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ABSTRACT

Data-injection attacks on spatial field detection corrupt a sub-
set of measurements to cause erroneous decisions. We con-
sider a centralized decision scheme exploiting spatial field
smoothness to overcome lack of knowledge on system pa-
rameters such as noise variance. We obtain closed-form ex-
pressions for system performance and investigate strategies
for an intruder injecting false data in a fraction of the sensors
in order to reduce the probability of detection. The problem
of determining the most vulnerable subset of sensors is also
analyzed.

Index Terms— Adversarial detection, Byzantine sensors,
cyber security, spatial field detection, sensor networks.

1. INTRODUCTION

Advances in embedded sensors have renewed interest in
multisensor signal detection for surveillance and environ-
mental and safety monitoring [1, 2]. Typical sensor networks
comprise a large number of low-cost nodes measuring some
physical phenomena and reporting readings to a fusion center
(FC). Being deployed over large areas with unattended nodes,
they remain susceptible to external and internal attacks [3].
Sensor readings may be compromised before they reach the
FC if an intruder either alters the contents of data packets
after capturing a node, or directly modifies the environmental
parameters around some sensors. Cryptographic measures
are ineffective against such data-injection attacks.

We focus on typical dense deployments, for which the
measurements of the monitored physical phenomenon will
exhibit spatial smoothness [4]. This allows for parsimonious
parametric modeling of the corresponding spatial field, which
can be exploited for inference purposes [5–7]. The setting
is based on a linear model in spatially independent Gaussian
noise with unknown variance, with the FC detecting the pres-
ence of a spatially smooth field (toxic chemical spill, bacte-
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rial activity, electromagnetic radiation, etc.) Since the distri-
butions have unknown parameters, a Generalized Likelihood
Ratio (GLR) approach is adopted. We then investigate the de-
sign of attacks by an adversary injecting false data in a num-
ber of sensors, with the goal of decreasing the probability of
detecting the phenomenon of interest.

If successful, such adversarial actions may have catas-
trophic consequences, and therefore it is of great importance
to understand their potential and limitations in order to de-
vise adequate defense mechanisms. Our work constitutes a
first step in that direction: we quantify the damage that the
adversary can inflict to the system, and provide guidelines to
determine an appropriate subset of sensors for the adversary
to capture in order to maximize system degradation, thus re-
vealing network vulnerabilities.

Although detection in adversarial environments has been
considered in previous works [8–12], in all of these it is as-
sumed that the sensors (malicious or not) are binary, i.e., they
report local 1-bit decisions to the FC. However, in our set-
ting, and due to the presence of unknown parameters in the
distributions, it is not possible for an individual sensor to
make a local decision by itself, because the GLR with a sin-
gle measurement does not exist. Therefore, in contrast with
the aforementioned works, sensors must send their measure-
ments (rather than local 1-bit decisions) to the FC, which in
turn makes the corresponding decision. Our model is similar
to that from [13, 14], which studied the effects of data attacks
for state estimation (rather than detection) for cyber-physical
systems.

Notation: For a matrix A, A† denotes its pseudoinverse,
and R(A) and N (A) its column and null spaces, respec-
tively. For A ∈ Rn×n symmetric, its ordered eigenvalues are
denoted by λ1(A) ≥ . . . ≥ λn(A). The Gaussian distribu-
tion with mean µ and covariance C is denoted by N (µ,C),
whereas χ2

ν and χ′2ν(λ) denote the central and, respectively,
noncentral χ2-distributions with ν degrees of freedom (d.o.f.)
and centrality parameter λ. We denote by Fν1,ν2 , F ′ν1,ν2(λ1)
and F ′′ν1,ν2(λ1, λ2) respectively the central, noncentral, and
doubly noncentral F -distributions with ν1 and ν2 d.o.f. and
centrality parameters λ1, λ2. The corresponding cdfs are de-
noted by Fν1,ν2(x), F

′
ν1,ν2(x;λ), and F ′′ν1,ν2(x;λ1, λ2).



2. SYSTEM MODEL

We first describe the operation of an attack-unaware monitor-
ing system. Consider n sensor nodes deployed to detect some
physical phenomenon of interest. A scalar measurement at
the i-th sensor is modeled as

yi = h
T
i x+ wi, i = 1, . . . , n, (1)

with x ∈ Rm an unknown vector related to the monitored
physical process, hi ∈ Rm known, and i.i.d. measurement
noise {wi} with wi ∼ N (0, σ2); the variance σ2 is unknown.
The spatial field is assumed sufficiently smooth, so that it can
be parameterized by a low-dimensional x with m� n. This
model is fairly general and accommodates a wide range of
signal repesentations based on Fourier series, polynomial ba-
sis functions, wavelets, splines, etc. [5,7]. Thus, hi is a func-
tion of the basis expansion model chosen as well as of the
location of the i-th sensor. The sensors report their observa-
tions to an FC, which then builds the n× 1 vector

y , [ y1 y2 · · · yn ]T =Hx+w, (2)

where w , [w1 · · · wn ]T ∈ Rn, andH ∈ Rn×m has hTi as
its i-th row. We assume w.l.o.g. thatH is full-column rank.

2.1. GLR Detection

The goal of the system is to decide whether the phenomenon
of interest (e.g., a toxic chemical spill) is present, i.e., whether
x 6= 0. Modeling x as unknown deterministic, vector y in (2)
is Gaussian distributed. The corresponding hypothesis test is

H0 : y ∼ N (0, σ2In), H1 : y ∼ N (Hx, σ2In). (3)

Since the pdf p(y) contains unknown parameters under both
hypotheses, a sensible approach is to adopt a GLR test [15]:

LG(y) ,
maxx,σ2 p(y ; x, σ2)

maxσ2 p(y ; 0, σ2)

H1

≷
H0

γ, (4)

with γ a suitable threshold. This results in

LG(y) =

(
‖y‖2

‖y −HH†y‖2)

)n
2 H1

≷
H0

γ. (5)

Let P|| , HH† and P⊥ , In −HH† be respectively the
orthogonal projectors onto the signal subspaceR(H) and the
noise subspaceN (HT ). Hence ‖y‖2 = ‖P⊥y‖2+‖P||y‖2,
and, with c , n−m

m , the GLR test (5) is equivalent to

T , c
‖P||y‖2

‖P⊥y‖2
H1

≷
H0

γ′, with γ′ , c (γ
2
n − 1). (6)

Note that if n = 1, T in (6) becomes a data-independent con-
stant. Thus, it is not possible for the sensors to individually
make local decisions: their data has to be gathered at the FC.

2.2. Detection Performance

Let the columns ofU|| ∈ Rn×m andU⊥ ∈ Rn×(n−m) consti-
tute orthonormal bases for R(H) and N (HT ), respectively.
Then P|| = U||U

T
|| and P⊥ = U⊥U

T
⊥ , so that T in (6) can

be written as T =
‖UT

|| y‖
2/m

‖UT
⊥y‖2/(n−m)

. SinceUT
⊥H = 0, one has

UT
⊥y = UT

⊥w , w⊥ under bothH0 andH1, and

UT
|| y = UT

|| (Hx+w)

= x|| +w||,
with

{
x|| ,UT

||Hx,

w|| , UT
|| w.

(7)

Note thatw⊥,w|| are zero-mean Gaussian withE{w⊥wT
⊥} =

σ2In−m andE{w||wT
|| } = σ2Im. In addition,E{w⊥wT

|| } =
0, so that w⊥, w|| are statistically independent. Therefore,

1

σ2
‖UT
|| y‖

2 ∼
{
χ2
m underH0,

χ′
2
m(ρ) underH1,

(8)

where we have introduced the Signal-to-Noise Ratio (SNR)

ρ ,
‖x||‖2

σ2
=
‖Hx‖2

σ2
, (9)

sinceHTH =HTU||U
T
||H . On the other hand,

1

σ2
‖UT
⊥y‖2 ∼ χ2

n−m under bothH0 andH1. (10)

From (8) and (10), it follows that T in (6) is distributed as

T |H0 ∼ Fm,n−m, T |H1 ∼ F ′m,n−m(ρ). (11)

Hence, the probabilities of false alarm and detection are re-
spectively given by

PFA = Pr{T > γ′ |H0} = 1− Fm,n−m(γ′), (12)
PD = Pr{T > γ′ |H1} = 1− F ′m,n−m(γ′; ρ). (13)

3. THREAT MODEL

The adversary is interested in instigating some event (fire,
chemical spill, etc.) while evading detection by the sensor
network. He can modify the data from a subset of sensors
SA, with |SA| = k � n. Instead of (2), the FC observes

ỹ = y + a with a ∈ A, (14)

with A = {a ∈ Rn | ai = 0 if i /∈ SA} the set of feasible at-
tack vectors. The adversary’s goal is to decrease PD as much
as possible; to this aim, he may select the attack vector a, and
(possibly) the set of adversary sensors SA. It is assumed that
the adversary has knowledge of the signal space R(H), but
not of the parameter x (this is reasonable since, even though
the event was triggered by the adversary, he is unlikely to be
able to accurately estimate the corresponding field from the



few sensors in SA at his disposal). This will be the focus in
the sequel.

With corrupted observations, the test statistic T becomes

T = c
‖UT
|| ỹ‖

2

‖UT
⊥ ỹ‖2

= c
‖x|| +UT

|| a+w||‖2

‖UT
⊥a+w⊥‖2

, (15)

so that, underH1 and in the presence of an attack,

T ∼ F ′′m,n−m(ρ||, ρ⊥) with

{
ρ|| ,

‖x||+UT
|| a‖

2

σ2 ,

ρ⊥ , ‖UT
⊥a‖2
σ2 .

(16)

It is seen from (15)-(16) that the attack vector component
UT
⊥a in N (HT ) always contributes to reducing PD, which

is monotonically decreasing in ρ⊥ (and increasing in ρ||). On
the other hand, the component UT

|| a in R(H) may or may
not do so, depending on the value of x|| = UT

||Hx.

4. ATTACK DESIGN

Let SA ∈ Rn×k comprise the k columns of In with indices
in SA. Then any a ∈ A can be written as a = αSAv, where
v ∈ Rk has unit norm (‖v‖ = 1) and α = ‖a‖, so that

ρ|| =
‖x|| + αUT

|| SAv‖2

σ2
, ρ⊥ =

α2

σ2
‖UT
⊥SAv‖2. (17)

Attack design involves the selection of α, SA and v in order
to minimize PD at the FC. Since x|| = UT

||Hx is unknown
to the adversary, a sensible attack design approach is to focus
on maximizing the noise subspace contribution ρ⊥. Never-
theless, the attack effect on the signal subspace and its impact
on PD (which is the ultimate goal) must be kept in sight.

4.1. Selection of v

Suppose the set of adversary vectors SA (and therefore the
matrix SA) is given. Since U⊥UT

⊥ = P⊥, it is clear that ρ⊥
in (17) is maximized w.r.t. the spherical component v if

v? = principal eigenvector of STAP⊥SA. (18)

Note that in order to compute (18) it suffices to have knowl-
edge of R(STAH), which could be estimated from measure-
ments from the adversary sensors alone, as in [14].

With the choice (18), one has ρ⊥ = α2

σ2 λ? = ηλ?, where
λ? ≤ 1 is the largest eigenvalue of STAP⊥SA, and where

η ,
α2

σ2
(19)

is the Distortion-to-Noise Ratio (DNR). Observe now that

‖x|| + αUT
|| SAv?‖ ≤ ‖x||‖+ α‖UT

|| SAv?‖ (20)

= ‖x||‖+ α
√
1− λ?, (21)

where the last step follows from the fact that ‖UT
⊥SAv?‖2 +

‖UT
|| SAv?‖2 = ‖SAv?‖2 = 1. Since F ′′m,m−n is decreas-

ing in its second argument, this results in the following upper
bound for the probability of detection:

PD ≤ 1−F ′′m,n−m
(
γ′;
(√

ρ+
√
η(1− λ?)

)2
, ηλ?

)
(22)

Note that (22) is a guaranteed or worst-case performance
metric for the adversary; equality holds in (20)-(22) iff x =
κH†SAv? with κ > 0. On the other hand, since

‖x|| + αUT
|| SAv?‖ ≥

∣∣∣‖x||‖ − α√1− λ?
∣∣∣ , (23)

the following lower bound is obtained:

PD ≥ 1−F ′′m,n−m
(
γ′;
(√

ρ−
√
η(1− λ?)

)2
, ηλ?

)
(24)

Note that 1 − λ? can be seen as the fraction of attack power
leaking into the signal subspace. The bounds (22), (24) ap-
proach each other (and thus become tight) as λ? → 1.

4.2. Selection of α

For λ? = 1 (no attack power leakage in the signal subspace),
one has

PD = 1− F ′′m,n−m (γ′; ρ, η) (25)

which is monotonically decreasing in the DNR η. In fact, this
property holds as long as λ? is sufficiently close to 1 (although
it need not hold otherwise), so the adversary should select α
as large as possible. The following example illustrates this
fact: consider a network with n = 50 nodes, m = 6, and
the threshold set via (12) to achieve PFA = 10−2. Fig. 1
depicts the bounds (22) and (24) vs. DNR for leakage values
of 1 − λ? = 0.01 and 0.001. Clearly, both bounds decrease
monotonically as the attack power is increased. Of course,
with an attack-aware FC, a large value of α will make it likely
for the adversary to be discovered, triggering in turn a data-
cleansing stage which will considerably reduce the impact of
the attack. Thus, the choice of α is dictated by a distortion-
detectability tradeoff, which is the subject of ongoing work.

4.3. Selection of SA

The considerations above have made clear that the adver-
sary’s achievable reduction in PD is strongly influenced by
the eigenvalue λ?. This fact can be observed in Fig. 1, and is
further illustrated in Fig. 2, which shows the upper bound (22)
on PD as a function of λ?, assuming an SNR of 15 dB and
an attack with DNR = 20 dB, for networks with n = 50 and
100 nodes. It can be seen that it is essential for the adversary
to achieve a sufficiently small leakage 1− λ? in order for the
attack to be effective. Note that λ? depends not only on the
number of sensors available to the adversary, but also on the
specific set SA of such sensors. Nevertheless, the following
result holds.
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Fig. 1. Upper (solid) and lower bounds (dashed) on PD, for
n = 50 sensors, parameter dimension m = 6, and PFA =
0.01: 1− λ? = 0.01 (thick lines), 0.001 (thin lines).

Theorem 1. If the number of adversary sensors k is strictly
larger than the dimension m of the unknown parameter (i.e.,
if k > m), then λ? = 1 regardless of the size n of the network,
and of the particular set of adversary sensors SA.

Proof. Since λ? = λ1(S
T
AP⊥SA), and SA ∈ Rn×k has or-

thonormal columns, by Poincaré separation theorem [16],

λ1(P⊥) ≥ λ? ≥ λn−k+1(P⊥). (26)

Now P⊥ ∈ Rn×n is a projection matrix onto a subspace of
dimension n−m, so that its eigenvalues are λi(P⊥) = 1 for
1 ≤ i ≤ n −m and λi(P⊥) = 0 otherwise. Hence, one has
λ1(P⊥) = 1 and, if k > m, then λn−k+1(P⊥) = 1 and the
result follows from (26).

Thus, the adversary can completely avoid leakage into the
signal subspace by capturing a sufficiently large number of
sensors k > m, in which case the particular set of adversary
sensors is not relevant. This is not the case, however, if k ≤
m, and the selection of the k sensors to capture becomes cru-
cial. Finding SA in order to maximize λ? = λ1(S

T
AP⊥SA)

is a combinatorial problem requiring the computation of the
largest eigenvalue of a total of

(
n
k

)
matrices of size k×k. This

quickly becomes infeasible as the network size n increases.
The problem can be rephrased as follows, in order to get a

better understanding. Since the nonzero eigenvalues ofAAT

are the same as those ofATA, one has

λ1(S
T
AP⊥SA) = λ1(S

T
AU⊥U

T
⊥SA) = λ1(U

T
⊥DAU⊥),

where DA = SAS
T
A is a diagonal matrix with k diagonal

elements equal to 1 at the positions of the adversary sensor
indices, and zeros elsewhere. WritingU⊥ row-wise asUT

⊥ =
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Fig. 2. Upper bound on PD (relative to the PD value in the
absence of attack) for SNR = 15 dB and DNR = 20 dB.
Threshold set for PFA = 0.01.

[
u1 u2 · · · un

]
, and with di , (DA)ii, one has

UT
⊥DAU⊥ =

n∑
i=1

diuiu
T
i . (27)

Letting d = [ d1 d2 · · · dn ]T , the problem can be written as

max
d

λ1

(
n∑
i=1

diuiu
T
i

)
s. to

{
d ∈ {0, 1}n,∑n
i=1 di = k.

(28)

A natural way to deal with sensor selection problems simi-
lar in structure to (28) is to replace the nonconvex constraint
d ∈ {0, 1}n with the convex one d ∈ [0, 1]n [17, 18]. How-
ever, in this case even such relaxation remains nonconvex, as
it involves the maximization of a convex objective1, in con-
trast with [17,18]. Deriving efficient means to approximately
solve (28) is the object of ongoing work.

5. CONCLUSIONS

Spatial field detection by sensor networks can be severely de-
graded by injection of false data in a few sensors. We have
characterized the power of the attack analytically, providing
strategies for attack design. We showed that if the number of
captured sensors is sufficiently large, selecting which sensors
to capture is not important to the adversary. Our results can
be used in network design in order to evaluate the impact of,
and make the system more robust to this class of attacks.

In practice it is of interest to provide defense mechanisms
against these data-injection attacks. Designing suitable at-
tack detectors and analyzing distortion-detectability tradeoffs
is the focus of future work.

1If {A1, . . . ,An} is any set of symmetric matrices, the function f(x) =
λ1(x1A1 + · · ·+ xnAn) is convex in x = [x1 · · · xn ]T .
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