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Abstract. An oblivious linear function evaluation protocol, or OLE, is a two-party protocol for
the function f(x) = ax+ b, where a sender inputs the field elements a, b, and a receiver inputs x and
learns f(x). OLE can be used to build secret-shared multiplication, and is an essential component of
many secure computation applications including general-purpose multi-party computation, private
set intersection and more.
In this work, we present several efficient OLE protocols from the ring learning with errors (RLWE)
assumption. Technically, we build two new passively secure protocols, which build upon recent
advances in homomorphic secret sharing from (R)LWE (Boyle et al., Eurocrypt 2019), with
optimizations tailored to the setting of OLE. We upgrade these to active security using efficient
amortized zero-knowledge techniques for lattice relations (Baum et al., Crypto 2018), and design
new variants of zero-knowledge arguments that are necessary for some of our constructions.
Our protocols offer several advantages over existing constructions. Firstly, they have the lowest
communication complexity amongst previous, practical protocols from RLWE and other assumptions;
secondly, they are conceptually very simple, and have just one round of interaction for the case
of OLE where b is randomly chosen. We demonstrate this with an implementation of one of our
passively secure protocols, which can perform more than 1 million OLEs per second over the ring
Zm, for a 120-bit modulus m, on standard hardware.

1 Introduction

Oblivious linear function evaluation, or OLE, is a two-party protocol between a sender, with
input a, b ∈ F, and a receiver, who inputs x ∈ F and receives y = ax+ b. OLE is an arithmetic
generalization of oblivious transfer to a larger field F, since OLE over F2 can be seen as equivalent
to oblivious transfer on the messages z0, z1 by setting a = z0 + z1 and b = z0, so the receiver
learns y = zx. Similarly to oblivious transfer, OLE can be used in constructions of secure
two-party and multi-party computation, and is particularly useful for the setting of securely
computing arithmetic circuits over F [23,20,3,19], where OT tends to be less efficient. As well as
general secure computation protocols, OLE can be used to carry out specific tasks like private
set intersection [22], secure matrix multiplication and oblivious polynomial evaluation [28,30].

OLE can be constructed from a range of “public-key” type assumptions. In the simplest,
folklore construction, the receiver encrypts its input x using a linearly homomorphic encryption
scheme and gives this to the sender. Using the homomorphic properties of the scheme, the
sender computes an encryption of y = ax + b and sends this back to the receiver to decrypt.
This approach can be instantiated with Paillier encryption or lattice-based encryption based
on the learning with errors (LWE) [29] or RLWE assumptions [26], and has been implicitly
used in several secure multi-party computation protocols [8,24,27]. There are also constructions
of OLE from coding-theoretic assumptions [28,23,21] which mostly rely on the hardness of
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decoding Reed-Solomon codes in certain parameter regimes with a high enough noise rate. These
constructions are asymptotically efficient, but so far have not been implemented in practice,
to the best of our knowledge. For the special (and easier) case of vector-OLE, which is a large
batch of many OLEs with the same input x from the receiver, there are efficient constructions
from more standard coding-theoretic assumptions over general codes, which also have good
performance in practice [3,10,30,11].

Despite the fact there are many existing constructions of OLE, either implicit or explicit
in the literature, very few of these works study the practical efficiency of OLE in its own right
(except for the special case of vector-OLE). Instead, most of the aforementioned works either
focus on the efficiency of higher-level primitives such as secure multi-party computation, or
mainly discuss asymptotic efficiency rather than performance in practice. In this work, we
advocate for the practical study of OLE as a standalone primitive. This has the benefits that
it can be plugged into any higher-level application that needs it in a modular way, potentially
simplifying analysis and security proofs compared with a more monolithic approach.

1.1 Our Contributions

We present and study new OLE protocols with security based on the ring learning with errors
(RLWE) assumption, with passive and active security. Our passively secure protocols are very
simple, consisting of just one message per party, and our most efficient variant achieves the
lowest communication complexity of any practical (implemented) OLE protocol we are aware
of, requiring around half the bandwidth of previous solutions. We add active security using
zero-knowledge proofs, which have a low amortized complexity when performing a large number
of OLEs, giving only a small communication overhead over the passive protocols. To adapt
existing zero-knowledge proof techniques to our protocols, we have to make several modifications,
and describe a new amortized proof of knowledge that can be used to show a batch of secret-key
(R)LWE ciphertexts is well-formed (previous techniques only apply to public-key ciphertexts).

We have implemented and benchmarked our most efficient passively secure protocol, and
show it can compute more than 1 million OLEs per second on a standard laptop, over a ≈ 120-bit
ring Zm where m is the product of two CPU word-sized primes. The communication cost per
OLE is around 4 elements of Zm per party, and the amortized complexity of our actively secure
protocol is almost the same, when computing a large enough number of OLEs. This is almost
half the communication cost of previous protocols based on RLWE, and less than 25% of the cost
of an actively secure protocol based on oblivious transfer and noisy Reed-Solomon encodings [21].

1.2 Outline

In Section 1.3 below, we present an overview of the main techniques in our constructions. We
then describe some preliminaries in Section 2. Section 3 contains our OLE protocols based on
public-key RLWE encryption, which only require a standard public key infrastructure as a setup
assumption. In Section 4, we present more efficient protocols which reduce communication using
secret-key encryption, and a more specialized setup assumption. In the full version of this work,
we give additional details on the zero-knowledge arguments which are used to make the previous
protocols actively secure. Finally, in Section 5, we analyze the concrete efficiency of our solutions,
compare this with previous OLE protocols, and present implementation results for our most
efficient passively secure protocol.

1.3 Techniques

Our protocols construct a symmetric variant of OLE, where one party, Alice, inputs a field
element u ∈ F, the other party, Bob, inputs v ∈ F, and the parties receive random values α and
β (respectively) such that α+ β = u · v. This can easily be used to construct an OLE by having
the sender, say Alice, one-time-pad encrypt her additional input using α, allowing Bob to correct
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his output accordingly. In this formulation, OLE is also equivalent to producing an additive
secret-sharing of the product of two private inputs; this type of secret-shared multiplication is
an important building block in multi-party computation protocols, for instance in constructing
Beaver multiplication triples [7]. In our protocols, we first create OLEs over a large polynomial
ring Rm = Zm[X]/(XN + 1), which comes from the RLWE assumption, and then convert
each OLE over Rm to a batch of N OLEs over Zm, for some prime modulus m, using packing
techniques from homomorphic encryption [31].

Our point of departure is the recent homomorphic secret sharing scheme by Boyle et al. [13],
based on LWE or RLWE. Homomorphic secret sharing is a form of secret sharing in which shares
can be computed upon non-interactively, such that the parties end up with an additive secret
sharing of the result of the computation. HSS was first constructed under the DDH assumption [12]
and variants of threshold and multi-key fully homomorphic encryption [18], followed by the
more efficient lattice-based construction of [13], which supports homomorphic computation of
branching programs (or, “restricted multiplication” circuits where every multiplication gate must
involve at least one input wire). Note that any “public-key” type two-party HSS scheme that
supports multiplication leads to a simple OLE protocol: each party sends a secret-sharing of its
input, then both parties multiply the shares to obtain an additive share of the product.

Efficient OLE from a public-key setup. Our first construction can be seen as taking the
HSS scheme of Boyle et al. and optimizing it for the specific functionality of OLE. When plugging
in their scheme to perform OLE, a single share from one party consists of two RLWE ciphertexts:
one encrypting the message, and one encrypting a function of the secret key, which is needed to
perform the multiplication. Our first observation is that, in the setting of OLE where we have
two parties who each have one of the inputs to be multiplied, we can reduce this to just one
ciphertext per party, where Alice sends an encryption of her input u multiplied by a secret key,
and Bob sends an encryption of his input. Both of these ciphertexts, including the one dependent
on the secret key, can be created from a standard public-key infrastructure-like setup where
Alice and Bob have each others’ RLWE public keys, thanks to a weak KDM security property of
the scheme. This gives a communication complexity of two Rq elements per party, for a RLWE
ciphertext modulus q, to create a single ring-OLE over Rm. We can also obtain a further saving
by sending one party’s ciphertext at a smaller modulus p < q.

Reducing communication with a dedicated setup. Our second protocol considers a
different setup assumption, where the parties are assumed to have access to a single OLE over
Rq, which gives them secret shares of the product of two RLWE secret keys. With this, we are
able to replace the public-key RLWE ciphertexts from the previous protocol with secret-key
ciphertexts, which can be of size just one ring element instead of two. This cuts the overall
communication in half, and also reduces computational costs.

Achieving active security. To obtain security against active corruptions, we need to ensure
that both parties’ RLWE ciphertexts are correctly generated, in particular, that the small
“error” polynomials used as encryption randomness were generated correctly (and not too large).
For a public key RLWE encryption, this boils down to proving knowledge of a short vector
s ∈ Zn

q , such that As = c where A, c are public values defined by the RLWE public key and
ciphertext, respectively. In practice, we do not know efficient methods of proving the above
statement. Instead, we can obtain good amortized efficiency when proving knowledge for many
such relations of the form

Asi = ci (1)

for the same matrix A, where now the secret si may have slightly larger coefficients than the
original secret si. This overhead is known as the soundness slack parameter, and comes from
the fact that a dishonest prover can sometimes make the proof succeed even when si is slightly
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larger than the claimed bound. Efficient amortized proofs for (1) have been given in several
works [25,16,5,15], most recently with a communication overhead that is independent of the
number of relations being proven [4].

Proving correctness of a batch of public-key RLWE ciphertexts can be essentially done by
proving a batch of relations of the form in (1), allowing use of these efficient amortized proofs.
To achieve active security in our public-key OLE protocol, we use a slightly modified version of
the proof from [4], by allowing different size bounds to be proven for different components of si.
This gives us tighter parameters for the encryption scheme.

On the other hand, for our second protocol, things are not so straightforward. To see why,
recall that a batch of secret-key RLWE ciphertexts have the form:

(ai, ai · s+ ei + (q/p) · xi) (2)

Here, ai is a random element in the polynomial ring Rq = Zq[X]/(XN + 1), ei is a small error
value in Rq, and s ∈ Rq is the secret key. We want to prove that both s and ei have small
coefficients.

The problem is, since ai is different for each ciphertext, these cannot be expressed in the
form of (1), since they are not linear in a fixed public value. This was not the case for the
public-key setting, where every ciphertext is linear in the fixed public key; here, by switching to
a secret-key encryption scheme to improve efficiency, we can unfortunately no longer apply the
amortization techniques of [4].

Furthermore, there is a second obstacle, since we now have a special preprocessing phase
which gives out shares of sA · sB, for the parties’ RLWE secret keys sA and sB. These must be
the same secret keys that are used to produce the encryptions, and to ensure this, we also have
to tie these together into the ZK proof statement.

To work around these issues, we perform two steps. Firstly, we modify the preprocessing so
that each party gets a commitment to its secret key, under a suitable homomorphic commitment
scheme (which can also be based on lattices [6]). We then design a new proof of knowledge,
which proves knowledge of short (s, ei, xi) satisfying (2) with similar amortized efficiency to the
proof from [4] for (1). Our proof simultaneously guarantees the secret s is the same s that was
committed to in the preprocessing, leveraging the homomorphic properties of the commitment
scheme.

2 Preliminaries

In this section we introduce the basic notation we will need throughout our work. As basic
notation, we write α ⋆ β to denote the component-wise product of the vectors α,β.

Rings & Rounding. Let q be an odd integer and N = 2r be a power of two. We define the ring
R := Z[X]/⟨XN + 1⟩ as well as Rq = R/⟨q⟩ as the reduction of the polynomials of R modulo q.
Representing the coefficients of f ∈ Rq uniquely by its representatives from [−(q−1)/2, (q−1)/2]
we define ∥f∥∞ as the largest norm of any coefficient of f when considered over the above
interval. We define by U(R) the uniform distribution over the finite set R and furthermore let
Sβ = {x ∈ R | ∥x∥∞ ≤ β}.

Let n, k ∈ N+. In this work we consider the computational problems Ring-LWE, Module-LWE
and Module-SIS. Their full description can be found in the full version of this manuscript.

We define by ⌊f⌉p the scaling of each coefficient of f by p/q over the reals and then rounding
to the nearest element in [−(p− 1)/2, (p− 1)/2] respectively. A simple but useful result we will
use throughout our protocols is the following.

Lemma 1. Let p|q, x ← Rn
q and y = x + e mod q for some e ∈ Rn

q with ∥e∥∞ < B < q/p.

Then Pr[⌊y⌉p ̸= ⌊x⌉p mod p] ≤ 2npNB
q
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Gaussian Distributions and Simulatability. We denote by ρmv,σ(x) the continuous normal
distribution over Rm centered at v ∈ Rm with standard deviation σ ∈ R. If v = 0 then we just
write ρmσ (x). For a countable set S ⊂ Rm we furthermore define ρmσ (S) =

∑
x∈S ρmσ (x). Finally,

we define the discrete normal distribution over Zm centered at v ∈ Zm with standard deviation
σ ∈ Rm as Dm

v,σ(x) = ρmv,σ(x)/ρ
m
σ (Zm).

Throughout this work we apply D to vectors from Rk in which case we mean that Dσ(x)
k =

DNk
σ (x) with x ∈ ZNk being the coefficient-wise embedding of Rk into ZNk. We consider

sampling R-elements from Dσ as sampling each coefficient independently from this distribution.

Ring-LWE based encryption scheme. In this work we use basic ideas from RLWE-based
encryption, specially in our public-key based construction from Section 3. We describe here a
simplified version of the public-key encryption scheme from [26], which we refer to as LPR. We
consider two distributions Dsk and D over Rq, bounded (with overwhelming probability) by Bsk

and Berr, respectively. The key generation, encryption and decryption procedures are defined as
follows:

Gen(a): On input a public random a ∈ Rq, first sample s← Dsk and e← D. Output sk = (s)
and pk = (a, b) where b = a · s+ e.

Encp,q(pk, x): On input pk ∈ R2
q and x ∈ Rp, sample w, e0, e1 ← D and output (c0, c1), where

c1 = −a · w + e1 and c0 = b · w + e0 + (q/p) · x.
Dec(sk, (c0, c1)): Compute x′ = c0 + s · c1 mod q, and output x = ⌊x′⌉p mod p.4 Notice that this

works if the total noise e = s · e1 + e · w + e0 is bounded by p/2q.

On top of these standard procedures, we also use an algorithm KDMEnc which produces an
encryption of x · s, where s is the secret key. As observed in [14,13], this can be done using only
the public key by adding the message to the second component of an encryption of zero.

KDMEncp,q(pk, x): Sample w, e0, e1 ← D and output (c0, c1), where c1 = (q/p) · x− a · w + e1
and c0 = b · w + e0.

Commitments and Zero-Knowledge Arguments. In this work, in order to achieve active
security, we make extensive use of commitments schemes and zero knowledge arguments of
knowledge. We refer the reader to the full version of this manuscript for full definitions of these
cryptographic notions. Here, we only introduce the basic notation.

Commitment Schemes. We consider an additively homomorphic statistically hiding commitment
scheme, which we denote by a tuple C = (KG,Com,Open). In this work we mainly use two
different commitment schemes, namely the somewhat additively homomorphic commitment
scheme of Baum et al. [6] (denoted as C = (KG,Com,Open)) as well as a compressing statistically
secure commitment scheme Caux = (KGaux,KGaux,Openaux).

One can easily instantiate Caux either using the Random Oracle or [17]. The scheme of [6]
is only somewhat homomorphic, meaning that it only supports a limited number of addition
of commitments due to the growth of r. More details on the used commitment scheme can be
found in the full version.

Zero-Knowledge Arguments of Knowledge (ZKA). Let R be an NP relation. For (pp, x, w) ∈ R
we call pp the public parameter, x the statement and w the witness. A Zero-Knowledge Proof of
Knowledge for R is an interactive protocol Π between a PPT prover P and a PPT verifier V
satisfying completeness, soundness against bounded malicious provers and honest-verifier zero-
knowledge. The actual zero-knowledge arguments that are used with respect to the commitment
scheme C can be found in the full version.
4 Our protocols do not directly use the decryption algorithm, but our simulator in the proof of Theorem 2 does.
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Oblivious Linear Function Evaluation. The functionality we implement in this work is
oblivious linear evaluation (OLE), which, in a nutshell, consists of producing an additive sharing
of a multiplication. A bit more precisely, PAlice and PBob have each one secret input v ∈ Rm and
u ∈ Rm, respectively, and their goal is to get additive random shares of the product u · v. The
formal description of the functionality appears in the full version of this manuscript.

SIMD for Lattice-based Primitives. In this work we exploit plaintext packing techniques
used in homomorphic encryption [31] based on the Chinese remainder theorem: We choose
m = 1 mod (2N) such that the polynomial XN + 1 splits completely into a product of linear
factors modulo m. This implies that Rm is isomorphic to N copies of Zm, so a single OLE over
the ring Rm can be directly used to obtain a batch of N OLEs over Zm.

3 OLE from PKI Setup

In this section we present our first OLE construction, which is particularly simple and efficient.
Furthermore, the only setup required is a correlated form of public key infrastructure in which
PAlice and PBob have each a secret/public key pair for the LPR scheme, where the a ∈ Rq

component of the public key is the same for both. This can be seen as a PKI setup in which the
public keys are derived using some public randomness. The precise functionality FPKI is given in
the full version of this manuscript.

Our protocol, ΠOLE-pk, can be found in Fig. 1. The passively secure version Πpassive
OLE-pk is

obtained from the active one by removing the zero knowledge arguments, whose steps are framed
in the description of the protocol. To provide a high level idea of our construction, we first
recall the main techniques from the homomorphic secret-sharing scheme of Boyle et al. [13].
Suppose two parties have additive secret shares of a RLWE secret key s ∈ Rq, and are also
given secret shares modulo q of x, x · s and a public ciphertext cy = (c0, c1) = Enc(pk, y), for
some messages x, y. Boyle et al. observed that if each party locally decrypts cy using its shares,
denoted [x], [x · s], we have:

[x] · c0 + [x · s] · c1 = [x · (c0 + c1 · s)] ≈ [(q/p) · x · y].

Applying the rounding operation from decryption on the above shares then gives exact additive
shares of x · y, provided the error is much smaller than q/p.

To create the initial shares of x and x ·s, it is enough to start with shares of s and ciphertexts
encrypting x, x · s, since each ciphertext can then be locally decrypted to obtain shares of these
values. Boyle et al. also described a variant which removes the need for encryptions of x · s, but
at the cost of an additional setup assumption involving shares of s2.

Our OLE protocol from this section builds upon this blueprint, with some optimizations.
First, we observe that in the two-party OLE setting, it is not necessary to give out Enc(pk, x)
to obtain shares of x, since one of the parties always knows x so they can simply choose these
shares to be x and 0. (This is in contrast to the homomorphic secret-sharing setting, where
the evaluating parties may be a set of servers who did not provide inputs.) Since we only do
one multiplication, it’s therefore enough to give out the two ciphertexts cx = Enc(pk, x · s) and
cy = Enc(pk, y), compared with four ciphertexts used in the HSS scheme from [13]. Since both
ciphertexts can be easily generated from the public-key setup, this leads to a very simple protocol
where each party (in parallel) sends a single message that is either an encryption of its input, or
its input times s.

As an additional optimization, we show that the second ciphertext encrypting y can be
defined at a smaller modulus p instead of q, since we only care about obtaining the result modulo
m < p, which saves further on bandwidth.5

5 This optimization is possible since we skip the “modulus lifting” step from [13], which is only needed when
doing several repeated multiplications.
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Protocol ΠOLE-pk

We use moduli q > p > m, where m|p and p|q, and m is the final modulus of inputs and outputs.

1. Setup. The parties call FPKI, so that both parties obtain pk = (a, b) ∈ R2
q, while PAlice gets sAlice ∈ Rq

and PBob gets sBob ∈ Rq.
2. First Message. On input u ∈ Rn

m from PBob:
(a) PBob sends (c0, c1) = KDMEncp,q(pk,u) to PAlice:

(b) The parties engage in a zero-knowledge argument for the relation Rpk
Bob with PAlice as the verifier

and PBob as the prover. If this fails then the parties abort.

(c) PAlice computes ρAlice = ⌊sAlice · c1⌉p and PBob computes ρBob = ⌊c0 + sBob · c1⌉p (it should hold that
ρAlice + ρBob = s · u mod p)

3. Second Message. On input v ∈ Rn
m from PAlice:

(a) PAlice sends (d0,d1) = Encm,p(pk,v) to PBob

(b) The parties engage in a zero-knowledge argument for the relation Rpk
Alice with PBob as the verifier

and PAlice as the prover. If this fails then the parties abort.

(c) PAlice outputs α = ⌊d1 ⋆ ρAlice⌉m.
(d) PBob outputs β = ⌊d0 ⋆ u+ d1 ⋆ ρBob⌉m.

We should now have α+ β = u ⋆ v mod m.

Fig. 1: Actively secure OLE protocol from a PKI setup. The passively secure version of the
protocol is obtained by removing the framed steps.

The protocol described above is passively secure, but an active adversary can break the
security of this construction by sending incorrectly-formed ciphertexts. Due to our simple
communication pattern this turns out to be the only potential source of attack, which we rule
out by having the parties prove, in zero knowledge, that their ciphertexts are correctly formed.

3.1 Passive Security

We now proceed to the security proof of our protocol Πpassive
OLE-pk, which consists of protocol ΠOLE-pk

in Fig. 1 without the zero knowledge arguments framed in the protocol description.
Our proof requires that a random element of Rq is invertible with high probability. As we

will see, this technicality allows the simulator to “solve equations”, matching real and ideal views.
For our choice of parameters this is always the case, and for this we make use of the following
lemma whose proof appears in the full version.

Lemma 2. Let q =
∏k

i=1 pi, where each pi is an ℓ-bit prime. If the polynomial f(x) ∈ Zq[x] of

degree N used to define Rq splits completely mod pi as f(x) =
∏N

j=1 fij(x) mod pi, where each
fij(x) is linear, then the probability that a uniformly random element from Rq is not invertible
is upper bounded by N ·k

2ℓ
.

Given the above, the probability that at least one component of a vector in Rn
q is not

invertible is upper bounded by n · N · k · 2−ℓ. For all our parameter sets in Section 5, this
quantity is below 2−λ for λ ≈ 36, which is good enough for our purposes since we need it only
as an artefact for the proof and it does not lead to any concrete attack or leakage.6 We also use
invertibility to argue correctness of the protocol, as it is required for being able to use Lemma 1
in our protocols. If this probability is not good enough for a certain application, the parties could
use a PRF to rerandomize their shares so that this lemma can be applied without invertibility.
However, in order to keep our exposition simple we do not discuss such extension.

Another simple but useful lemma for our construction is the following.

Lemma 3. Assume that p|q. Given y ∈ Rp, the set of x ∈ Rq such that y = ⌊x⌉p is given

by x =
(
q
p

)
· y + e for e ∈ Z ∩ (−q/2p, q/2p]. In particular, the mapping Rq → Rp given by

6 This restriction can be easily overcome by modifying the definition of security against passive adversaries,
allowing the adversary to choose its output. However, we prefer to stick to more standard security definitions.
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x 7→ ⌊x⌉p is a surjective regular mapping, meaning that every element in the codomain has an
equal number of preimages.

Finally, we have the following proposition, concerning correctness of our construction. It
follows as a corollary of Proposition 2 by setting the soundness slack parameter τ to be 1, so we
defer the proof to that section.

Proposition 1. Assume that 3·2κ+1 ·n·(mN)2 ·Berr ·Bsk ≤ p ≤ q
3·2κ+1·n·N2·Berr·Bsk

. Let u,v ∈ Rn
m

be the inputs to Protocol Πpassive
OLE-pk, and let α,β ∈ Rn

m be the outputs. Then, with probability at

least 1− 2−κ, u ⋆ v = α+ β.

With these tools at hand we proceed with the main result from this section.

Theorem 1. Assume that 3 · 2κ+1 · n · (mN)2 ·Berr ·Bsk ≤ p ≤ q
3·2κ+1·n·N2·Berr·Bsk

. Then protocol

Πpassive
OLE-pk, which consists of protocol ΠOLE-pk without the underlined steps, realizes functionality
FOLE in the FPKI-hybrid model under the RLWE assumption.

The proof of this Theorem is presented in the full version.

3.2 Active Security

As we saw in the previous section, the correctness of our construction relies on the different
terms involved having a certain bound: The input u must be smaller than m, the noise terms
used for the encryption have to be upper bounded by Berr, and the randomness w and w′ used
for the encryption must be less than Bsk. An actively corrupted party who chooses randomness
outside these bounds can easily distinguish between the real and ideal executions.

To achieve active security, each party proves in zero-knowledge that the ciphertexts they send
are correctly formed. We begin by analyzing the case of a corrupt PBob. Consider the message
from PBob, which consists of a batch of ciphertexts

(c0, c1) = (b ·w + e0, (q/p) · u− a ·w + e1)

Rewriting this, PBob has to prove knowledge of vectors (over Rq) w,u, e0, e1 satisfying(
b 1 0 0
−a 0 1 q/p

)
︸ ︷︷ ︸

A

·
(
w e0 e1 u

)⊤︸ ︷︷ ︸
S

=

(
c0
c1

)
︸ ︷︷ ︸

T

(3)

and ∥w∥∞ ≤ Bsk, ∥u∥∞ ≤ m, ∥e0∥∞ ≤ Berr and ∥e1∥∞ ≤ Berr. This can be written in matrix
form as follows

Rpk
Bob =

{
(pp, u, w) = ((R, q, n, β,A),T ,S)

∣∣ (A,S,T ) ∈ R2×4
q ×R4×n ×R2×n

q

∧AS = T ∧ ∥si∥∞ ≤ βi

}
where si is the i-th row of S and the bound vector is β = (Bsk, Berr, Berr, Bmsg). Such type of
statements can be proven efficiently using the amortized proof from [4], as we discuss more
thoroughly in the full version.

We can similarly define a relation for the message (d0,d1) that PAlice sends, and we call this

relation Rpk
Alice. We note however that in the proof of Theorem 1 we did not actually use any

bound on the message v, so we may exclude the bound ∥v∥∞ ≤ m from this relation.
For the rest of this section we assume the existence of zero knowledge arguments of knowledge

for the relations Rpk
Alice and Rpk

Bob. Note that when proving knowledge of the relation Rpk
Bob or

Rpk
Alice above, if the prover is malicious then our proof actually only guarantees that ∥si∥2 ≤ τ ·βi,

where τ is the soundness slack parameter of the zero knowledge argument. We therefore need to
choose our parameters with respect to the larger bounds, to ensure correctness of the protocol.

We begin with the following proposition, which shows that, under an appropriate choice of
parameters, our protocol guarantees correctness. Its proof appears in the full version.

8



Proposition 2. Assume that 3 · 2κ+1 · n · τ · (mN)2 · Berr · Bsk ≤ p ≤ q
3·2κ+1·n·τ ·N2·Berr·Bsk

. Let
u,v ∈ Rn

m be the inputs to Protocol ΠOLE-pk, and let α,β ∈ Rn
m be the outputs. Assume that

the relations Rpk
Alice and Rpk

Bob defined in Section 3.2 hold, but that at most one of them has slack
parameter τ .7 Then, with probability at least 1− 2−κ, u ⋆ v = α+ β.

With this tool at hand, the security of the actively secure version of our protocol can be
proven. The proof appears in the full version.

Theorem 2. Assume that 3 · 2κ+1 · n · τ · (mN)2 ·Berr ·Bsk ≤ p ≤ q
3·2κ+1·n·τ ·N2·Berr·Bsk

. Protocol
ΠOLE-pk realizes functionality FOLE under the RLWE assumption.

4 OLE from Correlated Setup

Ciphertexts in the public key version of the LPR cryptosystem consist of two ring elements.
However, in the secret key variant, we can reduce this to one element, since the first element is
uniformly random so can be compressed using, for example, a PRG. Given this, a natural way
of shaving off a factor of two in the communication complexity of our protocol from Section 3
would be to use secret key encryption instead of public key.

In this section we present an OLE protocol that instantiates precisely this idea. The com-
munication pattern is very similar to the one from Protocol ΠOLE-pk, in which there is a setup
phase, then PBob sends an encryption of his input u to PAlice (and proves in zero-knowledge its
correctness for the actively secure version), and then PAlice does the same. The challenge, here,
is that now, as we are using secret-key encryption to obtain his ciphertext in the first message,
there is no way for Bob to encrypt u multiplied by the (combined) secret key.

To make this work, we replace the PKI setup functionality from the previous section with
a more specialized setup, where PBob gets σBob ∈ Rq and PAlice gets σAlice ∈ Rq such that
sAlice · sBob = σAlice + σBob mod q. This can be seen as an OLE itself, where the values being
multiplied are small RLWE secret keys; under this interpretation, our protocol can be seen as
a form of “OLE extension” protocol. The intuition for why this setup is useful, is that Bob’s
secret-key ciphertext can now be distributively “decrypted” using the shares of sAlice ·sBob, which
(after rounding) leads to shares of u · sAlice. In the second phase, these shares are then used to
“decrypt” Alice’s ciphertext, giving shares of the product u ⋆ v.

The setup functionality is described in the full version of this manuscript, where we present
both the passive and active versions of the functionality, with the main difference being that in
the active setting we must ensure that the corrupt party uses the same secret key for encrypting
its input as the secret key distributed in the setup phase. Thus, in this case, when the corrupted
party proves in zero knowledge the correctness of its encryption, it also proves that the secret
key is the same as in the setup phase. This requires the setup functionality in the active case to
output some extra information that allows us to “bind” the key from the setup with the key
from the encryption sent, for which we use commitments. We discuss this in more detail when
we look at active security in Section 4.2.

Our protocol is described in full detail in Fig. 2. As in Section 3, we present the full, actively
secure version, but outline in a box those steps that are only necessary for active security.

4.1 Passive Security

The following proposition states that our construction satisfies correctness when the parties are
honest, and follows from Proposition 4 in Section 4.2, which analyzes the case where the bounds
satisfied by the values from one of the parties may not be sharp.

7 That is, the bounds in one of the two relations have an extra factor of τ . This corresponds to what can be
guaranteed for a corrupt party via the zero knowledge argument.
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Protocol ΠOLE-sk

We use moduli q > p > m, where m is the final modulus of inputs and outputs. We assume that m divides p
and that p divides q.

1. Setup phase.
(a) Passive case. PAlice,PBob each send (Sample, sid) to Fsetup. PAlice obtains sAlice, σAlice while PBob obtains

sBob, σBob.

Active case. PAlice,PBob each send (Sample, sid) to Fsetup. PAlice obtains sAlice, σAlice, rAlice, cAlice, cBob
and PBob obtains sBob, σBob, rBob, cAlice, cBob.

(b) The parties sample two public random values a,a′ ∈ Rn
q .

a

2. First Message. On input u ∈ Rn
m from PBob:

(a) PBob samples a noise vector eBob ← Dn and sends c =
(

q
p

)
· u+ (a · sBob + eBob) mod q to PAlice.

(b)
The parties engage in a zero-knowledge argument for the relation Rsk

Bob with PAlice as the verifier
and PBob as the prover with witness (u, eBob, sBob, rBob). If this fails then the parties abort.

(c) PAlice computes ρAlice = ⌊sAlice · c− a · σAlice⌉p.
(d) PBob computes ρBob = −⌊a · σBob⌉p. It should now hold that u · sAlice = ρAlice + ρBob mod p.

3. Second Message. On input v ∈ Rn
m from PAlice.

(a) PAlice samples a noise vector eAlice ← Dn and sends d =
(

p
m

)
· v + (a′ · sAlice + eAlice) mod p to PBob.

(b)
The parties engage in a zero-knowledge argument for the relation Rsk

Alice with PBob as the verifier
and PAlice as the prover, with witness (v, eAlice, sAlice, rAlice). If this fails then the parties abort.

(c) PBob outputs, β = ⌊u ⋆ d− a′ ⋆ ρBob⌉m mod m.
(d) PAlice outputs, α = −⌊a′ ⋆ ρAlice⌉m mod m. It should hold that u ⋆ v = α+ β mod m

a In practice this can be done by using a PRF with some pre-shared key. In our proofs we use a random
oracle that can be programmed by the simulator.

Fig. 2: Actively secure OLE protocol based on RLWE. The passively secure version of the protocol
is obtained by removing the framed steps.

Proposition 3. Assume that 2κ+1 · n · (mN)2 · Berr ≤ p ≤ q
2κ+1·n·N2·Berr·Bsk

. Let u,v ∈ Rn
m be

the inputs to Protocol ΠOLE-sk, and let α,β ∈ Rn
m be the outputs. Then, with probability at least

1− 2−κ, u ⋆ v = α+ β.

With this proposition, we proceed to the proof of security of our passively secure protocol.

Theorem 3. Assume that m2 ·Berr · 2κ+1 ·n ·N2 ≤ p ≤ q
2κ+1·n·N2·Bsk·Berr

. Then protocol Πpassive
OLE-sk,

which consists of protocol ΠOLE-sk without the underlined steps, realizes functionality FOLE in
the Fsetup-hybrid model under the RLWE assumption.

The proof bears similarity with the proof of Theorem 1, and we defer it to the full version.

4.2 Active Security

An active adversary in the protocol ΠOLE-sk can cheat by sending incorrect messages. For example,
a corrupt PBob may send an incorrectly formed c, and one can show that, in fact, by choosing
c appropriately a corrupt PBob may learn some information about PAlice’s input v. A similar
attack can be carried out by a corrupt PAlice. Hence, to achieve active security, we must ensure
that the message c sent by PBob and the message d sent by PAlice are computed honestly.

We implement zero knowledge arguments to show precisely these statements. PBob proves that

he knows u, e and sBob of the appropriate sizes such that c =
(
q
p

)
· u+ (a · sBob + eBob) mod q,

and PAlice proceeds similarly.
An additional technicality, however, is that sBob (and respectively sAlice) has to be exactly

the same value that was distributed during the setup phase. To enforce this, we consider
a modified setup functionality for the actively secure setting that, on top of distributing
sBob · sAlice = σBob + σAlice, also distributes commitments to sBob and sAlice that can be used in
the relation of the zero knowledge argument.

10



Given that the protocol is essentially symmetric with respect to the roles of PAlice and PBob,
from now on we focus on discussing the case of a corrupt PBob. A similar argument applies for
the case of corrupt PAlice. The message c that PBob sends is formed by adding n RLWE samples

to
(
q
p

)
· u, which is a scaled version of its input u. Furthermore, the RLWE samples must be

generated using the secret sBob distributed in the setup phase. As a result, the relation that
PBob will prove is

Rsk
Bob(τ) =


(pp, u, w) =(

(R, q, p,m, β, pk,a, comBob),
c, (u, e, s, r)

) c =
(
q
p

)
· u+ a · s+ e mod q∧

∥u∥∞ ≤ τ · β1 ∧ ∥e∥∞ ≤ τ · β2∧
Openpk(comBob, s, r) = 1


and Rsk

Alice can be defined similarly.8 Here in the honest case PBob starts with Rsk
Bob, but the

guarantee given by the zero-knowledge argument will be for a substantially larger factor τ (see
the full version). The relation essentially shows that the message that PBob sends is well formed,
and furthermore, that the sBob used for constructing this message is exactly the same as the one
provided in the setup phase.

For the purpose of this section we assume the existence of zero knowledge arguments for the
relations Rsk

Alice and Rsk
Bob. We develop such results in the full version.

Now, to proceed with the security proof of our protocol, we first present the following
proposition, which states that our construction satisfies correctness even when the bound on the
parameters may have some slack. This is similar to Proposition 2 and its proof is deferred to the
full version.

Proposition 4. Assume that 2κ+1 · n · τ · (mN)2 ·Berr ≤ p ≤ q
2κ+1·n·τ ·N2·Berr·Bsk

. Let u,v ∈ Rn
m

be the inputs to Protocol ΠOLE-sk, and let α,β ∈ Rn
m be the outputs. Assume that the relations

Rsk
Alice and Rsk

Bob hold, but that at most one of them has slack parameter τ . Then, with probability
at least 1− 2−κ, u ⋆ v = α+ β.

Given this, we can prove the security of our actively secure OLE protocol, as stated in the
following theorem. The proof appears in the full version.

Theorem 4. Assume that 2κ+1 · n · τ · (mN)2 · Berr ≤ p ≤ q
2κ+1·n·τ ·N2·Berr·Bsk

. Then protocol
ΠOLE-sk realizes functionality FOLE in the Fsetup-hybrid model under the RLWE assumption.

5 Evaluation

In this section, we evaluate the efficiency of our OLE protocols, and compare this with protocols
based on previous techniques. Firstly, we look at the communication complexity and compare this
with other protocols. Then, in Section 5.2, we present implementation results for our passively
secure secret-key protocol to demonstrate its practicality.

Choosing Parameters. We estimate parameters for our OLE protocols according to the
correctness requirement in Proposition 2. For RLWE we use a ternary secret distribution (so,
Bsk = 1) a Gaussian error distribution with σ = 3.19 and Berr = 6σ; the soundness slack
parameter is τ = 1 for passive protocols and τ ≈ 24

√
8Nnκ otherwise. The statistical security

parameter is κ = 40.

5.1 Comparison to Previous Protocols

Table 1 presents the communication complexity, measured from the protocol specifications, of our
two public-key and secret-key OLE protocols, and compares this with two other protocols based
on RLWE-based homomorphic encryption, either additively homomorphic (AHE) or somewhat

8 As in public-key protocol from Section 3.2, PAlice does not need to prove the bound on her input v.
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Protocol

Security

Rounds*

Total comm. (bits)

passive active
logm ≈ 128 logm ≈ 64

passive active passive active

PK-OLE RLWE + FS† 1 1516 1630 1004 1120
SK-OLE RLWE + FS 1 758 815 502 560
AHE RLWE + FS +

LOE‡
2 1320 1476 800 956

SHE RLWE + FS 2 3682 3682 2310 2310
RS noisy

encodings
– 8 4096 4096 2048 2048

† FS is Fiat-Shamir
‡ LOE is linear-only encryption [9]
* 1 round means that each party sends one message simultaneously. 2 rounds either means that each party
sequentially sends one message (for AHE), or one simultaneous message, twice in succession (for SHE).

Table 1: Comparison of the complexity of our OLE protocols with previous works based on
homomorphic encryption

homomorphic (SHE), as well as a protocol based on noisy Reed-Solomon encodings (RS). As
can be seen from the table, ours is the only protocol with just a single round of communication,
where each party simultaneously sends just one message (as in a non-interactive key exchange),
whereas both other protocols require two rounds. Our secret-key protocol, which requires some
special preprocessing, has the lowest communication cost of all the protocols, with both passive
and active security. Furthermore, compared with the previously most efficient protocol based on
AHE with active security, our active protocols avoid the need for assuming linear-only encryption,
which is a relatively strong and un-studied assumption, compared with standard RLWE.

A full description of these protocols can be found in the full version.

5.2 Experimental Results

We have implemented the passive version of the secret-key protocol (see in Fig. 2) in Go language,
making use of the ring package provided by the lattigo library [1]. Our implementation features a
full-RNS (Residue Number System) realization of all the protocol operations, using a moduli of
60-bit limbs. For comparison purposes, we have also implemented an AHE-based OLE protocol
(we refer the reader to the full version for more details).

The execution times of the protocol steps were tested on a laptop with an Intel Core i7-8550U
processor with 16GB RAM, running Arch Linux with kernel 5.6.4 and Go 1.14.2 The latency is
not simulated, as it is highly dependent on the particular deployment; we include instead the
communication complexity of the involved messages, from which the latency can be derived.

Parameter Par. set 1 Par. set 2

q 360 bits (6 limbs) 480 bits (8 limbs)

p 240 bits (4 limbs) 360 bits (6 limbs)

m 60 bits (1 limb) 120 bits (2 limbs)

bit security ≈ 159 ≈ 116

# OLEs 2097152 2097152

(a) Example parameter sets (n = 128 and N =
16384) and global run times for the passive case
of Fig. 2 (uniformly random ternary secret keys
{−1, 0, 1} and Gaussian noise with σ = 3.19).

Bob Par. set 1 Par. set 2 Alice Par. set 1 Par. set 2

Step 2.(a) 462 ms 601 ms Step 2.(c) 564 ms 817 ms

Step 2.(d) 533 ms 772 ms Step 3.(a) 350 ms 479 ms

Step 3.(c) 263 ms 438 ms Step 3.(d) 242 ms 412 ms

1st msg. 995 ms 1373 ms 1st msg. 564 ms 817 ms

2nd msg. 263 ms 438 ms 2nd msg. 591 ms 890 ms

(b) Run times in the passive case of Fig. 2 for the example
parameter sets of Table 2a (n = 128 and N = 16384, uni-
formly random ternary secret keys {−1, 0, 1} and Gaussian
noise with σ = 3.19).

Table 2: Parameter sets and run times in the passive case of Fig. 2

12



Run time expressions for Bob and Alice

TBob = max (T2.a + T2.d, T3.a + Td) + T3.c

TAlice = max (T3.a, T2.a + Tc) + T2.c + T3.d

(a) Total run time expressions for Bob (TBob) and Alice
(TAlice).

Total time 600Mbit/s 1Gbit/s 10Gbit/s

Par. Set 1 2526 ms 2023 ms 1344 ms

Par. Set 2 3508 ms 2837 ms 1931 ms

(b) Extrapolated run times (max (TBob, TAlice)) in the
passive case of Fig. 2.

Table 3: Total run times expressions and extrapolated run times in the passive case of Fig. 2

Parameter Par. set 1 Par. set 2

{n,N} {256, 8192} {128, 16384}
p 240 bits (4 limbs) 360 bits (6 limbs)

m 60 bits (1 limb) 120 bits (2 limbs)

bit security ≈ 115 ≈ 159

# OLEs 2097152 2097152

Alice time 1441 ms 2129 ms

Bob time 1024 ms 1375 ms

Total time 2465 ms 3504 ms

(a) Example parameter sets and global run times
for the passively secure OLE based on AHE from
the full version (uniformly random ternary secret
keys {−1, 0, 1} and Gaussian noise with σ = 3.19).

Proposed protocol of Fig. 2

{Bob | Alice} Par. set 1 Par. set 2

1st msg. {2.(a) | —} {94.37 | —} MB {125.83 | —} MB

2nd msg. {— | 3.(a)} {— | 62.91} MB {— | 94.37} MB

AHE-based protocol (see full version)

1st round {— | 62.91} MB {— | 94.37} MB

2nd round {125.83 | —} MB {188.74 | —} MB

(b) Communication cost in the passive case of Fig. 2 and the
passively secure OLE based on AHE from the full version .

Table 4: Parameter sets and communication costs for the passive case of Fig. 2 and AHE-based
protocol (see full version)

We have chosen two practical parameter sets for both protocols (see Tables 2a and 4a), both
featuring more than 110 bits of security,9 and achieving more than 2 million scalar OLEs per
protocol run. Table 2b includes the run times corresponding to each party (Alice and Bob) and
Table 4b (see full version) shows the communication costs.

It is worth noting that the public key version from Fig. 1 is not explicitly tested, but it incurs
in a similar computational complexity as the one from Fig. 2; it presents, though, an increase on
the communication complexity, as the interchanged messages are composed of two polynomials
instead of one.

As the latency is not simulated, in order to compare with other protocols, we must consider
that the total run time of ours would be max (TBob, TAlice), being TBob (resp. TAlice) the corre-
sponding run time for Bob (resp. Alice). Tables 3a and 3b include the corresponding expressions
and also extrapolate total protocol run times for some specific values of network bandwidth
{600Mbit/s, 1Gbit/s, 10Gbit/s}. Tstep corresponds to the time of each step included in Table 2b,
and Td (resp. Tc) is the time needed to transmit ciphertext d (resp. c)

Extrapolated runtimes are approximately equal or lower than those obtained with the
protocol based on AHE (see full version); note that for the last one we are not taking into
account transmission runtimes. Consequently, we can see that the proposed protocols in this
paper achieve both a better efficiency and lower communication cost than the one based on AHE
described in the full version.
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