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Abstract—This paper studies the capacity scaling of non-
coherent Single-Input Multiple-Output (SIMO) independent
and identically distributed (i.i.d.) Rayleigh block fading chan-
nels versus bandwidth (B), number of receive antennas (N )
and coherence block length (L). In non-coherent channels
(without Channel State Information –CSI) capacity scales
as Θ

(
min(B,

√
NL,N)

)
. This is achievable using Pilot-

Assisted signaling. Energy Modulation signaling rate scales as
Θ
(

min(B,
√
N)

)
. If L is fixed while B and N grow, the two

expressions grow equally and Energy Modulation achieves the
capacity scaling. However, Energy Modulation rate does not scale
as the capacity with the variable L. The coherent channel capacity
with a priori CSI, in turn, scales as Θ (min(B,N)). The coherent
channel capacity scaling can be fully achieved in non-coherent
channels when L ≥ Θ(N). In summary, the channel coherence
block length plays a pivotal role in modulation selection and
the capacity gap between coherent and non-coherent channels.
Pilot-Assisted signaling outperforms Energy Modulation’s rate
scaling versus coherence block length. Only in high mobility
scenarios where L is much smaller than the number of antennas
(L � Θ(

√
N)), Energy Modulation is effective in non-coherent

channels.

Index Terms—Massive MIMO, wideband communications,
non-coherent channel, energy modulation

I. INTRODUCTION

Internet traffic demand is expected to continue to grow
exponentially [1]. Technologies such as the recent 5G cellular
[2] and WiFi6 Wireless Local Area Network [3], [4] stan-
dards are upgraded regularly. The increase of the transmission
bandwidth and number of antennas in each new standard
generation are major factors in the increase of capacity of
wireless systems [5], [6]. In addition, the new standards
support “flexible waveforms” that can dynamically modify
the transmit bandwidth and number of antenna ports used by
different users. As more spectrum and antennas are added
to wireless standards, efficient channel estimation and the
impact of channel state information (CSI) uncertainty has
received a lot of attention. On the one hand, CSI limitations
are one key factor in the performance of coherent receivers
in massive MIMO [6]. On the other hand, recent results
for the wideband channel have sparked new interest in non-
coherent signaling techniques [7]. Specifically, there has been
significant recent literature proposing practical modulation
schemes based on non-coherent Energy Detection (see [8]
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and references therein). Overall, as wireless standards evolve,
it is very important to understand the relation between the
waveform dimensions (specifically bandwidth and number
of antenna ports), the time-varying channel uncertainty, and
the engineering choice between Pilot Assisted (PA) or non-
coherent signaling schemes.

From an Information Theoretic point of view, the ultimate
impact of channel uncertainty can be revealed by comparing
the capacity of the coherent channel, with the assumption
that CSI is a priori revealed to the receiver; and the non-
coherent channel, in which CSI is not a priori available. On
the transmitter side, transmitter CSI or feedback may also be
assumed or not. We leave the topic of transmitter CSI out
of the scope of this paper, in which we focus on comparing
the capacity with and without receiver CSI, without feedback
in both cases. In the non-coherent channel, it is possible to
either use pilot sequences to estimate the channel, or to employ
non-coherent signaling schemes. Thus, note that the non-
coherent channel capacity also upper bounds the maximum
rate of coherent receivers that rely on channel estimation
(the name “non-coherent channel” is a bit counter-intuitive
in this sense). While the coherent channel capacity is well-
known [9], the non-coherent channel capacity is not yet fully
characterized. Important results have obtained the Degrees of
Freedom (DoF) and Diversity-Multiplexing Trade-off (DMT)
in the high-SNR regime [10]–[13], the wideband capacity in
the limit as bandwidth goes to infinity [7], [14]–[21], some
properties of the probability density of the optimal channel
input [16], [22]–[27], and optimal pilot strategies to maximize
the “achievable rate” of specific PA receivers [28]–[30].

In this paper we compare the capacity scaling for coher-
ent and non-coherent wideband Single-Input Multiple-Output
(SIMO) block Rayleigh fading channels. Within the scope of
achievable rates in a non-coherent channel, we also compare
two signaling strategies: channel estimation with pilots vs
energy detection. We focus on the single transmit antenna
case for better comparison with closely related results in [27],
detailed in the next paragraphs. The assumption of a wideband
block fading model represents a reasonable abstraction for
some modern wireless systems that use multi-carrier modu-
lations and time-frequency-slotted frame allocations [2]–[4].
With the aim to inform the selection of waveform parameters,
spectrum policies and antenna array dimensions, our analysis
studies the effect on capacity growth of the following three
major variables:

1) The Channel Coherence Time: refers generally to



2

the interval of time during which the random channel
displays correlation. This concept is subject to different
definitions under different channel models. In i.i.d. block-
fading models, we define the channel coherence length
as the length of time, in channel uses, that the channel
remains constant. The block-fading channel coherence
length has been shown to affect the non-coherent channel
capacity-achieving input distribution [22], [23], DMT
[13], and optimal pilot schemes [28]. The intuition is
that, if the channel remains constant for a longer time,
the relative size of the pilot overhead compared to the
total data codeword length decreases. Thus, the non-
coherent channel capacity is expected to converge to
the coherent channel capacity as the channel coherence
length increases. This holds for all existing results such
as the optimal input [22] and DMT [13].

2) The Bandwidth: allows to increase the discrete time
symbol rate, but it also decreases the Signal to Noise
Ratio (SNR) when the thermal noise has constant power
spectral density. The wideband non-coherent channel
capacity is closely related to the low-SNR asymptotic
analysis of capacity [15]–[19]. Médard and Gallager [7]
showed that “overspreading” occurs when the channel
input has finite fourth moment and bandwidth is too large,
causing the achievable rate in the non-coherent channel
to begin decreasing, rather than increasing monotonically
as in the coherent case, if bandwidth is increased exces-
sively. For Rayleigh fading, the “critical bandwidth” can
be explicitly calculated [20]. The use of “peaky” input
signals with an infinite fourth moment has been proposed
to overcome this limitation [16]–[18]. Nevertheless, it can
be shown that peaky signaling does not actually remove
the critical bandwidth limit, but rather moves it to the
time domain under a constant “critical bandwidth occu-
pancy” limitation [21], [26]. The bandwidth overspread-
ing threshold has been shown to grow with the square root
of the coherence block length [18], [20], [21], showing
that both parameters are closely related and that also in
this sense the non-coherent channel capacity converges to
the coherent channel capacity when the coherence length
increases. The recent popularity of mmWave frequency
bands increases interest in communications with very
large bandwidth and antenna arrays [31], [32]. Although
in these bands the assumption of rich scattering with a
Rayleigh fading distribution may not be applicable, con-
cern about these phenomena in sparse multipath mmWave
channels is justified, as overspreading occurs in other
channel models, including sparse multipath channels [14].
We remark that the results in our paper apply to the
i.i.d. Rayleigh channel, and while mmWave channels
are subject to the problem of overspreading, engineers
must be cautious about the channel model difference
before applying our conclusions in a mmWave context.
A discussion of literature on multiple mmWave and
ultra-wideband channel modeling frameworks and their
relation to our result is provided in Appendix A.

3) The Number of Antennas: has been shown to increase
the DMT of the channel [10]–[13], enabling dramatic

increases in the array gain or spatial multiplexing. In
recent years, Massive MIMO proposed the use of a large
number of antennas [6], [33]–[35]. Massive MIMO en-
ables a very large array combining gain or diversity gain,
mitigating pathloss and fading. Moreover the asymptotic
properties of large matrices permit to implement efficient
transceivers [36]. The DMT and optimal input distribution
results in [12], [22] imply that, assuming there is no
feedback, increasing the number of transmit antennas
above the channel coherence length does not increase the
non-coherent channel capacity. For this reason, analyses
of the capacity scaling assuming a fixed coherence length
have to focus on studying a large number of receive
antennas. Chowdhury et al [24] showed that, as the
number of receive antennas goes to infinity, an Energy
Modulation (EM) constellation in a frequency-flat non-
coherent SIMO channel can achieve the same capacity
scaling as a coherent channel. This result was extended
to the frequency selective case with a large bandwidth
in [27]. Unlike in this paper, the scaling result in [27]
considered scaling for both the bandwidth and the number
of antennas, but assumed a fixed coherence length. This
means that the result in [27] side-stepped one key param-
eter in the study of the capacity gap between coherent
and non-coherent channels. Note that in our paper we
assume that the coherence block length scales as well,
and thus we could potentially support a scaling number
of transmit antennas too. However, we adopt the SIMO
channel model to provide a much more clear comparison
with [27], as well as for the sake of clarity of the model
and problem tractability. We leave the extension of our
result to MIMO for future work.

Most Massive MIMO analyses assume a fixed bandwidth
[6], [12], [13], [24] and most wideband analyses assume
a fixed number of antennas [14], [15], [18]–[21]. However,
in practice these two parameters, as well as the coherence
length, display a non-trivial interplay between them. The DMT
is related to high-SNR capacity analyses, whereas wideband
capacity calculations focus on low-SNR regimes, making
the combination of results from both families of literature
challenging. The analysis in [27] studied capacity scaling
when both the bandwidth and the number of antennas grow
jointly with a fixed coherence length [27]. In brief words,
the main principle in [27] and our model is a two-regime
rate analysis that combines the DoF-limited narrowband and
the power-limited wideband rate scaling: if the bandwidth is
below a certain threshold, capacity scaling is in a high-SNR-
like regime in which rate scales with the symbol rate and the
DoF of the channel. Conversely, when the bandwidth exceeds
the overspreading threshold, capacity scaling adopts a low-
SNR-like regime in which rate scales with the total energy
arriving at the receiver (possibly featuring the receive array
gain). Moreover, this bandwidth threshold itself changes with
the number of antennas and coherence block length. The result
in [27] showed that, when the coherence length is fixed, the
non-coherent channel capacity cannot scale faster than the
minimum between the bandwidth and the square root of the
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number of receive antennas, failing to match the linear scaling
with the number of receive antennas of the coherent channel
capacity in the wideband regime [27]. Moreover, [27] shows
that EM achieves the joint capacity scaling in the non-coherent
channel. As the analysis in [27] assumes a constant coherence
length, the main goal of our paper is to complete the model by
fully taking into account the channel coherence length. This
will show that changes in the channel coherence length play a
very important role in capacity scaling that was not captured
by the result of [27].

In this paper we characterize the capacity of coherent and
non-coherent channels as a three dimensional function of
bandwidth, number of receive antennas, and channel coherence
length. To characterize the capacity scaling, we consider that
these three parameters grow to infinity jointly. We revise the
achievable rate of the EM scheme proposed in [27], and
introduce an alternative PA signaling scheme that outperforms
EM in terms of achievable rate scaling. In consequence, our
result shows that EM is no longer generally optimal, and
depending on the channel coherence length, PA schemes can
provide a greater rate. In addition, we compute an upper bound
to non-coherent capacity scaling, which shows that our PA
scheme always scales optimally, i.e. it can always achieve the
capacity scaling, whereas EM cannot.

Our main result shows that, when the bandwidth is smaller
than a certain threshold, the coherent channel and the non-
coherent channel can achieve the same capacity scaling. In
general, this is the “high-SNR-like” regime in which capacity
grows linearly with the “pre-log” term, i.e. in our case the
bandwidth. The critical bandwidth threshold scales with the
minimum between i) the square root of the product of the
number of antennas and the coherence length, or ii) just the
number of receive antennas. When the bandwidth is greater
than the critical bandwidth threshold, the non-coherent channel
enters the “low-SNR-like” regime in which the capacity grows
linearly with the received energy, i.e. in our case with the
minimum between the square root of the product of the
number of antennas and the coherence length, or the number
of receive antennas. Therefore, for large bandwidths, when
the channel coherence length is large in comparison to the
number of antennas, in a scaling sense, the conditions of
the converse proof in [27] are no longer applicable and EM
signaling cannot achieve the non-coherent channel capacity
scaling. Moreover, when the channel coherence length scales
faster than the number of antennas, the non-coherent wideband
massive SIMO channel achieves the same capacity scaling as
the coherent channel, as should be expected, and PA channel
estimation achieves the capacity scaling in all regimes.

If we assume a fixed coherence length in our result, the
critical bandwidth threshold scales with the square root num-
ber of antennas and the non-coherent channel capacity scaling
reproduces the result of [27]. Moreover, the EM scheme of
[27] can achieve the non-coherent capacity in this particular
case. However, our result generalizes [27] showing that, as the
coherence length increases, the non-coherent capacity scaling
approaches that of the coherent channel, PA schemes can
achieve this rate scaling, and EM schemes remain limited to
the same rate scaling as in [27], failing to keep up with the

capacity.
The rest of this paper is structured as follows. Section II

describes the system model. Section III describes a selection
of prior known results relevant to our analysis. Section IV con-
tains the main results of our analysis. Section V presents the
capacity scaling upper bound that proves the converse of the
main result. Section VI presents the PA scheme that achieves
the capacity scaling result. Section VII presents our revision
of the EM encoding scheme. Section VIII demonstrates the
main results in simulations. And finally, Section IX provides
the conclusions.

A. Notation

Lowercase bold letters a denote vectors and uppercase
bold letters denote matrices A. We use A∗, AT and AH to
denote the conjugate, transpose and Hermitian matrices of A,
respectively. The Kroënecker product between two matrices
A and B is denoted as A ⊗B. We use ai to denote the ith

element of vector a and Aij for the i, j-th element in a matrix
A. vec(A) denotes the “vector stacking” of matrix A, defined
as a vector containing all the coefficients of A in column-first
order, i.e. the (i, j)-th coefficient of an N -row matrix A is
the i + (j − 1)N -th element of vec(A). We use calligraphic
letters to denote sets, and |A| is the cardinality of set A. We
use {A[i]}mi=n to represent a set that contains the collection
of matrices A[i] for i from n to m. We use f(n) = Θ(g(n))
to denote that there exist constants c1, c2, n0 > 0 such that for
all n > n0, c1 <

f(n)
g(n) < c2 [37].

II. SYSTEM MODEL

We assume a frequency selective, block fading, i.i.d.
Rayleigh SIMO wideband channel with a single-antenna trans-
mitter and N antennas at the receiver. The transmitted signal
bandwidth is divided in B independent subcarriers sepa-
rated by a bandwidth ∆f each, that experience independent
frequency-flat Rayleigh distributed channel coefficients. We
assume a block-fading channel in which, for each subcarrier,
the channel coefficient remains the same for L consecutive
symbols, and takes a new i.i.d. value in each coherence slot.
We remark that the symbol period or channel use time in
seconds is 1

∆f , the channel coherence time in seconds is L
∆f ,

and ∆f may be interpreted as the “coherence bandwidth” as
well as the subcarrier separation. Our channel model can be
represented as a resource grid depicted in Fig. 1. Among oth-
ers, this model is representative of contemporary multicarrier
technologies, in which the OFDM symbol duration is shorter
than the channel coherence time and pilots are transmitted
once in each frame of several consecutive OFDM symbols.

In each receive antenna n the received signal coefficient on
subcarrier b at instant ` is given by

yn,`[b] = hn[b]x`[b] + zn,`[b],

b ∈ {0 . . . B − 1},
n ∈ {0 . . . N − 1},
` ∈ {0 . . . L− 1}.

(1)

where the fading is normalized and independent for each n
and b, hn[b] ∼ CN (0, 1). The Additive White Gaussian Noise
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Fig. 1: Block-fading frequency-selective channel output with band-
width B∆f , coherence length L and codeword time L/∆f .

(AWGN) is also normalized as zn,`[b] ∼ CN (0, 1), and the
input average power constraint is

E

[
1

L

B∑
b=1

L−1∑
`=0

|x`[b]|2
]
≤ P.

Here, we use the single letter P to represent a normalized
power limitation. In practice P is computed based on the actual
transmitter power PT , the channel mean gain G, the noise
power spectral density No and subcarrier bandwidth ∆f as
P = PTG

∆fNo
. Thus, P

B = PTG
B∆fNo

is the average SNR in each
receive antenna.

Since channel inputs and outputs are independent for each
frequency bin b, we can write the channel as a collection of
B frequency-flat SIMO subchannels

Y[b] = h[b]xH [b] + Z[b], ∀b ∈ {0 . . . B − 1}. (2)

where Y[b],Z[b] ∈ CN,L, h[b] ∈ CN , and x[b] ∈ CL with
some probability density function (p.d.f.) p({x[b]}B−1

b=0 ).
Even though we study the limit L → ∞, we assume the

ergodic mutual information is achieved by using the channel
for a sufficiently long period of time of length � L/B,
and we only apply constraints on the average power of
the distributions. This permits to encode information over a
large number of realizations of the block fading process and
achieving the ergodic capacities defined as follows:

Definition 1. The coherent ergodic capacity of the block
fading Rayleigh channel as a function of N , B and L is

Cc(N,B,L) =

sup
p({x[b]}B−1

b=0 )

E{h[b]}B−1
b=0

[
I
(
{x[b]}B−1

b=0 ; {Y[b]}B−1
b=0 |{h[b]}B−1

b=0

)]
L/∆f

(3)

Definition 2. The non-coherent ergodic capacity of the block
fading Rayleigh channel as a function of N , B and L is

Cn(N,B,L) =

sup
p({x[b]}B−1

b=0 )

E{h[b]}B−1
b=0

[
I
(
{x[b]}B−1

b=0 ; {Y[b]}B−1
b=0

)]
L/∆f

(4)

Here, the division by L/∆f provides the unit conversion
to express capacity in units of bits per second rather than bits

per block. In this paper, we will study the asymptotic scaling
when B, N and L all grow to infinity. Therefore, the division
by the block length will play an important role in the scaling
result. Generally, the capacity definition must consider joint
encoding in all B subcarriers, so the supremum is over the
joint distribution p({x[b]}B−1

b=0 ). However, in the case with
no feedback and no CSIT we will show that, aside from
power allocation, independent encoding in each subcarrier is
sufficient.

In this paper we characterize the scaling of the functions
Cc(N,B,L) and Cn(N,B,L) as the parameters N , B, and
L grow. Since this is a multi-dimensional asymptotic, the point
(N,B,L) → (∞,∞,∞) can be approached from infinite
“directions”. We specify the relative growth speed of N , B,
and L as they jointly increase with scaling exponents.

Definition 3. We define the bandwidth exponent as

ε = lim
B,N→∞

log(B)

log(N)
, (5)

for a non-negative constant ε. This may equivalently be
expressed as B = Θ(N ε).

Definition 4. The block length exponent is defined as

τ = lim
L,N→∞

log(L)

log(N)
, (6)

for a non-negative constant τ, or equivalently L = Θ(Nτ ).

Using these definitions, we can compare the scaling of
Cc(N,B,L) and Cn(N,B,L) as a function of N , ε and τ .

III. KNOWN RESULTS

The comparison of the coherent and non-coherent channel
capacities in [27] showed that with a fixed L, i.e. τ = 0,
EM achieves the capacity scaling of the non-coherent channel.
However, for ε > 1

2 overspreading occurs, and the non-
coherent channel capacity can only scale at most as

√
N ,

whereas the coherent channel capacity can reach linear scaling
with N if ε ≥ 1.

Lemma 1. The capacity scaling of a Coherent Block Fad-
ing Rayleigh i.i.d. wideband SIMO channel with N receive
antennas, bandwidth B = Θ(N ε) and L = Θ(Nτ ) is

Cc(B,N,L) = Θ(Nmin(ε,1))

Proof. Proof of [27, Lemma 1] holds also for τ > 0.

Lemma 2. The capacity scaling of a Non-Coherent Block
Fading Rayleigh i.i.d. wideband SIMO channel with N receive
antennas, bandwidth B = Θ(N ε) and constant L (τ = 0) is

Cn(B,N,L) = Θ(Nmin(ε, 12 )) (7)

Proof. The full proof is given in [27].

The interest in EM techniques can be associated with the
seminal work by Marzetta and Hochwald [22], which shows
that the capacity-achieving input in the non-coherent channel
is a product of an EM of unspecified density function, times an
Isotropically Distributed Unitary Vector (IDUV) distribution.
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Lemma 3. [22, Theorem 2] The optimal distribution for a
frequency-flat Rayleigh block fading 1×N SIMO (sub)channel
is x[b] =

√
a[b]u[b] where a[b] and u[b] are independent, a[b]

is a non-negative real number distribution and u[b] is IDUV.

Remark 1. Comparing Lemmas 2 and 3, it would appear that
in non-coherent channels of large dimensions, information is
mostly carried by the EM part of the input, a[b]. In our work
we will show that this interpretation may be an artifact caused
by the assumption of a constant block length L in the previous
works. Indeed, this is the length of the IDUV u[b], and when
L is relatively large compared to B and N the role of the
“input shape”, u[b], in capacity scaling is not negligible.

The achievable scheme for Lemma 2 is the EM technique
proposed in [24], [27]. EM assumes that M ≤ B sub-
channels are used, each with an average transmitted power
E
[
|x[b]|2

]
= LP/M . The transmitter uses a real positive

energy constellation to modulate the energy of the input,
selecting a symbol from the set

a[b] ∈ CM =

{
0, 2d, 4d, · · · , 2

M

}
,

and creating a transmitted signal by repeating the symbol L
times

x[b] =
√
a[b]1L.

To perform detection, the receiver computes the statistic

v[b] =

N−1∑
n=0

∣∣∣∣∣ 1L
L−1∑
`=0

yn,`[b]

∣∣∣∣∣
2

∼ (a[b]2 +
1

L
)χ2(2N)

and decides the symbol â[b] that is nearest to v[b]− 1
L . As the

transmitted symbol is repeated L times, it is trivial to adjust
the analysis of [27, Theorem 2] to the case with non-constant
L = Θ(Nτ ) as follows:

Lemma 4. In EM with M = Θ(Nmin(ε, 12 +τ)) and d =
Θ(N−t) satisfying ε < t < 1

2 + τ , the probability of error
vanishes as N →∞ and rate scales as Θ(Nmin(ε−τ, 12 )).

Proof. Since one data symbol is repeated L times, the error
probability upper bound computed in [27, theorem 2] van-
ishes for any inter-symbol distance that satisfies t < 1

2 + τ
(this was t < 1

2 with τ = 0 in the original proof). The
constellation size is Nt

M , there are M subchannels and a 1/L

repetition code, so the rate is M
L log2(N

t

M ). For any ε > 0

a rate scaling of Θ(Nmin(ε−τ, 12 )) is achievable, by choosing
M = Θ(Nmin(ε,τ+ 1

2 )) subchannels.

Remark 2. For τ = 0, the EM scheme achieves the non-
coherent channel capacity scaling (Lemma 2), and if we also
assume ε < 1

2 , the coherent channel capacity scaling is
achieved (Lemma 1).

The main motivator to introduce an extension of Lemma 2
featuring a variable coherence block length is the exact cal-
culation of the critical bandwidth for Rayleigh channels with
fixed values of B,N,L, introduced in [20], [21], reproduced
by the following lemma

Lemma 5. In a Non-Coherent Block Fading Rayleigh i.i.d.
wideband SIMO channel with constant N , B, and L, there is
a “critical bandwidth” number Bcrit, contained in the interval

2P

√
log π

1 +N

L

logL
≤ Bcrit ≤ 2P

√
(1 +N) log π

L

logL
(8)

and such that the achievable rate with non-peaky signaling
is maximum when B = Bcrit and decreases for B > Bcrit
(overspreading).

Proof. Lemma 4 of [21] reproduced with our notation.

By observing the right hand side of (8) in Lemma 5,
in comparison to the two capacity scaling regimes of (7)
in Lemma 2, it is clear that both results indicate that the
maximum bandwidth scaling is proportional to Θ(

√
N) when

L is fixed. By observing the role of L in (8), it is therefore
natural to expect that, for non-constant L that increases as
L = Θ(Nτ ), an extension of Lemma 2 in which the critical
bandwidth is proportional to Θ(

√
NL) should exist. Although

this is intuitive, the proof will be the main result of our paper.
Significant mathematical differences versus [20], [21], [27] are
required, described in Appendix C.

IV. MAIN RESULT

A. Capacity Scaling

The main result in our paper introduces the effect of L into
the non-coherent capacity, fully characterizing its scaling.

Theorem 1. The capacity of a Non-Coherent Block Fading
Rayleigh i.i.d. wideband SIMO channel with N receive anten-
nas, bandwidth B = Θ(N ε) and block length L = Θ(Nτ )
scales as

Cn(B,N,L) = Θ(Nmin(ε, 1+τ2 ,1))

Proof. This rate scaling is achievable using the PA scheme
described in Sec. VI. Moreover, the same exponents are
observed in the upper bound in Sec. V. Therefore, the capacity
scaling exponent is fully characterized.

Remark 3. When τ ≥ 1, the PA scheme can fully achieve the
same capacity scaling as the coherent channel for any value
of ε. For τ < 1, the capacity scaling of the coherent channel
is only matched by the non-coherent channel if its bandwidth
is not too large, i.e. ε < 1+τ

2 .

Remark 4. The comparison of Theorem 1 with Lemma 4
indicates that EM does not achieve the non-coherent capacity
scaling for any value of ε if τ > 0. Even if both the EM and
PA schemes can admit bandwidth exponents up to ε ≤ 1

2 + τ
and ε ≤ 1+τ

2 , respectively, the EM scheme only achieves
the rate exponent min(ε − τ, 1

2 ). Therefore, when τ > 0 the
EM scheme displays poor spectral efficiency and does not
match the rate scaling of the PA scheme, nor the non-coherent
channel capacity.

The interpretation of the main result is more intuitive by
imagining the growth of rates in a channel with a very large but
finite number of receive antennas (N ), with a fixed coherence
length (L), and with a very large bandwidth (B →∞) so that
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UB
EM

PA

Fig. 2: Scaling of rate vs N , with fixed L and very large B

rate is always in the wideband “power limited” regime with
overspreading. In essence, the main result warns us that the
term “scaling with N” must be always considered in compar-
ison to L. We illustrate in Fig. 2 the rate versus the number of
receive antennas for the special case of our result with ε ≥ 1.
In this special case the coherent capacity scales as Θ(N),
the non-coherent capacity upper bound and the achievable
rate with PA both scale as Θ(min(

√
NL,N)), and the EM

rate scales as Θ(
√
N). We can thus see three regions for

the non-coherent capacity scaling: First, the rates grow nearly
linearly with N when N � L, nearly matching the coherent
channel capacity scaling. Second, when L � N � L2, the
non-coherent channel capacity cannot continue to match the
coherent channel, but the PA rate and the upper bound grow
more than

√
N . In this regime PA achieves the non-coherent

capacity scaling and outperforms EM. Finally, when L2 � N ,
both the upper bound and PA achievable rate grow as

√
N ,

and the EM scheme achieves capacity scaling too. The prior
scaling analysis assuming L was a constant in [27] reflected
only this third regime. Nevertheless, in many channels L is
very large and the first two regimes have practical importance.
For example, reasonably practical values of the coherence time
L

∆f = 1ms and delay spread 1
∆f = 1µs, would lead to

L = 103, which means that the third regime where EM is
optimal is not achieved until N > 106. On the other hand,
in a practical scenario with very high speed mobility where
L = 2 the third regime would appear quite soon, at N ≥ 4.
For L = 1, the first two regimes would not exist at all.

B. The Capacity with Only Energy Detection

The energy-shape separation of the input in Lemma 3, and
the ability of EM to achieve the non-coherent channel capacity
scaling when τ = 0 in Lemma 2, have arisen interest in
encoding schemes that rely solely on encoding information
using the instantaneous energy per transmitted block (a[b] in
lemma 3).

Definition 5. We define an Only Energy Detection (OED)
input as any input distribution that only encodes information in
the input energy variable a[b] , ‖x[b]‖2 according to the input
decomposition x[b] =

√
a[b]u[b] proposed by Lemma 3. This

definition comprehends both EM and also other modulations
that satisfy this pattern, such as for example a Frequency
Shift Keying (FSK) that holds the same frequency in the entire
interval ` ∈ {0 . . . L− 1}

As an intermediate step of the converse proof in Theorem
1, we have shown that no OED schemes can achieve a rate
scaling greater than that of the EM scheme in Lemma 4.

Theorem 2. In a Non-Coherent Block Fading Rayleigh i.i.d.
wideband SIMO channel (2), the OED Capacity defined as

CE(B,N,L) ,

sup
p({a[b]}B−1

b=0 )

E{h[b]}B−1
b=0

[
I
(
{a[b]}B−1

b=0 ; {Y[b]}B−1
b=0

)]
L/∆f

,

for N receive antennas, bandwidth B = Θ(nε) and L =
Θ(Nτ ), scales as

CE(B,N,L) = Θ(Nmin(ε−τ, 12 )) (9)

Proof. The upper bound to the scaling of CE(B,N,L) is
given in Appendix B. The achievable rate is in Lemma 4.

Remark 5. By the chain rule, it is clear that CE(B,N,L) ≤
Cn(B,N,L). By comparing Theorems 1 and 2, they display
equal scaling when τ = 0. Our PA achievable scheme has
shown that the scaling factor

√
N can be exceeded for τ > 0.

However, Theorem 2 is stronger than Lemma 2 in the sense
that it proves that EM alone cannot exceed the square root
limitation even if we allow τ > 0, and that no other OED
schemes can either. The capacity scaling in Theorem 1 for
τ > 0 cannot be achieved by simply adopting a different
OED modulation other than EM in Lemma 4. The rate scaling
differences display a fundamental gap between OED Capacity
and Non-Coherent Capacity scaling.

A final question arises if non-coherent energy modulations
can be improved at all. To this, we can answer favorably,
but to achieve this we must not associate the concept of
“energy modulation” with the variable a[b] in Lemma 3.
Indeed, in Section VII we propose a Fast Energy Modulation
(FEM) scheme that transmits an energy constellation of L
independent i.i.d. symbols in the variable x[b]. This allows
to significantly improve the spectral efficiency, however a rate
scaling limitation proportional to the square root of the number
of antennas still arises.

Lemma 6. The FEM scheme achieves a vanishing error
probability as N →∞ with rate

RFEM = Θ(Nmin(ε, 12 )) (10)

Proof. The FEM scheme is analyzed in Section VII.

Remark 6. Theorem 2 is valid for any OED scheme according
to Definition 5, following from the Marzetta-Hochwald enery-
shape separation of the input in Lemma 3. The rate upper
bound converse in Theorem 2 does not apply to any non-
coherent encoding scheme that does not meet Definition 5. As
in Lemma 6, examples of non-OED schemes can be proposed
for other non-coherent modulation techniques. For example,
Theorem 2 would not apply to an FSK scheme that allows to
change the frequency in each instant `.

We give a visual summary of all of our results in Fig. 3.
For τ < 1, the capacity scaling of a coherent channel can
be matched in a non-coherent channel only if the bandwidth
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Fig. 3: Achievable rate exponents with 0 < τ < 1.

is below a certain threshold, using either a) a FEM scheme
when ε < 1

2 or b) a PA scheme when ε < 1+τ
2 . The latter

is also the capacity scaling of the non-coherent channel. For
τ ≥ 1 the capacity scaling of the non-coherent channel equals
that of the coherent channel for all bandwidths. The OED
schemes designed with a strict interpretation of the energy-
shape separation by Marzetta and Hochwald, such as the
canonical EM scheme, cannot achieve the capacity scaling of
the non-coherent channel at all ∀τ > 0.

V. NON-COHERENT CAPACITY UPPER BOUND

A. Subchannel Decomposition

Each subchannel output depends only on the corresponding
subchannel input, so we can separate the mutual information
using the chain rule. Moreover the subchannels are i.i.d. and
there is no CSI nor feedback, so time-diversity is exploited
by the ergodic capacity average and frequency diversity is
unnecessary. Therefore, we can fully decompose the rate as
a sum of subchannel rate contributions:

Cn(B,N,L) =

sup
p({x[b]}B−1

b=0 )

s.t.
∑B−1
b=0 E[|x[b]|2]≤PL

E{h[b]}B−1
b=0

[
I
(
{x[b]}B−1

b=0 ; {Y[b]}B−1
b=0

)]
L/∆f

=
∆f

L
sup

p({x[b]}B−1
b=0 )s.t.∑B−1

b=0 E[|x[b]|2]≤PL

B−1∑
b=0

Eh[b] [I (x[b];Y[b])]

=
∆f

L
sup

{ρb}B−1
b=0 s.t.

∑B−1
b=0 ρb≤PL

B−1∑
b=0

fC(ρb)

(11)

where ρb is the power allocated to subchannel b, and

fC(ρb) , sup
p(x[b])s.t.E[|x[b]|2]≤ρb

Eh[b] [I (x[b];Y[b])]

is the subchannel capacity contribution in each of the identical
subchannels as a function of ρb.

Since all subchannels are identical and fC(ρ) is an increas-
ing function of ρ, by the symmetry of the problem (11) has a
solution of the form

Cn(B,N,L) =
∆f

L
sup

M∈{1...B}
MfC(PL/M). (12)

In summary, to compute the capacity we must solve two
problems: find the input distribution to achieve the maximum
in fC(PL/M) for one subchannel, given a value of M ; and
then find the optimum number of subchannels that should
be actively used, with equal power allocations to each. We
reiterate that in this paper we assume a non-coherent channel
without feedback in which the optimality of this equal power
allocation is reasonable. However, in the cases with feedback
or CSIT that we leave for future work, equal power allocation
would likely be suboptimal.

B. Energy-Shape Decomposition

Since subchannels are i.i.d., hereafter we omit the index
[b] to simplify notation. Using Lemma 3, we need only to
find the best energy p.d.f. p(a), whereas the shape distri-
bution is known to be uniform in the hyper sphere p(u) =

(π)L

(L−1)!δ(‖u‖2 − 1). Using the chain rule we can write

fC(ρ) = sup
p(a)s.t.

E[|a|2]≤ρ

Eh [I (a;Y)] + Eh,a [I (u;Y|a)]
∣∣∣
u∼IDUV

.

(13)

We recall that we must further maximize over the number
of active subchannels M in (12). By adding the chain rule and
Lemma 3, this results in

Cn(B,N,L) =

sup
1≤M≤B
p(a)s.t.

a>0,E[a]≤PLM

M∆f

L

(
Eh [I (a;Y)] + Eh,a [I (u;Y|a)]

∣∣∣
u∼IDUV

)

(14)

Moreover, we may upper bound the capacity (12) by per-
forming separate optimizations in the first and second terms.
Thus, we define the “Only Energy Detection Capacity” and
the “Shape Encoding Capacity” such that their sum forms an
upper bound to the non-coherent capacity as follows:

Cn(B,N,L) ≤ CE(B,N,L) + CS(B,N,L)

with:

CE(B,N,L) = sup
1≤M≤B
p(a)s.t.

a>0,E[a]≤PLM

M∆f

L
Eh [I (a;Y)]

CS(B,N,L) = sup
1≤M≤B
p(a)s.t.

a>0,E[a]≤PLM

M∆f

L
Eh,a [I (u;Y|a)]

∣∣∣
u∼IDUV

(15)

C. Scaling of the Sum of Upper Bounds

We have upper bounded CE(B,N,L) ≤ Θ(Nmin(ε−τ, 12 ))
in Theorem 2, which is proven in Appendix B. For the second
term we produce the following upper bound:
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Lemma 7. In a Non-Coherent Block Fading Rayleigh i.i.d.
wideband SIMO channel (2) with N receive antennas, band-
width B = Θ(N ε) and L = Θ(Nτ ), the Shape-Encoding
Capacity defined in (15), scales at most as

CS(B,N,L) ≤ Θ(Nmin(ε, 1+τ2 ,1)) (16)

Proof. The proof is given in Appendices C-E.

Since for all ε > 0 we have that

min(ε− τ, 1

2
) < min(ε,

1 + τ

2
, 1),

we observe that CE(B,N,L)� CS(B,N,L) for sufficiently
large N , and we can conclude that the non-coherent channel
capacity scaling is upper bounded by

Cn(B,N,L) ≤ 2CS(B,N,L) = Θ(Nmin(ε, 1+τ2 ,1)).

This concludes the proof of the converse of Theorem 1.

VI. PILOT-ASSISTED COHERENT SCHEME

We propose a simple pilot-assisted communication scheme
on the channel (1). The design of the optimal number of pilot
symbols and their allocated power in narrowband Rayleigh
block fading MIMO channels was studied in [28]. We assume
M subchannels are used simultaneously, with equal power
allocation ρ = PL

M each. Since we consider the SIMO case,
one symbol in each subchannel b must be used as a pilot
[28]. We assume the first symbol in each coherence block
of each subchannel is the pilot xp[b] = x0[b], and the
remaining L−1 symbols are used to convey data {x`[b]}L−1

`=1 .
Moreover, we assume the power budget per subchannel is
divided between pilots and data as E

[
|xp|2

]
= αρ and

E
[

1
L−1

∑L−1
`=1 |x`[b]|2

]
= (1−α)ρ

L−1 , for some fraction α ∈
[0, 1].

We assume an independent estimation of each i.i.d. hn[b]
using the first channel output in each antenna as

yp,n[b] = hn[b]xp[b] + zn[b]

where zn[b] ∼ CN (0, 1). To maximize the achievable rate, the
Minimum Mean Squared Error (MMSE) estimation ĥn[b] =

x∗
p

|xp|2+1yp,n[b] is employed [28]. Using a constant amplitude
pilot |xp[b]| =

√
αρ minimizes the variance of the MMSE

estimator error, defined as h̃n[b] = hn[b]− ĥn[b] ∼ CN (0, ε),
where ε = 1

1+αρ [28].
In the data part, for 1 ≤ ` < L− 1, we write

yn,`[b] = ĥn[b]x`[b] + h̃n[b]x`[b] + zn,`[b],

where we assume i.i.d. symbols, so E
[
|x`[b]|2

]
= (1−α)

L−1 ρ.
In addition, we assume the receiver employs Maximum

Ratio Combining (MRC) treating ĥn[b] as the true channel,
producing

r`[b] = ĥH [b]y`[b]

= ‖ĥ[b]‖2x`[b] +

(
N∑
n=0

ĥ∗n[b]h̃n[b]

)
x`[b] + zn,`[b].

(17)

Using a nearest neighbor decision is not optimal, but
is sufficient to achieve at least the same rate as in an
AWGN channel with an equivalent noise variance equal to
the power of the second plus third terms of r`[b] [28]. Since
(hn[b]|ĥn[b]) is distributed as CN (ĥn[b], εI), the effective
noise variance is ε (1−α)

L−1 ρ+ 1, and the effective signal energy
is (1−α)

L−1 ρ‖h[b]‖2(1−ε). Thus the achievable rate as a function
of the perceived SNR at the symbol decider is

RPA(α) ,
L− 1

L
M log

(
1 +

(1−α)
L−1 ρ‖h[b]‖2(1− ε)

1 + ε (1−α)
L−1 ρ

)
(18)

In order to study the scaling as N → ∞ we introduce the
approximation ‖h[b]‖2 ≈ N for large N . We also define κ ,
ρ

L−1 , and replace ε = 1/(1 + αρ). With some rearrangement,
this produces

RPA(α) ' L− 1

L
M log(1 +

(1− α)κNρα

1 + αρ+ (1− α)κ
)

=
L− 1

L
M log(1 +

Nκρ

1 + κ︸ ︷︷ ︸
So

α− α2

αρ−κ1+κ + 1︸ ︷︷ ︸
γ(α)

) (19)

which we can maximize by selecting α to maximize the
decider-perceived SNR inside the logarithm, Soγ(α). We
perform a standard maximization of the function of the form
γ(α) = α−α2

αC1+1 , where the constant is C1 = ρ−κ
1+κ . This

produces the following solution

α∗ =

√
1 + C1 − 1

C1
.

For convenience, we can rewrite the same result in the
following forms as well

α∗ =
1√

1 + C1 + 1
=

1√
1+ρ
1+κ + 1

.

In the third form, we can observe that, since ρ > 0 and ρ >
κ > 0, one unconstrained global solution always satisfies 0 ≤
α∗ ≤ 1. Thus there is no need to introduce a Lagrangian
multiplier to enforce such a constraint, and the global solution
may be adopted directly.

Next we define a second constant C2 =
√

1+ρ
1+κ =

√
C1 + 1.

This allows to write, α∗ = 1
C2+1 , 1−α∗ = C2

C2+1 , and α∗C1 +
1 = C2. Substituting we get

Soγ(α∗) = So
(1− α∗)α∗
α∗C1 + 1

= So
1

(C2 + 1)2

=
Nκρ

1 + κ

1

(
√

1+ρ
1+κ + 1)2

=
Nκρ

(
√

1 + ρ+
√

1 + κ)2

(20)

Let M = Θ(Nµ) with 0 ≤ µ ≤ ε. We study the scaling of
the decider-perceived SNR, Soγ(α∗), as N →∞ for different
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values of τ and µ. We recall that ρ = Θ(Nτ−µ) and κ =
Θ(N−µ). Thus, we must distinguish two different cases

1) For µ ≤ τ , we have ρ � 1 � κ. Therefore, Soγ(α∗) '
Nκ = Θ(N1−µ). For all ε we can choose µ ≤ min(ε, τ)
and, if µ ≤ 1, (18) scales as RPA = Θ(Nµ). Conversely,
if τ > µ > 1, RPA = Θ(N).

2) For µ > τ we have 1 � ρ � κ. This means that,
Soγ(α∗) ' Nκρ = Θ(N1+τ−2µ). For all ε we can
choose µ ≤ min(ε, 1+τ

2 ) and (18) scales as RPA =
Θ(Nµ). On the other hand, if we choose µ > 1+τ

2 , RPA
scales as Θ(N1+τ−µ) ≤ Θ(N

1+τ
2 ). Clearly, making µ

increase above 1+τ
2 is not beneficial, and the bandwidth

overspreading constraint is M ≤ Θ(
√
NL) = Θ(N

1+τ
2 ).

When τ ≤ 1, 1+τ
2 is greater than τ , with equality at τ = 1.

Therefore, we can summarize all the PA achievable rate scaling
with the following expression

RPA = Θ(Nmin(ε, 1+τ2 ,1)),

concluding the proof of the achievability of Theorem 1.

VII. FAST ENERGY MODULATION (FEM)

We introduce an improved FEM scheme in order to compen-
sate for the poor spectral efficiency of EM, which stems from
its use of a L× repetition code. Although we propose FEM as
a minor modification of EM, these two modulations echo the
abundant literature on energy detection non-coherent schemes
(see [8] and references therein). To improve the spectral
efficiency, we simply remove the repetition coding component
as follows: In each block of L symbols, the transmitter selects
L independent energy symbols

a0[b] . . . aL−1[b] ∈ CLM ,
and the transmitted signal is created as

x`[b] =
√
a`[b].

As in EM, we introduce an energy statistic for decoding,
which now must take the form

v`[b] =
N−1∑
n=0

|yn,`[b]|2 ∼ (a`[b]
2 + 1)χ2(2N).

Here, we note that there is no repetition anymore, an indepen-
dent statistic v`[b] is calculated and an independent nearest
neighbor â`[b] is decided for each value of ` and [b]. Since
the channel remains constant for the duration of the block
of L symbols, yet the decoder is making symbol by symbol
decisions, this decoder is clearly suboptimal. Nevertheless, this
scheme is sufficient to guarantee that the error probability
vanishes as N →∞ for the desired rates.

To show this we need only to introduce a minor modification
to the error analysis of [27, theorem 2] by considering the
union bound over L independently decoded symbols. Since a
×L repetition code is no longer present as in EM, the inter-
symbol distance requirement for FEM is that d = Θ(N t)
must now satisfy t < 1

2 . The constellation size is thus
log2(N

t

M ) ≤ log2(N
1
2−ε). As a result, the total rate of FEM

is Θ(M log2(N)) with M ≤ Θ(Nmin(ε, 12 )).

For τ = 0, EM and FEM schemes achieve the same scaling;
hence the use of EM in [24] was sufficient to achieve the upper
bound and prove the capacity scaling result. On the other hand,
for τ > 0, EM cannot properly achieve the coherent capacity
scaling, whereas FEM can for ε ≤ 1

2 .
We remark that the FEM scheme we propose does not

coincide with the Marzetta-Hochwald energy and shape de-
composition of the input in Lemma 3. To prove the achiev-
ability of Theorem 2, in which we ultimately concluded that
both terms in the Marzetta-Hochwald input decomposition are
relevant, we have considered the EM scheme. FEM always
achieves better rate exponent than EM, and it can achieve the
capacity scaling for ε ≤ 1

2 . Nonetheless FEM does, in fact,
encode information in the vector u[b] of the decomposition
x[b] = a[b]u[b], and is not a canonical OED scheme in the
sense of Lemma 3.

VIII. SIMULATION RESULTS

We demonstrate our results by simulating the progression
of the Bit Error Rate (BER) and rate in the channel (2)
as N increases for different practical schemes. We simulate
three achievable schemes: EM, FEM and PA, for different
values of ε and τ . To implement the simulation, the number
of subchannels and block length must be integers, so we
adopt B = dN εe and L = dNτe. For EM and FEM, we
adopt a binary constellation with symbols CEM = {0, 2

M }.
Recall that EM repeats the same symbol L times in each
channel coherence block, whereas FEM transmits sequences of
L i.i.d. symbols. For PA, we adopt a scaled BPSK constellation
CPA = {−1,+1} where the first symbol is a pilot scaled by
a factor PLα∗ and the remaining data symbols are scaled by
a factor PL

L−1 (1 − α∗) according to the results in Section VI.
We set P = 2 so that the initial SNR per receive antenna is 3
dB when B = 1.

We depict in Fig. 4 the BER for all schemes. We recall
that the EM requires that ε < 1

2 + τ , PA requires ε < 1+τ
2

and FEM requires the strictest condition ε < 1
2 . For the case

ε = 0.3 and τ = 0 (blue), all three conditions are met and all
schemes are able to achieve a decreasing error probability as
N increases. It must be noted that 104 symbols were simulated
and the “saw tooth” shape of the curve is due to the use of the
ceiling function to compute M and not to a lack of sufficient
bits for Monte Carlo approximation. For the case ε = 0.6
and τ = 0 (red), all conditions are unmet and all schemes
experience a large error probability that does not decay as N
increases. Finally, when ε = 0.6 and τ = 0.3 (green), FEM
experiences a large error probability, as the condition ε < 1

2
is not satisfied. On the other hand, the conditions ε < 1

2 + τ
and ε < 1+τ

2 are both satisfied, and both EM and PA schemes
display a decaying error probability as N increases.

Next, we look at the nominal bit rates of each scheme in
Fig. 5, defined simply as the number of transmitted bits per
second. For EM, the nominal rate is REMb = B log ‖CEM‖/L.
For FEM, the nominal rate is RFEMb = B log ‖CEM‖. And
for PA, the nominal rate is REMb = B log ‖CPA‖(L − 1)/L.
For the case ε = 0.3 and τ = 0 (blue), we can see that all
schemes achieve rates that scale as N0.3. Moreover, as we
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Fig. 4: BER vs N for different schemes.

saw in the BER curves, these rates correspond to a “reliable
communication” in the sense that the BER vanishes even as
the rate grows. For the case ε = 0.6 and τ = 0 (red), Fig.
5 indicates that all schemes transmit with rates that scale
as N0.6. However, as we saw in the BER curves, these are
capacity-exceeding transmission rates in the sense that the
communication at these rates is not reliable. Finally, when
ε = 0.6 and τ = 0.3 (green), FEM transmits with a rate
that scales as N0.6 that is not reliable, EM communicates
reliably but its rate scales only as N0.3, and only PA can
simultaneously guarantee that the communication is reliable
and that the rate scales as N0.6.

The comparison of nominal rates and error probability in
Figs. 4 and 5 can be unified informally by using an ad-hoc
metric we call the Binary Symmetric Channel (BSC) equiv-
alent reliable rate, defined as RBSCeq = Rb(1−H(BER)).
This is, we compute the capacity of a BSC in which the error
probability is equal to the empirical BER, and the bit rate is
equal to the nominal bit rate of each modulation. Although
this definition is not very rigorous, this ad-hoc metric allows
to visualize the fraction of the nominal rate that is reliable
in the simulation. We show the BSC equivalent reliable rates
in Fig. 6. Again, for ε = 0.3 and τ = 0 (blue), all schemes
achieve reliable rates that scale as N0.3. We can also see that
in the case with ε = 0.6 and τ = 0 all schemes achieve
reliable rates that scale as N0.5. Finally, for the case ε = 0.6
and τ = 0.3, EM achieves only a rate scaling of N0.3, FEM
achieves a reliable rate scaling of N .5, and only the PA scheme
can achieve a reliable rate scaling of N .6 = N ε. Despite
the non-rigorous definition of RBSCeq , the concordance of
all these results with our capacity analyses is complete and
quite remarkable.

IX. CONCLUSIONS

In this paper we have studied the scaling of the capacity gap
between coherent and non-coherent wideband SIMO Rayleigh
block-fading channels, as a function of the bandwidth, number
of receive antennas and channel coherence block length. The
main insight of our paper is that the channel coherence
block length plays a critical role in the capacity gap between
coherent and non-coherent channels. Moreover, the maximum
bandwidth allocation that can be used to avoid “overspreading”
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Fig. 5: Bit rate vs N for different schemes.
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Fig. 6: Equivalent BSC capacity vs N for different schemes.

is also a key factor. In some prior formulations of the study of
non-coherent channel capacity, Energy Detection techniques
such as Energy Modulation have arisen as a promising en-
coding technique due to its capacity-like scaling with the
number of antennas when the coherence block length is fixed.
On the other hand, many practical technologies employ Pilot
Assisted channel estimation and coherent receivers. Our result
shows that Pilot Assisted schemes are always capacity-scaling-
achieving in non-coherent channels, whereas Energy Detection
schemes only achieve the capacity scaling in a more restricted
sense that does not take into account the channel coherence
block length.

Two important engineering messages emerge from our anal-
ysis. One is that as new technology standards continue to in-
corporate more spectrum, attention must be paid to the excess
channel uncertainty caused by bandwidth overspreading, in
which the capacity enters the wideband regime with power
limited rates and the addition of even more degrees of freedom
is not beneficial. The threshold to enter this regime scales as
Θ
(

min(
√
NL,N)

)
, which means that the limitation is more

severe in high mobility scenarios. In addition, increasing the
number of receive antennas can actually help push up the
critical bandwidth threshold and permit to keep increasing
wireless network rates by purchasing more spectrum.

The second key engineering lesson of our analysis is that the
optimal choice between channel estimation or non-coherent
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encoding schemes seems to favor the first option in a signif-
icant number of cases. Only in very high mobility scenarios,
which result in very short channel coherence length, the scal-
ing analysis suggests that general Energy Detection schemes,
and Energy Modulation in particular, are competitive in a rate-
scaling sense. And even in those cases, both methods achieve
equal scaling and a finer comparison of the rates beyond
the scaling analysis should be performed before making the
decision.

APPENDIX A
DISCUSSION OF THE CHANNEL MODEL

The results in this paper are proven for an i.i.d. Rayleigh
block-fading model. This classical fading model is extremely
valued in wireless communications research for its excellent
mathematical tractability while the results maintain some
degree of proximity to the physical truth. Nevertheless, when
considering a very large bandwdith or antenna array, engineers
should be specially wary about the difference between this
popular channel model and the physical reality of multi-
path propagation. The usual justification of i.i.d. Rayleigh
fading assumptions is rich scattering, that is, assuming a
number of multipath reflections that is much higher than the
number of taps, frequency bins, array elements, or both. This
would motivate using the Central Limit Theorem (CLT) to
characterize the coefficients, as a sum of many unknowns, as
i.i.d. Gaussian. However, when the bandwidth is very large,
the delays of multi-path reflections in the channel can be
resolved individually. Likewise, the Angle of Arrival can be
resolved in large antenna arrays with elements separated half
a wavelength. These phenomena induce frequency correlation
(delay sparsity) and spatial correlation (angular sparsity), re-
spectively. In mmWave channels, advanced Saleh-Valenzuela
sparse multipath models are more accurate [38]. In fact, many
results show that in mmWave the CLT does not even justify the
modeling of each reflection coefficient as Gaussian [39]–[43].
The full-fledged physically-realist mmWave channel models in
[40], [41] are, in fact, too cumbersome for analytical tractabil-
ity. Theoretical analyses have resorted to different degrees of
simplification ranging from sparse-Gaussian multipath [14],
[44] to almost-rich-scattering modified Rician or Rayleigh
models that capture specific aspects of mmWave [31] such
as oxygen absorption [45]. More recently, there has been
interest in “holographic MIMO” models that assume a very
large number of antennas packed into a spatially constrained
volume and spaced closer than λ/2 [46], [47], in contrast to
earlier mmWave array models with elements spaced λ/2 [40],
[44], in which the antenna aperture goes to infinity with N .

The compromise between tractability and validity of the
channel model is a common occurrence in capacity analises
also outside mmWave. Lozano and Porrat indicate that their
seminal critical bandwidth calculation holds for the “wide-
band” channel model, but may lose applicability as the band-
width increases and the channel behaves as in the “ultra-
wideband” model [20]. Ozgur, Leveque and Tse pointed
out a similar weakness in network capacity scaling analysis
[48]. However, these authors have argued that the assumption

of i.i.d. coefficients is justifiable when there is a range of
the scaling analysis parameters in which simultaneously the
number of elements is large and the channel assumptions hold.
In our results, the argument is similar: our analysis is relevant
for the range of values of the parameters B, N , and L that are
large-but-finite, and that are simultaneously sufficiently large
for the big-O scaling results to dominate capacity, but not large
enough that the channel model needs to be replaced. Abundant
literature suggests that such a range of parameters exists. The
seminal work by Medard and Gallager [7] characterized the
problem of overspreading without our assumptions on the
channel model. Telatar and Tse showed that even a sparse mul-
tipath channel with a single path experiences overspreading
when the reflection delay is not known a-priori [14]. Raghavan
et al found similar results for capacity scaling with bandwidth
under sparse multipath channels [49]. And the revision of the
critical bandwidth results for mmWave by Ferrante et al [45]
simplified the model to a multiplicative combination of rich
Ricean fading, Bernouilli blockage and oxygen absorption.

In addition, the 5G [2] and WiFi6 [3], [4] standards employ
OFDMA waveforms that treat each “frame” as an indepen-
dent channel block realization with separate pilot estimation.
Therefore, even when these standards operate on top of an
underlying physical propagation that does not respond to the
i.i.d. Rayleigh block fading model, the channel model assump-
tion that is implicit to the waveform design and engineering of
many practical devices is indeed consistent with our model. In
summary, while readers ought to be cautious about the channel
model, our result insights are reasonably applicable to current
wireless systems, and give analysts an important starting step
toward more general results with advanced channel models in
future work.

APPENDIX B
OED CAPACITY UPPER BOUND

Here we present an upper bound of the first term of (14),
CE(B,N,L), defined in (15). This also proves the converse
of Theorem 2.

Let us define the per-subchannel OED Capacity contribution
function

fE(ρ) , sup
p(a)s.t.a>0,E[a]≤ρ

Eh [I (a;Y)]

so that the OED Capacity satisfies

CE(B,N,L) = sup
1≤M≤B

M∆f

L
fE(

PL

M
).

We can use xH =
√
auH as defined in Lemma 3 to define

the auxiliary random variable

v =
√
ah + za, (21)

where za = Zu is i.i.d. AWGN of dimensions N × 1. Since
Y = vuH +Z(I−uuH), we verify that p(Y|v, a) = p(Y|v)
and therefore a→ v→ Y is a Markov chain satisfying

fE(ρ) ≤ sup
p(a)s.t.a>0,E[a]≤ρ

I (a;v) , gE(ρ).
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Finally, we have that (21) is a SIMO Rayleigh fading
channel with block length of L = 1 and with power constraint
E [a] ≤ PL

M , so we can apply [27, Lemma 3] to gE(ρ)

Lemma 8. ( [27, Lemma 3]) For ρ = PL
M = Θ(N

1
2 +α) with

any α > 0, the upper bound gE(ρ) ≤ Θ( 1
N2α ) is satisfied.

Proof. Same as [27] with power constraint ρ = PL
M .

As a result, when B < Θ(N
1
2 +τ ), fE( PM ) is upper bounded

by the coherent capacity of the channel (21), and the optimal
number of active subchannels is M = B. When B ≥
Θ(N

1
2 +τ ), gE( PM ) is upper bounded by Lemma 8 and the

transmitter must not overspread the transmitted power in more
than M = Θ(

√
NL) subchannels. Thus in general the optimal

M is Θ(Nmin(ε, 12 +τ)) and, substituting into M
L gE(PLM ), we

get (9), completing the proof of Theorem 2.

APPENDIX C
SHAPE ENCODING CAPACITY UPPER BOUND

Here we present an upper bound of the second term in (14),
CS(B,N,L), defined in (15). We recall the definition of the
conditional mutual information

Ea [I (u;Y|a)] = Ea

[
EY,u

[
log

p(Y|u, a)

p(Y|a)

]]
.

Since we cannot compute this information exactly, we will
proceed by first upper bounding the information function
defined as I (u;Y|a) ≤ Φ(a) for given values of a. And finally
we will maximize Ea [Φ(a)] to compute an upper bound of the
scaling of CS(B,N,L).

Thanks to the fact that u is unitary and u, a are known, we
compute the distribution p(Y|u, a) explicitly in Appendix D,
resulting in

p(Y|u, a) = (1 + a)−N (2π)−NLexp
[
−(‖Y‖2 − a‖Yu‖2

1 + a
)

]
For the denominator, we settle for simply computing a func-

tion that lower bounds p(Y|a) as a function of a (Appendix
E). This function is not a p.d.f., and is expressed as

p(Y|a) ≥ (1+a)−N (2π)−NLexp
[
−(‖Y‖2 − a

1 + a

‖Y‖2
L

)

]
Combining the above, we have the following upper bound

for the mutual information

I (u;Y|a) ≤ a

1 + a

(
EY,u

[
‖Yu‖2

]
− EY

[
‖Y‖2

]
L

)
(22)

To continue we need to calculate the average energies
E
[
‖Yu‖2

]
and E

[
‖Y‖2

]
. Noting that Yu =

√
ahuHu +

Zu =
√
ah + z′, where z′ ∼ CN (0, IN ), we get that

E
[
‖Yu‖2

]
= N(1+a). With similar reasoning we can deduce

that E
[
‖Y‖2

]
= N(L+a) from the fact that ‖huH‖2 = ‖h‖2

and that E
[
‖Z‖2

]
= LE

[
‖z′‖2

]
. Thus we arrive at the

following upper bound to the mutual information

I (u;Y|a) ≤ Φ1(a) ,
a2

1 + a
N

(
1− 1

L

)
. (23)

Since Φ1(a) is convex, unless a is subject to a peak
constraint, introducing the upper bound Φ1(a) into the average
and maximizing with regard to p(a) obtains an upper bound
to the Shape Encoding Capacity that is too loose. In particular

sup
p(a)

Ea [I (u;Y|a)] < sup
p(a)

Ea [Φ1(a)] = ρN(1− 1

L
).

where the supremum is achieved by the peaky distribution

p(a) = lim
δ→0

{
ρ/δ w.p. δ
0 otherwise

.

In other words, while Φ1(a) can upper bound I (u;Y|a)
for small values of a, we cannot use this upper bound to
study the optimal distribution of p(a) when there are no peak
constraints. Therefore, as a correction factor to Φ1(a), let us
use the capacity of a AWGN channel of power a as a second
upper bound to the mutual information

I (u;Y|a)
a
≤ sup
p(x):E[‖x‖2]≤a

I (x;Y)

b
≤ L log(1 + aN)
c

, Φ2(a),

(24)

where a) stems from the fact that u is an IDUV, so get that
E
[
‖au‖2

]
= a, and therefore the inequality with the supre-

mum holds. Next, b) upper bounds the non-coherent mutual
information by the coherent capacity with power constraint a.
And c) simply writes this second upper bound as a function
depending on a.

Finally, we can properly conduct an input distribution
optimization with regard to the “useful” upper bound defined
as the minimum of Φ1(a) and Φ2(a)

I (u;Y|a) ≤ Φ(a)

, min [Φ1(a),Φ2(a)]

= min

[
a2

1 + a
N

(
1− 1

L

)
, L log(1 + aN)

]
(25)

Leading to

CS(B,N,L) ≤ sup
M∈{1...B}

M∆f

L
sup
p(a)

Ea [Φ(a)].

The shape of Φ(a) is very particular. Let us define the point
where the two sides of the minimum are equal as ao satisfying

a2
o

1 + ao
N

(
1− 1

L

)
= L log(1 + aoN). (26)

For a < ao, Φ(a) is convex, and for a > ao, Φ(a) is
concave. Therefore, we can solve the optimization separately
in the concave and convex regions. To this end, we define
the auxiliary variable Υ =

∫ ao
0
p(a)da, and the auxiliary

distributions q(a) = p(a|a≤ao)
Υ , and g(a) = p(a|a>ao)

1−Υ . These
auxiliary variables enable the following separation of the
original problem:

sup
p(a)

Ea [Φ(a)] = sup
Υ

(
Υ sup
q(a)

Ea≤ao [Φ(a)]+

+ (1−Υ) sup
g(a)

Ea>ao [Φ(a)]
)
.

(27)
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Here, we separated the original problem in three subproblems,
where one is purely convex and another is purely concave.
Therefore we can consider Jensen’s inequality to find the
optimum distributions q(a) and g(a), and then complete the
final result by finding the optimum value of Υ and constructing
the final density function as p∗(a) = Υ∗q∗(a)+(1−Υ∗)g∗(a).
This leads to the following results:

1) If ao ≥ ρ, then Υ∗ = 1 and

p∗(a) = q∗(a) =

{
ao w.p. ρao
0 otherwise

(28)

producing

sup
p(a)

Ea [Φ(a)] = ρ
ao

1 + ao
N(1− 1

L
) (29)

2) If ao < ρ, then Υ∗ = 0, and

p∗(a) = g∗(a) = δ(a− ρ), (30)

producing

sup
p(a)

Ea [Φ(a)] = L log(1 + ρN) (31)

Since solving (26) can be difficult, to complete our analysis
we obtain a simple scaling characterization of a0.

Lemma 9. If τ ≤ 1 the solution to (26) scales as

ao = Θ(

√
L

N
)

And if τ > 1 the solution to (26) scales as

ao = Θ(
L

N
)

Proof. By contradiction, let us define a′o = Θ(Nα) and
Φ2(a′o) = θ(Nτ log(N)).

If α ≤ 0, then Φ1(a′o) = θ(N2α−1). Thus for α < τ−1
2

we have Φ1(a′o) � Φ2(a′o) and if α > τ−1
2 then Φ1(a′o) �

Φ2(a′o). Therefore, a′o cannot be a solution to (26) if α 6= τ−1
2 ,

where α < 0⇔ τ < 1.
Likewise, if α > 0, then Φ1(a′o) = θ(Nα−1), and a′o cannot

be a solution to (26) if α 6= τ−1, where α > 0⇔ τ > 1.

Equipped with the scaling of ao, recalling that ρ = PL
M , and

using (29) and (31), we get the following cases:
• For τ ≤ 1,

– if M ≤ Θ(
√
NL) we get ao � ρ, which leads to

M
L Ea [Φ(a)] = M

L Φ2(ρ) = M log(1 + ρN).
– if M ≥ Θ(

√
NL) we get ao � ρ, leading to

M
L Ea [Φ(a)] = M

L
ρ
ao

Φ1(ρ) = M
L aoρN(1 − 1

L ) =

Θ(
√
LN).

Thus, for ε < 1+τ
2 , the optimum number of subchannels

satisfies M = B. And for the case ε ≥ 1+τ
2 , all

choices of M satisfying M ≥ Θ(N
1+τ
2 ) are equally

optimal in a scaling sense. Although different choices
of M ≥ Θ(N

1+τ
2 ) can overspread the bandwidth, this

neither increases nor decreases the rate. Increasing M
above Θ(N

1+τ
2 ) merely increases the peakyness of the

optimal distribution p∗(a) (28) in such a way that the
time-frequency spreading of power remains constant and
the rate scaling is unchanged.

• Finally, when τ > 1 the bandwidth overspreading
threshold condition associated with ao � ρ scales as
M ≤ Θ(N), and the rate is Θ(Nmin(ε,1)).

Putting everything together produces the final Shape Encod-
ing Capacity scaling upper bound

CS(B,N,L) ≤ Θ(Nmin(ε, 1+τ2 ,1)).

APPENDIX D
DISTRIBUTION OF p(Y|u, a)

In this section we compute the probability density
p(Y|u, a). The Kroënecker product and matrix vector stacking
function satisfy the relation vec(huH) = u∗ ⊗ h. When
u is a known vector, (vec(huH)|u) is a NL-dimension
Gaussian-distributed vector with a singular covariance matrix
Σvec(huH) = au∗uT ⊗ IN , and its p.d.f. is undefined. Fortu-
nately, the addition of the nose term in (Y|a,u) = ahuH +Z
introduces independent noise terms and, therefore, p(Y|u, a)
can be written as the p.d.f. of the NL-dimension Gaussian-
distributed vector (vec(Y)|a,u) ∼ CN (0,Σvec(Y)|u,a), where
the covariance matrix is full rank with value Σvec(Y)|u,a =
INL + au∗uT ⊗ IN = (IL + au∗uT )⊗ IN .

For convenience, we write a more compact expression of the
p.d.f. in (32), where (a) comes from the distributive properties
of the determinant and inverse of Kroënecker products, (b)
substitutes the determinant and inverse of the identity matrix,
(c) applies the Sylvester rule for the determinant, and the
Sherman-Morrison formula for the matrix inverse, and (d)

p(Y|u, a) = |(IL + au∗uT )⊗ IN |−NL(2π)nLexp
[
−vec(Y)H

(
(IL + au∗uT )⊗ IN

)−1
vec(Y)

]
(a)
= |IN |−N |IL + au∗uT |−L(2π)−NLexp

[
−vec(Y)H

((
IL + au∗uT

)−1 ⊗ (IN )
−1
)

vec(Y)
]

(b)
= |IL + au∗uT |−L(2π)−NLexp

[
−vec(Y)H

((
IL + au∗uT

)−1 ⊗ IN

)
vec(Y)

]
(c)
= (1 + a)−N (2π)−NLexp

[
−vec(Y)H

((
IL −

a

1 + auTu∗
u∗uT

)
⊗ IN

)
vec(Y)

]
(d)
= (1 + a)−N (2π)−NLexp

[
−(‖Y‖2 − a

1 + a
‖Yu‖2)

]
(32)
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comes from uTu∗ = 1, vec(Y)Hvec(Y) = ‖Y‖2, and a
careful reorganization of the matrix product vec(Y)H(u∗uT⊗
IN )vec(Y) = tr{(Yu)HYu} = ‖Yu‖2.

APPENDIX E
LOWER BOUND OF p(Y|a)

The p.d.f. of the channel output may be computed from the
conditional as p(Y|a) = Eu [p(Y|a,u)]. We note that for the
particular case L = 1 we have that u is just a random phase,
producing ‖Yu‖2 = ‖Y‖2, this would lead to p(Y|a)|L=1 =
p(Y|a,u)|L=1 and to I (u;Y|a) = 0. We therefore focus on
the case L > 1, when p(Y|a) is not Gaussian distributed and
we are forced to come up with a lower-bounding strategy on
p(Y|a) in order to upper bound I (u;Y|a).

The p.d.f. of u is constant in the L-dimensional sphere,
with value Γ(L)/πL, and thus remains unchanged when u
is transformed by multiplication with any unitary matrix
p(Vu) = p(u). Particularly, we use the SVD of Y = UHSV
where U,V are unitary, S is the diagonal matrix containing
the singular values of Y, and uHYHYu = uHVHS2Vu.
Therefore we get (33), shown on the bottom of this page.

Now, for the purpose of just upper bounding the mutual
information, we apply Jensen’s inequality in the exponential
Eu

[
exp

[
a

1+a‖Su‖2
]]
≥ exp

[
a

1+aEu

[
‖Su‖2

]]
. With this

we obtain a lower bound of the function p(Y|a) that is not
necessarily a p.d.f.

p(Y|a) ≥ (1 + a)−N (2π)−NLexp

[
−(‖Y‖2 − aEu

[
‖Su‖2

]
1 + a

)

]
(34)

Since S is diagonal, ‖Su‖2 =
∑L
`=1 |s`u`|

2, producing

Eu

[
‖Su‖2

]
=

L∑
`=1

s2
`Eu

[
|u`|2

]
=

1

L

L∑
`=1

s2
` =
‖Y‖2
L

.

Therefore

p(Y|a) ≥ (1 + a)−N (2π)−NLexp
[
−‖Y‖2(1− a

1 + a

1

L
)

]
(35)
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