (W))

with respect to α, with the rationale that when the correct
inverse transformation is applied, the linear pattern is recov-
ered; otherwise, the column and row averages will be expected
to produce low values. The fact that the transformation is
now parameterized by two variables α2 and α4 gives more
flexibility in inverting the transformation, but potentially incurs
a larger computational cost. To make the optimization more
manageable, a first stage consists in fitting a second-degree
polynomial on variable α2 to values of E(T −1

α (W)) sampled
on a grid for α2 ∈ [αmin, αmax], αmin > 0, and α4 = 0. The
reason for this choice of α4 is that in practice the contribution
of α4 to Tα(r) is only significant for large r , that is, far
from the image center. This first stage yields the value α(1)2
of α2 that maximizes the difference from the energy of the
linear pattern and its polynomial fit. The second stage employs
a Nelder-Mead optimization (using the linear pattern energy
as cost function) that is initialized with three points derived
from α

(1)
2 . This produces the two optimal radial correction

parameters (α∗

2 , α
∗

4). Due to noise, the previous procedure
will yield an optimum α2 ̸= 0 regardless of whether radial
correction was applied. Then, the decision is confirmed only
if the cost function evaluated in a neighborhood of (α∗

2 , α
∗

4)

corroborates the existence of a significant peak; otherwise, the
image is deemed to be not radially corrected.

Even though, as we will see in Sect. V, the performance of
the two methods outlined above is rather good, they have two
main intrinsic limitations that we aim at overcoming with our
work: 1) their corresponding first stages employ an exhaustive
search on a fixed grid. This fact, together with the high
sensitivity of the PCE with respect to changes in the parameter
vector α about the correct one that results in a very spiky
objective function, advise the use of a relatively tight grid to
minimize the risk of missing the optimum. Unfortunately, this
tightness entails a significant computational cost. 2) Again,
due to the computational cost of an exhaustive search, the
transformations Tα and T −1

α use a small number of parameters:
one in [8], and two in [9]. Therefore, these parameterization
are unable to capture more complex radial corrections, such
as those employed by editing programs (cf. Fig. 1), a trend
that is likely to increase, as the capabilities of out-of-camera
processing improve. A combination of the two methods in [8]
and [9] has been recently proposed by the authors in [20].

Fig. 3. PCEinv(α) for: α = −0.01 and α = 0.05.

IV. PROPOSED METHOD

In order to motivate the method proposed in this paper,
we will rely on an example generated with the popular photo
editing software Adobe Lightroom that will give us the nec-
essary clues. Images were taken with a Canon 1200D camera
and then radially corrected with Lightroom. In Fig. 3 we
combined two PCEinv maps (corresponding to α = −0.01 and
α = 0.05) in which PCEinv(α) is computed using (13) and (16)
for non-overlapping blocks of size 64 × 64. The combination
is carried out by substituting the pixels corresponding to the
outermost annulus (obtained for α = −0.01) into the PCEinv
map obtained for α = 0.05. For mere illustrative purposes,
and in order to enhance the visibility, the (radially corrected)
image under analysis (from which W is computed) is one of
the 20 flat-field images used to extract K̂

′
. As we can see,

the region where the PCE is significant is an annulus, and
the position of the annulus depends on α. This shows that if
L(r) denotes the radial correction induced by the software and
L−1(r) its inverse, then for a given α = α0, T −1

α0
(r) ≈ L−1(r)

only in a small neighborhood of some r = r∗.
This experiment clearly indicates that for complex radial

corrections, an approach like (16) will not work. However,
the fact that the inversion works locally suggests breaking the
problem into non-overlapping concentric annuli as shown in
Fig. 4, and solving each separately.

A. Set Partitioning and Transform Computation

Let Rk , k = 1, · · · , L , be the kth annulus described by
an inner radius rk (recall that radii are scaled by D2 so that
r = 1 corresponds to half of the image diagonal) and a width
1k as follows:

Rk
.
= {(u, v) ∈ R2

: r2
k ≤ u2

+ v2 < (rk +1k)
2
}. (17)

The inner radii are generated as rk+1 = rk +1k , with r1 = 0,
and the inner radius of the last annulus rL is such that rL <

1 < rL +1L (see Fig. 4). This definition implies that the first
annulus degenerates into a disk and the image is fully covered
by annuli. Except for this degenerate annulus, in this work we
will assume that 1k = 1 for all k.

The experiment shown in Fig. 1 (obtained applying a brute
force search for each annulus) suggests that a good modeling
of the radial correction can be obtained by allowing α to vary
with r , so (10) in this case becomes

r ′
= Tα(r)(r) = r(1 + α(r) · r2). (18)
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Fig. 4. Annular partition used in the proposed method.

The idea is that by allowing α to be a function of r , we achieve
much more flexibility in modeling complex distortions. More-
over, as long as the annuli are thin enough, the zero-th order
approximation α(r) ≈ α(rk +1k/2)

.
= αk will be reasonably

good for all r ∈ Rk . This local approximation will allow
us to use (16) for the inverse transform. However, since we
are allowing α to vary with r , instead of a locally cubic
dependence, as in (18), it also makes sense to consider a
locally linear one, i.e., r ′

= Tα(r)(r) = r(1 + α(r)). Even
though for the generic mappings we will keep using Tαk (r)
and T −1

αk
(r) for the sake of generality, we specialize them by

adding the sub-indices c to denote cubic, and l to denote linear.
Therefore, on each annulus we write

Tαk ,c(r)
.
= r(1 + αkr2);

Tαk ,l(r)
.
= r(1 + αk), r ∈ Rk, (19)

whereas the corresponding inverse mappings are

T −1
αk ,c(r

′) ≈ r ′(1 − αkr ′2
+ 3α2

k r ′4), r ′
∈ Tαk ,c(Rk);

T −1
αk ,l(r

′) =
r ′

1 + αk
, r ′

∈ Tαk ,l(Rk), (20)

Note that the ranges of the inverse transforms in (20) may be
different because the image of each annulus will differ under
the locally cubic and locally linear mappings.

Given a collection of annuli Rk , k = 1, · · · , L , one can see
the mapping Tα(r) in (12) as a sequence of transformations
Tαk (r), k = 1, · · · , L , that is parameterized by a vector α =

[α1, · · · , αL ]
T . This larger number of parameters provides a

much higher capacity of expressing complex radial functions,
as required by our targeted distortion compensations. Obvi-
ously, the maximization of the PCE with respect to α ∈ A .

=

A1×· · ·AL , with Ak the feasible set for αk , would suffer from
a combinatorial explosion due to the L dimensions involved,
so we will be interested in finding efficient alternative ways
for performing an approximate maximization.

A first step is to treat each annulus separately and find the
optimal value of αk constrained to the kth annulus. There are
several possible approaches at this stage. One would be to find
αk that maximizes the PCE constrained to the kth annulus;
unfortunately, since the total PCE is not the sum of those
constrained PCEs, it is quite difficult to work individually with
each annulus using such a criterion. Instead, we have opted

Fig. 5. Illustration of the application of transforms T −1
αk

and Tαk , and related
domains.

for a maximum likelihood estimation approach that aims at
finding the αk that has the highest likelihood of producing the
observed cross-correlations with the estimated PRNU. Once
we describe how the optimal αk can be found for each annulus
in an adaptive way (Sect. IV-C), we proceed by explaining how
the PCE can be computed and updated (Sect. IV-D).

In the following, we give a formal description of the annuli
for the inverse approach (i.e., using T −1

αk
) and afterwards

indicate how to adapt the discussion to the direct approach.
Let Pk be the set of points of the image grid that are contained
in the kth annulus, i.e.,

Pk
.
= (D2 ·Rk) ∩ I, k = 1, · · · , L , (21)

where multiplication of Rk by D2 (i.e., half the diago-
nal in pixels) is necessary to re-scale the annulus back to
integer-valued coordinates (recall that r = 1 corresponds to
half the diagonal).

Given W̃ = W − W̄ and Pk , computation of T −1
αk
(W̃)

proceeds as follows (see Fig. 5). First, the image of the set Pk
under T −1

αk
, i.e. T −1

αk
(Pk), is calculated and the transformed

points lying outside the image boundaries B are discarded,
as the subsequent interpolation would not be computable. For
the remaining points, T −1

αk
(W̃) is obtained by interpolation

from W̃. We let Qk,inv(αk) be the set of points of Pk for
which their image under T −1

αk
exists (the sub-index inv stands

for ‘inverse approach’). Formally, this set is

Qk,inv(αk) = D2 · Tαk

([(
D2 · T −1

αk
(Pk/D2)

)
∩ B

]
/D2

)
.

(22)

Notice that if the set Pk transformed via T −1
αk

does not
get out of the image bounds B, then Qk,inv(αk) = Pk ;
otherwise, Qk,inv(αk) ⊂ Pk . As a consequence, Qk,inv(αk) ∩

Pk = Qk,inv(αk). Also notice that, as explicitly indicated, the
set Qk,inv(αk) and, in particular, its cardinality, varies with αk .

For the direct approach, the considerations are similar.
Basically, we have to exchange the roles of Tαk and T −1

αk
.

Recalling that the sub-index dir stands for ‘direct approach’,
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the set Qk,dir(αk) can be formally written as

Qk,dir(αk) = D2 · T −1
αk

([(
D2 · Tαk (Pk/D2)

)
∩ B

]
/D2

)
.

(23)

B. Optimization With Respect to αk

Once the annuli have been characterized, in this section
we address the problem of finding the optimal values of αk
that parameterize the transformations T −1

αk
and Tαk for the kth

annulus.
For the sake of compactness, we will find it useful to

denote the cross-correlation and the energy of the transformed
residual computed over Qk,inv(αk) as, respectively,

8k,inv(αk)
.
=

∑
(i, j)∈Qk,inv(αk )

K̂ ′

i, j ·

[
T −1
αk
(W̃)

]
i, j
, (24)

Ek,inv(αk)
.
=

∑
(i, j)∈Qk,inv(αk )

[
T −1
αk
(W̃)

]2

i, j
, (25)

by making implicit the use of the inverse transformation
T −1
αk
(·), and K̂

′
and W̃. Similarly, we denote by 8k,dir(αk)

and Ek,dir(αk) the cross-correlation and energy for the direct
mapping Tαk (·) computed over Qk,dir(αk).

In Appendix A we derive an estimator of αk on the kth
annulus. This estimator is rooted in the principle of maximum
likelihood applied to the output of a bank of cross-correlations.
For the inverse approach, this becomes

α∗

k = arg max
αk∈Ak

ϕk,inv(αk), (26)

where

ϕk,inv(αk)
.
=
8k,inv(αk)

Ek,inv(αk)
. (27)

For the direct approach, the optimization is carried out
after replacing the subindex inv by dir in both (26) and (27).
We notice the proposed objective function is different from the
PCE (constrained to the kth annulus); besides the theoretical
justification in Appendix A, in [21] we provide empirical
evidence that optimization of our objective function renders
better global performance than the PCE.

C. Adaptive Optimization

One key observation from Fig. 1 is that the sequence α∗

k ,
k = 1, · · · , L , changes smoothly for sufficiently small 1k .
This hints at the possibility of reducing the computational
complexity of the exhaustive search by using an adaptive
predictor. In our case, we will show experimentally that a
linear predictor u with length U suffices to achieve excellent
results. In the following, we explain this adaptive procedure.
As above, we will give the details for the inverse approach,
as the direct one is methodologically identical.

First, we need to select an initial index that we will denote
by k0. To this end, we look for the annulus that gives the best
results under no transformations (i.e., when αk = 0). Formally,
this implies that

k0 = arg max
k=1,··· ,L

ϕk,inv(0). (28)

Once this initial point is found, the optimal value of αk0 is
found by exhaustive search in a discrete set around αk0 = 0.
Let Ak0 be such a neighborhood, then following (26), α∗

k0
=

arg maxαk0∈Ak0
ϕk0,inv(αk0).

We will find it useful to define an auxiliary sequence {βk}

that is initialized as βk = α∗

k0
· δk−k0 , where δk is Kronecker’s

delta.1 This sequence is used to store the regressor values.
Since the starting point is k = k0, there are two possible
directions for the prediction: forward (i.e., k > k0), and
backward (i.e, k < k0).2 We will describe how the former
is carried out, and then indicate the modifications needed
for the latter. We define the forward regressor at index k
as βT

k
.
= [βk−U+1, · · · , βk−1, βk], where U is the length.

Notice that, from the way the auxiliary sequence is initialized,
βT

k0
= [0, · · · , 0, α∗

k0
]. We also need a vector of weights at

index k that will be denoted by uk ; this vector of length U is
initialized as uT

k0
= [0, · · · , 0, 1]. Then, for k > k0 the output

of the predictor at index k will be computed as

α̂k = uT
k−1βk−1, (29)

for k = k0 + 1, · · · , L . This predicted value is refined by
exhaustive search in a discrete neighborhood of α̂k . Let Ak
denote such a neighborhood; then α∗

k is obtained as in (26).
The details on how the neighborhood Ak is constructed are
given below. Before that, we explain the updating procedure
for uk and βk . To that end, we define the a posteriori error
at index k as

ek
.
= α∗

k − α̂k, (30)

for k = k0 + 1, · · · , L . This error is used to drive the
adaptive algorithm. It is easy to show that the gradient
vector of |ek |

2 with respect to the weights vector uk−1 is
equal to −2ekβk−1. Then, following the Least Mean Squares
algorithm [22], we propose to update the weights by taking a
step in the direction of the negative gradient, that is,

uk = uk−1 + µekβk−1, k = k0 + 1, · · · , L , (31)

where µ is the so-called step-size. The update of the sequence
{βk} containing the regressor is done by making βk = α∗

k ;
the forward regressor vector βk is updated accordingly. This
iterative procedure is then repeated by going back to (29)
and proceeding until the sequence α∗

k0+1, α
∗

k0+2, · · · , α
∗

L is
produced.

The backward prediction proceeds in a similar way, but now
vector βk is defined as βT

k
.
= [βk, βk+1, · · · , βk+U−1]; this

means that at the backward initialization, vector βk0
will take

advantage of the availability of values of α∗

k that have been
already computed, i.e., βk0

= [α∗

k0
, α∗

k0+1, · · · , α
∗

k0+U−1]
T .

The weights vector for the backward prediction uk0 is ini-
tialized as uk0 = [1, 0, · · · , 0]. Now this weights vector is
updated in the reverse direction:

uk = uk+1 + µekβk+1, k = k0 − 1, · · · , 1, (32)

1Although from a notational point of view, it would be more correct to
define a sequence for every iteration of the algorithm, we allow replacing
values in this sequence in order to avoid overcomplicating the notation.

2Degenerate cases arise when k0 = L or k0 = 1, for which the forward
and backward predictions, respectively, are not needed.
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and again the sequence {βk} containing the regressor is
updated by making βk = α∗

k ; the backward regressor vector
βk is updated accordingly. The algorithm thus generates the
sequence α∗

k0−1, α
∗

k0−2, · · · , α
∗

1 .
After both forward and backward predictions are finished,

the optimal vector is α∗

inv = [α∗

1 , · · · , α
∗

L ]
T

∈ A, where once
again we have added the subindex inv to stress the fact that
we are dealing with the inverse approach. The same procedure
applied to the direct approach will yield an optimal vector α∗

dir.
The pseudo-code for the proposed algorithm is provided in the
technical report [21].3

One critical point of the algorithm is the refining of α̂k that
produces α∗

k . While smarter strategies might be possible, here
we perform an exhaustive search around α̂k in a discrete set
Ak . Of course, the cardinality of this set must be kept at a
small value in order to limit the computational burden. On the
other hand, the discrete points must be generated finely enough
to output a value that is sufficiently close to the optimal.
We thus employ two parameters to describe the set: λk that
controls the resolution, and Ak that is an odd integer that
determines the number of points. Then, given α̂k and these
parameters, the search set is constructed as:

Ak = {α̂k + λk · n : n ∈ Z ∩ [−(Ak − 1)/2, (Ak − 1)/2]}.

(33)

Note that this construction guarantees that |Ak | = Ak . The
parameter λk is selected to be commensurate with |α∗

k −α∗

k−1|

in the forward case (resp. |α∗

k − α∗

k+1| in the backward case),
so that the smaller the change in α∗

k , the finer the grid.
In Sect. IV-G we give more details about the rules that were
employed to generate λk for the experiments. Regarding the
size of the set Ak , this is updated in the same loop as the
predictor; for the forward predictor, the rule is as follows:
if for index k the maximum α∗

k is found at one of the
extremes of the set Ak (i.e., α∗

k = α̂k − λk · (Ak − 1)/2 or
α∗

k = α̂k +λk · (Ak −1)/2) then the size of the set is increased
at the following iteration, i.e., Ak+1 = Ak + 2. Otherwise,
if Ak is already small, i.e., Ak = Amin for some minimum
size Amin, then Ak+1 = Amin; else (i.e, if the maximum in
Ak is not found at either of the extremes, and the set is large
enough), the size is decreased at the following iteration, i.e.,
Ak+1 = Ak −2. This update is intended to find a compromise
between the size of the set and the objective of capturing
the optimal αk . For the backward prediction the reasoning
is identical, but updating Ak−1 from Ak . An example of the
evolution of α∗

k and Ak with respect to the different annuli is
shown in Fig. 6 for a test image taken with a Canon 1200D
camera, Canon EF-S 10-18mm lens, and corrected with Adobe
Lightroom using the strongest radial correction. The reference
PRNU is estimated with 20 natural images all obtained with
the same settings but with no Lightroom correction. The star
indicates the value of α∗

k0
estimated for the initial iteration,

the red line indicates the forward prediction direction and the
blue line the backward one. Finally, the band in pale blue
encompasses the set Ak containing the candidate values of αk

3The code is available at https://github.com/AMontiB/AdaptivePRNU
CameraAttribution

Fig. 6. Evolution of α∗
k and Ak versus rk · D2. Test image taken with Canon

1200D camera, Canon EF-S 10-18mm lens, corrected with Adobe Lightroom.
Focal length: 10mm. Shutter speed: 1/120 sec. Aperture: f8.0. ISO “Dir, Cub”
variant.

for the kth annulus. The “Dir, Cub” variant of our algorithm
is employed (see Sect. V).

D. PCE Computation for the Optimal α

As a result of the adaptive algorithm presented in the
previous section, it is possible to compute the PCEs that
are required in the hypothesis test, that is, PCEinv(α

∗

inv) and
PCEdir(α

∗

dir), see the definitions in (12) and (13). In both
cases, the numerator and denominator of the PCE are already
available, as they are required for the optimization. The only
additional computations are simple sums to accumulate the
results corresponding to the different annuli. To see how this is
so for the inverse approach, notice first that the right hand side
of (13) requires computing the difference T −1

α∗ (W)− T −1
α∗ (W)

(cf. the expression of the PCE in (6)), which can be simplified
by noticing that: 1) It is reasonable to write T −1

α∗ (W) ≈

T −1
α∗ (W̄) because T −1

α∗ is a geometrical transformation that will
not substantially alter the mean value of the residual.4 2) Due
to zero-meaning on the residual, it is possible to write W̄ = 0.
With these considerations, we can write T −1

α∗ (W)−T −1
α∗ (W) ≈

T −1
α∗ (W̃), which is simpler to compute.
With this approximation, the numerator of

PCE(K̂
′
, T −1

α∗ (W)) can be expanded as follows

ssq(⟨K̂
′
, T −1

α∗ (W̃)⟩) =

L∑
k=1

ssq(8k,inv(α
∗

k )), (34)

Now we can easily identify each of the L summands in (34)
as the numerator of ϕk,inv(α

∗

k ) in (27) which can be stored
during the adaptive optimization process.

The denominator of the PCE requires more atten-
tion. With the approximation above, this denominator is

1
|IT \S|

∑
s∈IT \S⟨K̂

′
,C(T −1

α∗ (W̃), s)⟩2 which is nothing but a
sample estimate of the variance of the cross-correlation of

4Strict equality does not hold because W̄ and T −1
α∗ (W̄) do not have the

same support.
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K̂
′

and T −1
α∗ (W̃). In [21, Sect. VIII] we derive and discuss a

simpler sample estimate that is more statistically efficient (i.e.,
has a lower variance). This fully justifies the approximation

1
|IT \S|

∑
s∈IT \S

⟨K̂
′
,C(T −1

α∗ (W̃), s)⟩2
≈ κ · σ̂ 2

K̂ ′
·

L∑
k=1

Ek,inv(α
∗

k ),

(35)

where σ̂ 2
K̂ ′

.
= ||K̂

′
||

2/|I| (recall that K̂ ′

i, j exists for all (i, j) ∈

I), and κ is a factor that takes into account the fact that
the cardinalities of I and

⋃L
k=1Qk,inv(α

∗

k ) are different. (In
practice, κ will be close to 1, so it can be dropped.) Once
again, the L summands in (35) are already available as the
denominator of (27).

E. Early Stopping

The partition into annuli offers one remarkable byproduct:
taking inspiration from [23], it is possible to stop processing
annuli (and declare that H1 holds) if a cumulative PCE exceeds
a predefined threshold. Following the approximations in the
previous subsection, one might be tempted to compute a
cumulative PCE by using the numerators and denominators
already produced during the optimization. In this way, the
optimization would not need to be carried out for all annuli but
instead it could be stopped as soon as the PCE computed so far
exceeds the threshold. Unfortunately, this approach would be
incorrect, because while a fraction with sums in the numerator
can be expanded into a sum of fractions, this is not the case
when there are sums in the denominator. Therefore, if we
want to implement an early stopping mechanism, we need to
seek ways to further approximate the denominator of the PCE
without actually computing all the elements of α∗. To this end,
we can ask ourselves how sensitive is the right hand side of
(35) to changes in α∗

k ; after all, since each of the L summands
is an estimate of the variance of the transformed residual inside
an annulus, one would expect not much variation for realistic
values of α. If this were the case, then one might approximate
the right hand side of (35) (which corresponds to the optimal
vector α∗

inv) by computing it for any reasonable value of αinv
without involving any optimization.

In order to illustrate the feasibility of this approxima-
tion, we show in Fig. 7 the values of the sample variance
of a transformed residual computed in each annulus, i.e.,
σ̂ 2

W
.
=

Ek,inv(αk )

|Qk,inv(αk )|
as a function of αk for several annuli (i.e.,

k = 18, 22, 33) and for cubic inverse mappings, see (20).
Fig. 7 also shows the value of the variance estimated from the
full-size transformed residual, i.e., 1

|IT |
||T −1

αk
(W̃)||2. Bi-linear

interpolation is used in all cases.
As we can see, the variance estimate is fairly constant for

different values of αk , except in a neighborhood of zero. More-
over, this is similar to the variance estimate obtained from the
whole transformed residual, so the latter can be used in place
of the variance estimate for a specific annulus. The reason for
the spike at αk = 0 is that the interpolation that is needed
for computing the inverse mapping when αk ̸= 0 produces a
reduction in the variance of the transformed residual. This
reduction depends on the square magnitude of the interpolation

Fig. 7. Sample variance of the transformed residual for different annuli and
different values of α. Camera and parameters are the same as in Fig. 1.

filter at different sampling points. In general, the grids before
and after the interpolation are not related through rational
numbers, but for certain annuli and values of α, moiré patterns
between the sampling grids may appear; this is why in Fig. 7
a ripple near zero is observed for the annuli k = 18, 22. The
energy reduction phenomenon has been reported in [24] in a
different scenario but related to ours.

The invariance discussed in the previous paragraph suggests
several ways of approximating the right hand side of (35);
for instance, it is possible to pick any value of α, say αf,
sufficiently far from α = 0 and for all the annuli use the same
transformation T −1

αf
in place of T −1

α∗
k

. We remark that the reason
why the neighborhood of α = 0 should be excluded when
selecting αf is the fact that inside such a neighborhood the
denominator of the PCE is overestimated and, consequently,
the PCE underestimated.

Another way of approximating the right hand side of (35)
which offers a slightly better performance than the former is
to use the values of α∗

k already available from the optimization
to update the approximation. This comes at practically no
cost because the corresponding term Ek,inv(α

∗

k ) needs to be
computed anyway during the optimization. For those annuli
whose α∗

k is not available yet, the corresponding term is
substituted by its approximation computed at αk = αf.

We explain next how to compute the Cumulative PCE at
the nth iteration which we will denote by CPCEn,inv(K̂

′
,W).

First, we need a mapping ξ : {1, · · · , L} → {1, · · · , L}, from
the natural order to the one induced by the proposed iterative
procedure, i.e., ξ(1) 7→ k0, ξ(2) 7→ k0 + 1, · · · , ξ(L − k0) 7→

L , ξ(L − k0 + 1) 7→ k0 − 1, · · · , ξ(L) 7→ 1. Then,

CPCEn,inv(K̂
′
,W)

.
=

∑ξ(n)
k=ξ(1) ssq

(
8k,inv(α

∗

k )
)

σ̂ 2
K̂ ′

(
ξ(n)∑

k=ξ(1)
Ek,inv(α

∗

k )+

ξ(L)∑
k=ξ(n+1)

Ek,inv(αf)

) .
(36)

Thus, the early-stopping algorithm will declare a match and
stop if for some n = 1, · · · , L , CPCEn,inv(K̂

′
,W) > τc is

satisfied. The value of τc is set experimentally to achieve the
desired False Positive Rate (FPR).

Given the numerator and denominator of
CPCEn,inv(K̂

′
,W), and once α∗

ξ(n+1) is available, the

numerator of CPCEn+1,inv(K̂
′
,W) is updated by adding
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8ξ(n+1),inv(α
∗

ξ(n+1)), while the update of the denominator
requires adding Eξ(n+1),inv(α

∗

ξ(n+1)) and subtracting
Eξ(n+1),inv(αf).

A similar definition follows for the Cumulative PCE in the
direct approach CPCEn,dir(K̂

′
,W) and the corresponding early

stopping criterion.

F. Parameter Inheritance

As we have discussed, the test decision statistic takes the
maximum of the PCEs computed through the direct and
the inverse approaches. This implies that it is necessary to
compute the optimal vector α∗ for both approaches, so the
computational complexity is roughly doubled. This also holds
if the early stopping criterion introduced above is applied.
In such a case, the iterations for both the direct and the inverse
approaches are made in parallel, so that for every k both
CPCEn,dir(K̂

′
,W) and CPCEn,inv(K̂

′
,W) are checked against

the threshold in order to stop as early as possible.
There is one sub-optimal way to alleviate the computational

burden due to keeping the two approaches. We term it param-
eter inheritance and basically consists in using for the direct
approach the same vector α∗ that was computed for the inverse
approach. Of course, the latter is not necessarily optimal for
the direct approach, but the rationale is that inside each annulus
Rk the direct and inverse transformations nearly correspond
to each other for the same value of αk . Perfect correspondence
does not exist because the inverse transformation is only an
approximation and due to the fact that the search algorithm is
prone to errors due to noise and insufficient resolution.

G. Parameter Default Values

In this section we provide the default values for the param-
eters of our algorithm and discuss some decisions regarding
the initialization. These default values were used in the exper-
iments reported in Sect. V. Specifically, the radius of the inner
disk r1 is such that r1 · D2 equals 250 pixels and the width of
each annulus 1k is such that 1k · D2 equals 64 pixels. Both
values are chosen as a compromise between performance and
computational cost; see Sect.V for an additional discussion.
For the linear predictor we set U = 6, µ = 1 and Amin = 7.

The initial search set Ak0 is given by Ak0 =

{−0.22,−0.21, · · · , 0.21, 0.22}, which is the same range as
used and justified in [8] to cover a variety of barrel and
pincushion distortions. However, in our case we apply a
coarser resolution for computational reasons and because the
adaptive nature of our algorithm automatically adjusts to finer
resolutions after a few iterations. We are aware that in [9] a
wider range was preferred (even if just to invert pincushion
distortions), so we carried out some experiments with images
taken with the Canon 1200D camera and radially corrected
with Adobe Lightroom using the lens distortion model of
a different device (see Section V), since this combination
produces some of the strongest and most variable radial
corrections of our dataset. In these experiments, the search
set was expanded to Ak0 = {−0.50,−0, 49, · · · , 0.49, 0.50}.
While it is true that this set allows in some cases to get closer
to the proper αk0 , we found no significant differences in terms

of performance with the previous initialization; as mentioned,
this is due to our algorithm quickly finding the right range for
αk after few iterations. In contrast, the computational load of
using the enlarged search set would be larger; for this reason,
we recommend Ak0 = {−0.22,−0.21, · · · , 0.21, 0.22}. For
an in-depth complementary discussion on the initial set, please
see [21].

After the initial search, for the forward prediction Ak0+1 is
given by (33) with λk0+1 = 0.001 and Ak0+1 = 9. For the
following iterations,

λk =


0.1 if |αk − αk−1| > 0.1,
0.01 if 0.01 < |αk − αk−1| ≤ 0.1,
0.001 if |αk − αk−1| ≤ 0.001.

(37)

Identical considerations to the previous paragraph are made
in regard to the backward prediction, where k0 +1 is replaced
now by k0 − 1 and in (37) k − 1 is replaced by k + 1.

V. EXPERIMENTAL RESULTS

A. Experiments With in-Camera and Out-Camera
Corrections

In order to measure the performance of the methods pre-
sented in Sect. IV and compare them with the state of the
art in [8] and [9], we built a test dataset composed of
3645 images, of which 2037 were taken with the following
compact cameras and radially corrected “in-camera” (i.e.,
by the camera software): Canon SX230 HS (188 images),
Panasonic ZS7 (170 images), Canon SX40 (57 images), Canon
SX210 (82 images), and Nikon S9100 (1540 images). All
these images were downloaded from Flickr, as done in [8]
and [9]; for this reason, there is an uneven distribution of
images per device. 1508 of the remaining images in the
test dataset were taken with the Canon 1200D (a reflex
camera not applying any type of in-camera post-processing)
with the following Canon Zoom Lenses: 1) EF-S 10-18 mm
1:4-5.6 IS STM; 2) EF-S 18-55 mm 1:3.5-5.6; 3) EF
75-300 mm 1:4-5.6, all radially corrected “out-camera” with
third-party editing software: Adobe Lightroom Classic CC
2017, Adobe Photoshop CC 2017, PT Lens v2.0 (Macbook)
and Gimp 2.10.14. Specifically, 377 images were corrected
with each of these tools. With Adobe Lightroom we applied
the correction model specific to the lens used to take the
picture, thanks to the database of radial correction models
Lightroom is equipped with. For the other editing software
we applied the strongest radial correction available, as those
tools cannot be tuned to a specific lens model. The last
100 images in the test dataset were also taken with the Canon
1200D camera but corrected with Lightroom using models for
other lenses (i.e., Nikon, Tamron, Apple, Huawei and DJI,
with 20 images each), always applying the strongest radial
correction. This latter subset will be labeled as “Lightroom*”
in the following.

Images in the test dataset were JPEG compressed with QFs
in the range 90-98. For each device, the same QF is consis-
tently used; see [21] for details. The reference PRNUs for
carrying out the tests were estimated for each device using (4)
with L = 20 natural images (not used for testing) compressed
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with matching QFs to the test subset of that device. For the
compact devices, since the in-camera corrections depend on
the focal length, fixed specific values of the latter were sought
in order to estimate the respective PRNUs; whenever enough
images were available for a certain device and focal length,
a different fingerprint was estimated and the results averaged
for each device. In all cases, hypothesis H1 was tested with
images taken with focal lengths different from those used to
estimate the fingerprints. We refer the reader to [21] for full
details. When, under hypothesis H0, the test images and the
fingerprints have different sizes, we crop the central part of
the larger to match its size to the smaller [7].

Next, we describe the identifiers used to refer to the
different variants of our method in the figures and tables
in this section. With “Dir” and “Inv” we indicate those
cases where CPCEn,dir(K̂′,W) and CPCEn,inv(K̂′,W) are
respectively used as the only test statistics. By “2W” we
refer to the “two-way” case in which both the direct and
the inverse approaches are used and H1 is decided if either
CPCEn,dir(K̂′,W) or CPCEn,inv(K̂′,W) are above the thresh-
old for any n ∈ {1, · · · , L}. To alleviate the computational
load of the “two-way” parameter optimization, recall that
in Sect.IV-F we proposed to inherit the parameters of one
approach to the other. We will use the label

−→
DI to indicate

inheritance of α∗
n from the direct approach to the inverse one;

and
−→
ID vice versa. On the other hand, with the labels “Cub”

and “Lin” we refer to the cubic and the linear radial correction
models, respectively; see (20). In all reported cases, the early
stopping strategy from Sect. IV-E is imposed.

All the tests were run on a server with the following char-
acteristics: 16 Cores, Processors 2xXeon E5-2667v3 3.2 GHz
and RAM 192 GB; our implementation requires at most 5GB
of RAM. In experimentally comparing the variants of our
method with the algorithms proposed in [8] and [9], we noticed
that [8] was tested on images of size 3000 × 4000 that are,
on average, larger than the in-camera corrected images in our
dataset (refer to Table II for the image sizes in each subset).
This explains the slightly worse performance measured here
(with downsampling) compared to that reported in [8].

In Table I we provide the fixed thresholds τc (measured
over the entire test dataset) that ensure False Positive Rates
(FPR) of 0.05 and 0.01 together with the corresponding True
Positive Rates (TPR) for the different variants of our method
and those in [8] and [9] (with and without DS).

A breakdown by subset of the previous table is given in
Table II which also shows the time consumed to declare a
match (under H1) by the different alternatives (with early
stopping in those cases where it applies).5 For reasons of
space, we have excluded the method in [9] which yields a
modest performance, as well as the worst-performing variants
of our method (cf. Table I); see [21] for fully comprehensive
results. The Receiver Operating Characteristic (ROC) curves
for the variants in Table II are plotted in Fig. 8, where we
have also added for comparison the baseline (BL) obtained by

5The time consumed when no early stopping is in force is given in the
technical report [21].

TABLE I
THRESHOLDS REQUIRED TO ACHIEVE FPR=0.05 AND FPR=0.01 AND

CORRESPONDING TPRS FOR DIFFERENT METHODS AND VARIANTS

Fig. 8. ROCs obtained with the variants of our method, [8] (with and without
DS) and [9] on the test dataset.

using PCE(K̂′,W) (i.e., with no transformations of either the
PRNU or the residual) as test statistic.

From the results in Fig. 8 and Table I, it is possible to
conclude that the best performing variants of our method
correspond to the cubic correction model (“Cub”), with “

−→
DI”,

“Dir”, “Inv” and “2W” all achieving similar TPRs for the
target FPRs. On the other hand, the average execution time
of the “one way” variants, i.e. “Dir” and “Inv”, is lower
because only one statistic has to be computed per iteration. The
experiments, conducted on a dataset composed of a variety of
radial corrections, show that our variants outperform [8] (both
with or without DS) in terms of TPR. Moreover, thanks to our
early stopping strategy, our fastest variants (i.e., “Dir, Cub”
and “Inv, Cub”) achieve under H1 execution times that are
comparable to [8] with DS. We also note that the original
solution proposed in [8] (i.e. with DS) achieves a limited
performance both on low-resolution devices (i.e. SX230 and
ZS7) and in presence of complex out-camera radial corrections
as those applied by Adobe Lightroom. Adapting [8] to avoid
DS results in a significant performance increase in those
difficult cases, at the expense of a much more costly execution.
Nevertheless, for some severe radial corrections like those in
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TABLE II
TPRS OF THE DIFFERENT VARIANTS OF OUR METHOD AND [8] (WITH AND WITHOUT DS), ANDTHE AVERAGE TIME CONSUMED TO DECLARE A MATCH

FOR SPECIFIC DEVICES/SOFTWARE. IN BOLD WE HIGHLIGHT THE FASTEST AND MOST ACCURATE VARIANTS OF OUR METHOD

our “Lightroom*” subset, using the full resolution in [8] is
still not sufficient. In contrast, our method is able to adapt to
this high complexity and offers an excellent performance with
an affordable execution time.

An analysis of the results for our variants across the different
subsets reveals that both out-camera radial distortion correc-
tions and small images represent the most difficult scenarios.
As already mentioned, complex corrections probe the limits of
the expressive capacity of the radial transformations that need
to be applied; on the other hand, small images have a lower
PCE (or CPCE) thus making it more difficult to score above
the threshold under H1. In this sense, processing pipelines
that further degrade the signal strength (e.g. compressions
applied by social networks) become great challenges that
deserve future attention. Concerning complex radial distortion
corrections, preliminary experiments carried out by replacing
in our variants the proposed local search algorithm by a much
more time-consuming exhaustive search reveal that there is a
significant margin of improvement in the former.

Considering the trade-off between performance and speed,
our recommended variant is “Dir, Cub”, which is the one that
we used in the other experiments discussed in the following
sections.

B. Impact of Annuli’s Width

Next, we present results supporting the choice for the width
of the annuli 1k . Recall that in this paper we assume that
1k = 1 except for the inner disk. Fig. 9 plots the ROC
curves for the previous dataset and different values of 1 · D2.
The “Dir, Cub” variant of our method was selected. The
legend shows the Area Under the Curve (AUC) obtained by
integrating the ROC for FPRs in the interval [0, 0.05) and
normalizing it by 0.05, so that for a perfect detector this AUC
would be 1; this quantity is denoted as AUC@0.05. As we can
see, when 1 · D2 is too large, the expressive capacity of the
third-order mapping is less adequate to correctly approximate
the true radial distortion correction in the most complex

Fig. 9. ROC curves for different values of annulus width 1 · D2.

cases. On the other hand, when 1 · D2 is too small, the
signal to noise ratio may be insufficient for our adaptive
method to work properly. In any case, our results show that
performance is quite robust to the choice of 1 · D2. Thus,
our choice of 1 · D2 = 64 was motivated by it achieving the
best performance and the fact that computational complexity
decreases with1·D2 (e.g. the execution time for1·D2 = 64 is
0.61 times that for 1 · D2 = 32 on average across the dataset).

C. Verification of the Approximation in (35)

In Fig. 10 we visualize the goodness of the approximation
presented in (35), for Tα∗,c, that is, the “Dir, Cub” variant. For
this experiment, we took 20 random images for each of the
following models in the dataset of Sect. V-A: Canon SX230,
SX210, Panasonic ZS7, Nikon S9100 (all corrected in-camera)
and the Canon1200D (corrected with Adobe Lightroom).
In order to apply Tα∗,c on the left hand side of (35) we did so
in annulus-by-annulus basis, that is, deriving the transformed
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Fig. 10. Scatter-plot of the two sides of (35) computed for images from
different camera models in the dataset.

coordinates Tα∗
k ,c

for each annulus and then computing the
transformed fingerprint Tα∗,c(K̂′) by interpolating K̂ at those
coordinates. Fig. 10 represents a scatter-plot in which the
coordinates of every point are obtained by computing the right
and left hand sides of (35). As we see, the approximation
that we proposed in the paper is reasonable (even more so
considering the interpolation carried out to practically compute
the left hand side of (35)). We can also see that for larger
images the approximation is noisier; this can be attributed to
the larger variance of the sample variance estimator given by
the denominator of the PCE, as discussed in [21]. The absolute
relative error for the samples considered in Fig. 10 has a mean
value of 0.069.

D. Experiments With Smartphones From [10]

For the second set of experiments, we decided to assess
the presence of radial distortion corrections on common
smartphones, and analyze in this context the performance of
some of the methods discussed in this paper when trying to
solve the mismatches due to those corrections. To this end,
we decided to use a subset of the database recently published
by Iuliani et al. [10] which contains 33,000 Flickr images
belonging to 45 smartphones and 25 DSLR camera models
with several different devices for each model (the number of
test images and devices per model are indicated in the first
two columns of table III). Due to the fact that, as it will be
explained below, one of the tested approaches required a brute-
force search, we had to limit the set of tested models to the
ones shown in Table III, which were randomly picked from
the original dataset. For those selected models, we used all
the available images. The results on the full dataset will be
reported elsewhere. The fingerprints were computed for each
device of each model using 35 images (those provided for the
reference fingerprint by the authors of [10]) that were later
discarded for testing.

Specifically, in this experiment, noticing that the results
in [10] contain a large number of false negatives, we wanted

TABLE III
STANDARD TRUE POSITIVE RATES AND NEW DISCOVERY RATES

FOR CAMERA MODELS IN THE SECOND DATASET

to find out whether any of those could be attributed to
in-camera radial distortion corrections and thus be reverted
by the algorithms discussed in this paper. Thus, we chose the
method “Dir, Cub” as representative of our variants, and [8]
for the state of the art. Furthermore, to decouple the limitations
of the search method proposed in [8] from the expressive
constraints of the family of third-order radial transformations
considered therein and given by (10), we decided to modify
the method in [8] so that parameter α is found through an
exhaustive search with step size 0.01 and range [−0.3, 0.3].

Next, we explain the quantities reflected in the table
columns. For every given camera model, the standard true
positive rate (STPR) is the fraction of images that are cor-
rectly matched using the standard PCE (Eq. (5)) without any
radial transformation. The detection threshold is set for a
FPR=0.01 separately for each model6 (i.e. H0 is constructed
with all images taken with devices from the same model other
than the device under test); this is advisable in the current
experiment because of: 1) the availability of many exemplars
of the same model, which allows us to construct a rich null
hypothesis; 2) the fact that for some models we have observed
systematic biases on the PCE values under both H0 and H1
(for instance, for the Nokia Pure View 808 model a STPR=1
is prominently achieved when the threshold is set using only
images from the same model, different device, to compose
H0). The new discovery rate (NDR) is the fraction of false
negatives of the standard PCE test that can be matched after
applying the algorithm under study. Again, the threshold is
set specifically for each model, which requires that images
from H0 are also subjected to the algorithm under study to
properly evaluate the FPR. To give an example, suppose that
for a model we have 100 test images, 70 of which are correctly
detected with the standard PCE test, so STPR=0.7; if for the
remaining 30 false negatives, 10 of them are correctly detected
after applying a distortion inversion algorithm (i.e, there were
10 newly discovered positives), then NDR=10/30=0.33.

From Table III we can see two types of cases: 1) for
the iPhones and the Oppo A9 2020 the NDRs are relatively
small (but not zero), so it cannot be entirely ruled out that
the new discoveries are just false positives. 2) For the two
Huawei models, the Moto e5 Play, and the One Plus 6T our

6While for other experiments in the paper we set FPR=0.05, here we chose
a more conservative threshold in order to achieve larger statistical significance.
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method achieves significantly many more new discoveries than
those of the two other approaches, including the exhaustive
search. The new discoveries made by our method range from
20% to 70%, which is a remarkable result, as it leads to a
dramatic reduction in the false negatives reported in [10]. The
statistical significance of the new discoveries is supported by
their p-values.7 Let µp and σp respectively denote the mean
and standard deviation (std) of the p-values corresponding to
the new discoveries. For those new discoveries made by our
method their respective means and stds of p-values are as
follows: Huawei P20 lite: µp = 2.1 · 10−3, σp = 2 · 10−3;
Huawei mate 20 lite: µp = 1.3 · 10−3, σp = 3 · 10−3; Moto
e5 Play: µp = 1.7 · 10−3, σp = 2 · 10−3; One Plus 6T:
µp = 2 · 10−4, σp = 1 · 10−3. On the other hand, failure
of [8] to make new discoveries in these cases, even with brute-
force search, is a clear sign that for those camera models the
radial corrections applied in-camera are more complex than the
third-order model described in (10), and thus require a more
flexible approach, as afforded by our proposed methods.

VI. CONCLUSION

In this paper, we have proposed an adaptive method for
PRNU-based camera attribution that is able to cope with
complex radial distortion corrections, as those performed
in-camera by most compact models and out-camera by image
processing software. Existing approaches try to either “cor-
rect” the reference fingerprint or invert the correction by
applying a further geometric transformation that, in order to
avoid a combinatorial explosion, must use a reduced number of
parameters. In turn, this limitation accounts for unsatisfactory
performance when complex radial distortion corrections are
in effect, an undesirable aspect in view of the trend of
more elaborate transformations that are made possible by
ever more powerful distortion correction firmware/software.
Our approach is radically different: by applying a divide-and-
conquer principle, embodied in the use of annuli, we are able
to: 1) allow for complex distortion corrections, as locally the
transformation undergone by each annulus is much simpler;
2) implement an early stopping strategy that offers large com-
putational savings. The results presented in the paper clearly
reveal that our algorithm (in most of its variants) outperforms
the state of the art when accuracy and computational load are
considered.

We believe that the adaptive approach proposed here could
also be fruitful in other very challenging camera attribution
scenarios with a number of latent parameters, such as in HDR
images [7], in-camera-stabilized videos [25], and emerging
in-camera processing [10].

Experiments carried out with complex radial correction
distortions show that a local exhaustive search significantly
outperforms our prediction-based algorithm; moreover, for
those outer annuli that get out of the image boundaries, the
lower signal to noise ratio often yields estimation errors. Thus,
the design of more effective, yet computationally affordable,
local search algorithms is an open problem. On the other
hand, our methods assume that the optical center of the radial

7Note that, by selection of the threshold, all p-values are ≤ 10−2.

transformation is known; when this is not the case (e.g. due to
image cropping), the number of unknown parameters grows,
as does the need for efficient search algorithms.

APPENDIX A
DERIVATION OF THE ESTIMATOR OF α∗

k

In this Appendix we derive a plausible estimator of α∗

k
under the inverse approach; the derivation would be identical
for the direct approach and, hence, is skipped here. See
the definition of α∗

k in (26). We introduce a super-index in
αk to enumerate the elements of the candidate set Ak , i.e.,
{α
(n)
k : n = 1, · · · , Ak} = Ak .
We assume that H1 holds, i.e., I contains K′, and the

following model for the residuals:

[T −1
α
(n)
k
(W̃)]i, j = γ

(n)
i, j [T −1

α
(n)
k
(T
α

†
k
(K̂

′
))]i, j + N (n)

i, j (38)

for all (i, j) ∈ Qk,inv(α
(n)
k ) and n ∈ {1, · · · , Ak}. In (38) α†

k
represents the true (locally for the kth annulus) value of α.
The multipliers γ (n)i, j are non-negative and take into account
both the multiplicative effect of the image I and the gain
of the effective denoising filter (which also impacts on the
estimate K̂

′
of the true PRNU). We argue that these multipliers

are very hard to estimate accurately; as a consequence, a full
maximum likelihood decision will not be possible and some
simplifications will be required. One such simplification is to
consider that the cross-correlations between K̂

′
and T −1

α
(n)
k
(W̃),

for all n = 1, · · · , Ak , constitute a set of sufficient statis-
tics for the estimation problem. Recall from (24) that these
cross-correlations are denoted by 8k,inv(α

(n)
k ).

We make the following hypotheses:
1) Spikiness: The α(n)k are sufficiently separated so that the

8k,inv(α
(n)
k ) are mutually uncorrelated and E{8k,inv(α

(n)
k )} =

0, for all n = 1, · · · , Ak , except for n = l, where l is such that
α
(l)
k is the closest to the true value α†

k and the expectation is
taken over the underlying distribution of K′. This hypothesis
is reasonable in view of the spikiness of the PCE with α (see
Fig. 2). We also assume that α(l)k is close enough to α†

k so that
[T −1
α
(l)
k
(T
α

†
k
(K̂

′
))]i, j ≈ K̂ ′

i, j for all (i, j) ∈ Qk,inv(α
(l)
k ).

2) Uncorrelatedness: In (38), N (n)
i, j and γ

(n)
i, j [T −1

α
(l)
k
(K̂

′
)]i, j

are zero-mean and mutually uncorrelated for all (i, j) ∈

Qk,inv(α
(n)
k ) and n ∈ {1, · · · , Ak}. For any l, n ∈ {1, · · · , Ak},

l ̸= n, the variables K̂ ′

i, j · N (n)
i, j and K̂ ′

u,v · N (l)
u,v are mutually

uncorrelated for every (i, j) ∈ Qk,inv(α
(n)
k ) and every (u, v) ∈

Qk,inv(α
(l)
k ).

3) Weak PRNU: In (38),
∣∣∣∣γ (n)i, j [T −1

α
(n)
k
(T
α

†
k
(K̂

′
))]i, j

∣∣∣∣ ≪ |Ni, j |

for a large number of pixels of each annulus; we write this
more precisely as∑
(i, j)∈Qk,inv(α

(n)
k )

(
γ
(n)
i, j

)2
[T −1
α
(n)
k
(T
α

†
k
(K̂

′
))]2

i, j ≪

∑
(i, j)∈Qk,inv(α

(n)
k )

N 2
i, j (39)

for all n ∈ {1, · · · , Ak}.
As a consequence of the spikiness and uncorrelatedness

assumptions above and the Central Limit Theorem (which
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is applicable if we assume that |Qk,inv(α
(n)
k )| is large for

all n ∈ {1, · · · , Ak}), the variables 8k,inv(α
(n)
k ) will be well

modeled by independent Gaussian distributions, so the cross-
correlations will be

8k,inv(α
(n)
k ) ∼ N (0, (σ (n))2), n = 1, · · · , Ak, n ̸= l (40)

8k,inv(α
(l)
k ) ∼ N (µ(l), (σ (l))2) (41)

whereN (µ, σ 2) denotes a Gaussian with mean µ and variance
σ 2, µ(l) denotes the expected value of the cross-correlation
for the value of α(n)k ∈ Ak that is closest to α†

k , and (σ (n))2,
n = 1, · · · , Ak , denote the variances of the cross-correlations.

For all n = 1, · · · , Ak , the variances (σ (n))2 can be written
as Var{

∑
(i, j)∈Qk,inv(αk )

K̂ ′

i, j · Ni, j } ≈ σ̂ 2
K̂ ′

∑
(i, j)∈Qk,inv(αk )

N 2
i, j .

As a consequence of the weak PRNU assumption∑
(i, j)∈Qk,inv(αk )

N 2
i, j ≈ Ek,inv(α

(n)
k ). Therefore,

(σ (n))2 ≈ σ̂ 2
K̂ ′

Ek,inv(α
(n)
k ).

Let fN (Y ;µ, σ) denote the Gaussian pdf on random vari-
able Y ∼ N (µ, σ 2). Also, let El denote the event “α(l)k , l ∈

{1, · · · , Ak} is the closest to the true value α†
k ”. Then the like-

lihood of jointly observing the cross-correlations 8k,inv(α
(n)
k )

conditioned on El is

f (8k,inv(α
(1)
k ), · · · ,8k,inv(α

(Ak )
k )|El)

= fN (8k,inv(α
(l)
k );µ

(l), σ (l)) ·

Ak∏
n=1
n ̸=l

fN (8k,inv(α
(l)
k ); 0, σ (n))

(42)

The maximum likelihood estimator would be obtained
by maximizing the likelihood in (42) with respect to
l. The estimator will not change if we divide (42) by∏Ak

n=1 fN (8k,inv(α
(n)
k ); 0, σ (n)); this gives the following sim-

pler likelihood function

L(8k,inv(α
(1)
k ), · · · ,8k,inv(α

(Ak )
k )|El)

=
fN (8k,inv(α

(l)
k );µ

(l), σ (l))

fN (8k,inv(α
(l)
k ); 0, σ (l))

(43)

Taking the logarithm and simplifying, we find that the maxi-
mum likelihood estimator is equivalent to solving

l∗ = arg max
l=1,··· ,Ak

ψ (l) (44)

where

ψ (l)
.
=
µ(l) ·8k,inv(α

(l)
k )

(σ (l))2
−

1
2
(µ(l))2

(σ (l))2
(45)

and making α∗

k = α
(l∗)
k .

Notice that, as discussed above, (σ (l))2 can be replaced by
its estimator σ̂ 2

K̂ ′
Ek,inv(α

(l)
k ) in (45). Unfortunately, producing

a reliable estimator of µ(l) is not feasible due to the unavail-
ability of the gains γ (l)i, j . For this reason, we turn our attention
to suboptimal estimators that can be practically implemented.
If we assume that for all l in {1, · · · , Ak} both µ(l) and the
ratio µ(l)/σ (l) do not vary significantly around their respective
means, we can think of replacing µ(l) and µ(l)/σ (l) in (45) by
those means. This yields the simplified functional

ψ ′(l) .
= 8k,inv(α

(l)
k )/(σ

(l))2 (46)

to be used in (44). After replacing (σ (l))2 in (46) by its
estimator σ̂ 2

K̂ ′
Ek,inv(α

(l)
k ), and dropping σ̂ 2

K̂ ′
because it is

independent of l, we obtain the proposed (27).
It is interesting to evaluate the loss of performance that

results when using (46) instead of (45). We do so by assuming
w.l.o.g. that El holds and estimate the probabilities that a
given n ∈ {1, · · · , Ak}, n ̸= l, produces a larger value
than for n = l in ψ (n) and ψ ′(n). Then, we compare the
two resulting probabilities in terms of the effective signal-to-
noise ratios (SNR). Therefore, in this case, following (40),
we have that for n ̸= l, 8n,inv(α

(n)
k ) ∼ N (0, (σ (n))2),

and 8k,inv(α
(l)
k ) ∼ N (µ(l), (σ (l))2). Thus, when El holds,

ψ (l) ∼ N
(
(µ(l))2/(

√
2σ (l))2, (µ(l))2/(σ (l))2

)
and ψ (n) ∼

N
(
−(µ(n))2/(

√
2σ (n))2, (µ(n))2/(σ (n))2

)
, n ̸= l. Since ψ (l)

and ψ (n) are independent, the probability that ψ (n) ≥ ψ (l)

when El holds is the probability that the random variable
ψ (l) − ψ (n) is less than zero. And since both variables are
Gaussian, so is their difference. Therefore, ψ (l) − ψ (n) ∼

N (ωn,l/2, ωn,l), where

ωn,l
.
=
(µ(l))2

(σ (l))2
+
(µ(n))2

(σ (n))2
(47)

If we define the effective SNR as the ratio between the squared
mean and the variance of ψ (l) − ψ (n), then we find that
SNRψ = ωn,l/4, where the subindex ψ indicates that we are
using the estimator in (45).

For the simplified estimator in (46), a similar derivation
leads to showing that

ψ ′(l)
− ψ ′(n)

∼ N
(
µ(l)

(σ (l))2
,

[
1

(σ (l))2
+

1
(σ (n))2

])
(48)

for which the effective SNR, denoted as SNRψ ′ is now

SNRψ ′ =
(µ(l))2/(σ (l))2

(σ (l))2

(σ (n))2
+ 1

(49)

In order to compare the effective SNRs, we compute their
ratio:

SNRψ
SNRψ ′

=

1 +

(
µ(n)

µ(l)

)2
·

(
σ (l)

σ (n)

)2

4
·

( σ (l)
σ (n)

)2

+ 1

 (50)

To get a cleaner interpretation of this result, we can further
assume that both µ(n) and (σ (n))2 are proportional to the
cardinality of the support set |Qk,inv(α

(n)
k )|. This way, if we

let βn,l
.
= |Qk,inv(α

(n)
k )|/|Qk,inv(α

(l)
k )|, we can write that

µ(n)/µ(l) = βn,l and (σ (l))2/(σ (n))2 = β−1
n,l . Then, substi-

tuting into (50) we find that

SNRψ
SNRψ ′

=
(1 + βn,l)

2

4βn,l
= 1 +

(1 − βn,l)
2

4βn,l
(51)

which is clearly larger than one for all βn,l ≥ 0, βn,l ̸= 1.
This confirms that, as expected, for any βn,l ̸= 1 there is
a loss of effective SNR with respect to the optimal estimator.
However, in practice this loss will be rather small: for instance,
suppose that |Qk,inv(α

(n)
k )| is within the range of 20% larger
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and 20% smaller than |Qk,inv(α
(l)
k )|, then the effective SNR

for the suboptimal detector is at most 0.054 dB smaller than
the corresponding to the optimal one.

This supports the plausibility of the proposed simplified
detector.
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