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Abstract—Spatial Modulation (SM) offers a good balance be-
tween energy and spectral efficiency of interest for next genera-
tion networks. This, together with the need for only one Radio
Frequency (RF) chain, makes SM a good proposal for Internet
of Things (IoT) devices. In this work, we present a method
based on Deep Learning to select the optimum Modulation and
Coding Scheme (MCS) in an adaptive SM system. The deep
neural network is trained with supervised learning to perform
a mapping between the channel conditions and the MCS from
a given set. We provide simulations results for a 4 x 4 SM link
which uses several coding rates and three different constellations:
QPSK, 8PSK and 16QAM. Results show how the adaptive system
has a throughput close to its maximum value and how the outage
probability can be reduced easily by applying a back-off margin
to the neural network output.

Index Terms—Deep Learning, Link adaptation, MIMO, Neural
Network, Spatial Modulation.

I. INTRODUCTION

According to Cisco’s Global Mobile Data Traffic Forecast
Update [1], a seven-fold increment in the mobile data traffic is
expected in the period 2017 —2022. They also forecast that the
number of Machine-to-Machine (M2M) connections will see a
four-fold increment in the that period, reaching 3.9 billion of
connections in 2022. Therefore, future mobile networks are
compelled to increase their capacity and serve many more
devices, all this in a more energy efficient manner.

In this context, Spatial Modulation (SM) is a multi-antenna
technique proposed to enhance the performance of beyond
5G networks since it offers a good trade-off between energy
and spectral efficiency [2]. This scheme is specially suited for
providing connectivity to Internet of the Things (IoT) devices
that require moderate data rates but that have complexity and
battery-life constraints [3], since SM transmitters can operate
with a unique Radio Frequency (RF) chain.

Modern communication systems incorporate some sort of link
adaptation mechanisms to adjust the transmission parameters
in order to enhance the performance of the link (throughput
and/or reliability) under the time variant channel conditions.
The idea behind the link adaptation is the adjustment of
the coding rate and the constellation order depending of the
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channel in order to enhance the spectral efficiency or some
other performance metric. For the specific case of SM, works
like [4] started to develop the adaptive SM concept, with
the constellation order of the symbols sent by each antenna
individually tuned. Later works such as [5] consider the use of
the same constellation by all the antennas, since this reduces
the complexity and avoids the decoding error propagation,
problem raised also in [6]. Another recent publication [7]
explores the application of Deep Learning (DL) to select a
physical layer configuration in adaptive SM systems.

This paper presents a link adaptation mechanism for adaptive
SM systems following a DL approach. Contrary to previous
publications, we add a channel encoder whose coding rate
is adapted dynamically in conjunction with the constellation
order, similarly to more conventional schemes. However, dif-
ferently from works like [4] or [7], we enforce the use of
the same constellation by all the antennas, as proposed also
in [5]. The mechanism of selection of the Modulation and
Coding Scheme (MCS) in adaptive SM links that we propose
is based on a deep neural network, which is trained by means
of supervised learning. This works extends our previous results
of [8], where we present a coding rate selection mechanism
in a simpler setup, with fewer antennas and without adapting
the constellation order.

The rest of the article is structured as follows. Firstly, Section
II presents the system model and explains the basic concepts
behind Spatial Modulation. Then, Section III explains the
proposed method for doing the MCS selection. The parameters
of the systems employed in the simulations are described in
Section IV before the main simulation results are provided in
Section V. Lastly, the main conclusions are drawn.

II. SYSTEM MODEL

In this work we consider a Spatial Modulation (SM) system
which has a single Radio Frequency (RF) chain, so that only
one antenna is active during each symbol period. In SM
the information is conveyed in two different ways; one, by
selecting a modulation symbol s from a constellation S and,
two, by selecting which antenna is employed to transmit that
symbol. Therefore, log,(N;) + log, (M) bits can be conveyed
in each channel use if the transmitter has IV; antennas and the
employed constellation has order M.



The general system model of a SM link with NV, transmit
antennas and NV, receive antennas is

y = V7Hx +w, (1

where y € CN*1 is the received signal, v the average Signal
to Noise Ratio (SNR), H € CNr*Nt the channel matrix,
x € CM*! the transmitted signal and w ~ CAN(0,Iy,)
the Additive White Gaussian (AWGN) noise vector. Equation
(1) can be further simplified by taking into account that at
each time instant x has only one non-zero component, the -
th component for instance, a complex symbol s taken from
the constellation S. Therefore, (1) can be also expressed as

y=Vyhs+w 2)

where h; denotes the {-th column of H, [ € {1,2,..., N;}. We
assume a unit power constraint, i.e., E [x7x| = E [|s|?] = 1.

Fig. 1 shows the block diagram of an adaptive SM system that,
similarly to other communication systems, has two degrees
of freedom in the link adaptation. On the one hand, the
transmitter can modify the coding rate r of the channel
encoder for adapting the level of protection of the information
bits. On the other hand, the transmitter can also select the
constellation order M of the transmitted symbols. We refer
to the combinations of coding rate r and constellation order
M which are available for transmission as Modulation and
Coding Schemes (MCS).

The SM receiver, depicted also in Fig. 1, is assumed to have
perfect Channel State Information (CSI). The estimated SNR
v and channel matrix H are employed by the Soft Detection
block, for computing the log likelihood ratios (LLRs) of each
bit required by the channel decoder [9], and by the Adaptation
Unit. The CSI is not reported back to the transmitter to reduce
the overhead in the return link; this information is rather
used by the Adaptation Unit to select the MCS and send the
corresponding index to the transmitter to update the parameters
of the next frame. This selection is based on a feedforward
neural network, which will be detailed in the following section.

In this paper, the link adaptation problem is formulated as the
maximization of the spectral efficiency subject to a maximum
Bit Error Rate (BER) target value pg. The set of the K avail-
able MCS is represented with M = {my, = (ry, M), k =
1,2,..., K}, with ri, and M}, the coding rate and constellation
order of the k-th MCS, respectively. With these considerations,
the selection of the MCS can be expressed as the following
optimization problem:

arg  max i logo (Ny My,) (3a)

my=(rk, M)
subject to mg € M, (3b)
BER(y; my, H) <po.  (3¢)

The BER is a function of the SNR ~, the MCS mj and
the channel H. In [8], we have presented a method based on
Deep Learning (DL) to perform the coding rate adaptation in
a simpler setup, with a fixed QPSK constellation in a 2 x 2

configuration. Therein, it was shown that the required SNR
for guaranteeing a given BER for a specific MCS can change
substantially from one channel matrix to another, making the
problem (3) more challenging than in conventional adaptive
links. In this work, we follow a philosophy very similar to
[8], showing how to extend those results to a more general
scenario, with more antennas and where, apart from the coding
rate, the constellation order can be also adapted.

IIT. PROPOSED METHOD

Fig. 2 shows a diagram with the steps required for obtaining
a neural network which can be useful to perform the MCS se-
lection in an adaptive SM link. These stages, more elaborated
in our previous publication [8], are summarized hereafter.

In the first step, which is the most computationally intensive,
system level simulations are executed for obtaining the BER of
each MCS for a large number of different channel matrices and
values of SNR. The conditions of the simulations, including
the channel statistics and receiver algorithms, should match
those of the final adaptive system. The output of this step is
a collection of performance curves of the MCS for a large
number of channel matrices. Mathematically, we denote this
as BER = f(v; H,MCS).

The second step takes the simulation data obtained from the
previous phase in order to build a ML dataset X which can
be used later to train and test the neural networks. For each
simulated channel state, described by the tuple (v,H), we
identify the MCS my with the highest spectral efficiency
s, which satisfies the BER constraint pgy, according to the
optimization problem formulated in equation (3). With this
information, the dataset is built as a collection of L input-
output pairs: X = {(x;,yi),i = 1,..., L}. The desired output
of the neural network y; is simply the spectral efficiency sy, of
the target MCS (or 0 if no MCS satisfies the BER constraint),
with the inputs x; chosen as some features which are extracted
from the SNR « and the channel matrix H by means of a
transformation x = g(~y, H).

The selection of the neural network input features x is of
paramount importance to obtain a good performance. We
propose to use the same features as we used in our work
[10] to compute the mutual information of a 4 x 4 SM link.
These features consist on the squared norm of the columns of
the channel matrix (7y|/h||?) sorted in ascending order and the
Hermitian and Kasner angles [11], © 5 and ¢, between the six
possible pair of columns of the 4 x 4 channel matrix H. This
makes a neural network input x vector of size 16.

Once the ML dataset X is built, an architecture for the neural
network must be selected and then, the neural network can be
trained with some learning algorithm for obtaining the values
of its internal parameters 0. The ultimate goal is that the
neural network learn to make good predictions y (the target
spectral efficiency) from the input features x (the channel
conditions), i.e., ¥ = h(x;0). Regarding the design of the
architecture of the neural network, this requires the selection
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Fig. 2: Diagram showing the steps for obtaining a neural
network to perform MCS selection in an adaptive SM system.

of the number of hidden layers (depth), the number of neurons
per layer (width), and the specification of the output units [12].
The neural network computational cost resides on its training
phase, which in any case is significantly less demanding than
the previous system level simulations, which can take tens of
hours.

Lastly, the two final steps shown in Fig. 2 consist on the
evaluation of the performance of the neural network with the
testing dataset; once a satisfactory performance is achieved,
the trained neural network can be employed in the operation
phase by the receiver of an adaptive SM system to perform
the link adaptation for selecting the optimum MCS.

IV. SYSTEM SIMULATION SETUP

The proposed DL-based scheme for SM link adaptation was
evaluated in an adaptive 4 X 4 SM system. The set of MCS
M includes three different constellations (QPSK, 8PSK and
16QAM) as depicted in Table II. Each MCS index k is asso-
ciated to a constellation, coding rate, and the corresponding
spectral efficiency.

For simulation purposes, we have used the channel codes of
the DVB-S2 standard [13], which consist on the concatenation
of a BCH (Bose-Chaudhuri-Hochquenghem) and a LDPC
(Low Density Parity Check) code'. The length of the coded

I'The most appropriate codes will depend on the specific application setting;
the DVB-S2 channel codes are used only for illustration purposes.

e
MCS Selection

Adaptation Unit

adaptive SM system which adapts the coding rate and the constellation order by using a neural

frames was fixed to 64,000 bits like in DVB-S2 standard,
yielding then a variable number of information bits per code-
word. The LDPC maximum number of iterations was set to 50.
The mapping of the coded bits to SM symbols was designed
in such a way that two bits are used to select the antenna,
whereas the remaining two, three or four bits, depending on
the MCS, select a symbol from a QPSK, 8PSK or 16QAM
constellation following a Gray bits to symbols mapping.

The system level simulations to obtain the performance of
the codes were run for N = 1,440 different 4 x 4 channel
matrices H, generated by following a unit-variance Rayleigh
distribution, i.e., h;; ~ CN(0,1). For each channel matrix the
average BER after the BCH decoding was calculated for 31
values of SNR equispaced between —2.5 and 12.5 dB. The
average BER is calculated after simulating the transmission
of 25 frames. The target BER for MCS selection was pg
10~“. The obtained dataset is divided into three different parts:
training (70%), validation (15%) and testing (15%). In Table
I, we summarize the main parameters of the system employed
in the simulations.

Parameter Value

System configuration | 4 X 4 SM

Constellations QPSK, 8PSK, 16QAM

Channel coding DVB-S2 codes (BCH + LDPC)
Number of MCS 7

Target BER po = 10~%

Channel matrices 1440 Rayleigh distributed

SNR range —2.5to 12.5 dB (0.5 dB steps)

TABLE I: Simulated systems parameters.

The MCS selection can be casted as a classification problem,
wherein a discrete class k& € {0,1,2,..., K} is assigned to an
input vector x. Traditionally, neural networks for multi-class
classification have as many outputs as classes, with the output
layers using softmax units [12] to evaluate the probability
of each class. Here we would rather use a regression neural
network, which outputs an estimate of the achievable spectral



k 1 2 3 4 5 6 7
MCS QPSK 1/4 | QPSK 2/5 | QPSK 3/5 | 8PSK 3/4 | 16QAM 3/4 | 16QAM 5/6 | 16QAM 9/10
Spectral efficiency sy (bit/s/Hz) 1 1.6 2.4 3.75 4.5 5 5.4

TABLE II: List of available Modulation and Coding Schemes (MCS).

efficiency y. With this, a simple quantization yields the most
efficient MCS, inserting a convenient back-off on the scalar
output of the neural network if deemed necessary to guarantee
the reliability of the communication. Therefore, the selection
of the optimum MCS m* with spectral efficiency s* is done
in the following way

S =QU-A) =agminfy—A—s|, @
where A represents a positive back-off margin to be subtracted
from the neural network output y in order to reduce the outage
probability.

In this work, the hyperbolic tangent is used as the activation
function for the hidden layer neurons; the biases and weights
are initialized with random values using the Nguyen-Widrow
algorithm, and the network training is performed with the
Levenberg-Marquardt (LM) backpropagation algorithm [14]
to minimize the Mean Squared Error (MSE). Regarding the
neural network architecture, the results of the following section
were obtained with four hidden layer with 10 neurons per
layer. Several architectures were previously tested, with a
number of hidden layers ranging from 1 to 6, and a number of
neurons between 10 and 40. Each neural network was trained
10 different times with different sets of initial parameters
during 1, 000 epochs, with the training halted earlier if the net-
work performance on the validation dataset stopped improving
or remained the same for 6 epochs in a row.

V. SIMULATION RESULTS

Firstly, Fig. 3 depicts the relative frequency of each MCS as a
function of the SNR obtained for the whole set of data, after
using Equation (4) to determine the target MCS. It can be seen
that the operation range of each MCS lies between 4 and 6
dB, and that for a given SNR, up to four different MCS can
be selected. As expected, when the SNR increases, the target
MCS are those with a higher spectral efficiency.

The classification performance of the MCS selection with
the proposed neural network without any margin, A = 0 in
Equation (4), is shown in Table IIl. The average accuracy on
the testing dataset is 87.9 %, ranging the value of the accuracy
per target MCS from 74.4 % (in the case of the QPSK 1/4) to
97.8% (in the case of the 16QAM 9/10). Another metric of
interest is the rate of underselection, defined as the probability
of selecting an MCS with lower spectral efficiency than the
target MCS. The value of this probability in the testing dataset
is 5.2 %. In terms of the probability of outage, defined as the
probability of selecting an MCS with higher efficiency than
the target MCS, thus not meeting the target BER, we have
that the average outage probability in the testing dataset is
6.9 %.

0.035

T
I NT
[ QPSK 1/4

0.03 [CJQPsK 2/5
I QPSK 3/5
[ 8PSK 3/4
0.025 [ 16QAM 3/4
I 16QAM 5/6
I 16QAM 9/10
& 0.02
c
[
=}
o
0 0.015 -
w

0.01 -

0.005

Fig. 3: Relative frequency of each MCS as a function of the
the SNR, N/T means No Transmission, i.e., that even the most
robust MCS cannot satisfy the BER constraint.

Finally, Fig. 4 provides some results of the performance of
an adaptive SM system in terms of the average spectral
efficiency and the average outage probability as a function
of the SNR. The blue line of Fig. 4a shows the maximum
achievable throughput, which corresponds to the perfect genie-
aided MCS selection. The orange and yellow lines represent
the performance obtained with the proposed DL based MCS
selection, for two different cases; one using directly the output
of the neural network to select the MCS (orange), and another
which applies a margin A = 0.4 to the neural network output.
The effect of this margin is more noticeable in Fig. 4b, which
shows how the application of this margin reduces the outage
probability down to approximately 1%. With regard to the
spectral efficiency, Fig. 4a reveals how this link adaptation
method based on DL enables the system to achieve a variable
throughput in the range of 0 to 5.4 bit/s/Hz depending on how
good the channel conditions are.

VI. CONCLUSIONS

Link adaptation techniques allow communication systems to
make a better use of the channel capacity by means of
the adaptation of the transmission bit rate. This adaptation
is achieved typically at the physical layer by adjusting the
Modulation and Coding Scheme (MCS), i.e., the constellation
order and the coding rate of the channel encoder. In this
work, a deep neural network trained with supervised learning
was proposed to select the MCS in an adaptive Spatial
Modulation link. Simulation results show that the adaptation
with a neural network allow to achieve a throughput close
to the maximum despite some miss-classifications. Moreover,



Minimum accuracy | Average accuracy | Maximum accuracy | Average underselection | Average outage
(%) (%) (%) probability (%) probability (%)
74.4 87.9 97.8 5.2 6.9

TABLE III: Performance of the neural network when selecting the MCS based on its zero margin output ¥ (A = 0) evaluated

only in the testing dataset.
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Fig. 4: Average throughput and average outage probability with respect to SNR in a 4 x 4 adaptive SM system with Rayleigh

distributed channel matrices, obtained for the whole dataset.

the proposed method allows to increase the reliability of the
communications by means of easily applicable margins.
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