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Abstract—The Proportional Fair Scheduler (PFS) has become
a popular channel-aware resource allocation method in wireless
networks, as it effectively exploits multiuser diversity while
providing fairness to users. PFS decisions on which mobile station
(MS) to schedule next are based on Channel Quality Indicator
(CQI) values. Since CQI values are reported by the MSs to the
scheduler, network performance can be severely degraded if some
malicious MSs report forged information. Previous approaches to
this security issue are based either on modifying PFS, which may
be undesirable in some contexts, or authenticating CQI reports
by periodic transmission of challenges, which increases overhead.
Instead, we propose to detect misreporting attackers, based on the
time correlation features of the wireless channel. Our approach
does not require scheduler modification, and it does not increase
overhead. Simulation results under realistic settings are provided
to show the effectiveness of the proposed test.

I. INTRODUCTION

The persistent demand for permanent connectivity has deter-
mined the tremendous expansion of fourth-generation mobile
wireless communication systems, such as LTE [1] and WiMax
[2], and is pushing towards next-generation systems with
improved capabilities [3]. To be able to deliver high data rates
to a large number of users, these technologies rely on channel-
aware resource allocation protocols exploiting channel state
information in order to use wireless resources more efficiently.
Opportunistic schedulers for multiuser systems constitute an
example: these resource allocation schemes take advantage
of physical layer (PHY) information [4], in order to exploit
multiuser diversity (the fact that, in a system with a large
number of users undergoing independent fading, it is likely
that at any given time at least one user has a good channel).
Among opportunistic scheduling algorithms, the Proportional
Fair Scheduler (PFS) is widely recognized as an attractive
choice [5], [6], providing acceptable tradeoffs between pos-
sible rates and fairness (this is necessary, since a scheduler
which simply serves the user with the best channel at each
time slot will result in poor performance for users with worse
channel conditions). Analyses have shown that PFS enjoys
certain optimality conditions in terms of a utility function of
the long-term average rates of the users [7], [8].

Opportunistic scheduler operation is based on Channel
Quality Indicator (CQI) values reported by the Mobile Stations
(MS) to the scheduling entity or Base Station (BS). One
serious vulnerability issue then arises, since CQI values are
susceptible to forgery by a selfish or malicious MS, with
the purpose of either obtaining an unfair share of network
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resources or disrupting network operation. This issue is re-
ferred to as CQI misreporting attack, and has been considered
in a few recent works [9]-[12]. In [10] the fairness vulner-
abilities of PFS were highlighted, and realistic misreporting
attacks were described and shown to be capable of severely
depleting network resources. Several means to robustify the
system were then proposed in order to mitigate such attacks.
Although effective, these defensive devices require modifying
the original PFS and/or cell handoff mechanisms, which
may not be desirable in practice and could compromise PFS
optimality. The same is true about the defense measures from
[11], which incorporates within the PFS operation rule an
estimated trust value for each user. A different approach was
proposed in [12], resorting to PHY security concepts [13]:
reported CQI values are authenticated by the base station (BS)
through the transmission of challenges from the BS to each
MS. This PHY security approach avoids PFS modification,
since only authenticated (thus allegedly reliable) CQI values
are taken into account. The use of PHY authentication has
also been used in, e.g., [14]-[18] for detecting impersonation
attacks, showing that exploiting the location-dependent nature
of the wireless channel is an appealing approach to address
security-related issues. Nevertheless, the challenge-based PHY
authentication schemes proposed in [12] result in an increased
system overhead, which is highly undesirable in a wireless
network.

In the present paper we develop a simple yet effective pro-
tection mechanism for PFS against CQI misreporting attacks,
based on the use of the distinctive time correlation of the wire-
less channel. In contrast with PHY security approaches such
as those in [14]-[18] which exploit the location-dependent
feature of the wireless channel to protect against impersonation
attacks, we propose the exploitation of the time-dependent
characteristics of the wireless channel to protect against CQI
misreporting attacks. Differently from previous PHY-based de-
fense schemes based on CQI authentication [12], our proposed
method, which is based on anomalous behavior detection, does
not result in increased system overhead. In addition, it does
not require modifications to the PFS either, in contrast with
[10], [11], since protection is provided at the PHY layer.
Specifically, we show how time variations in the histories
of reported CQI values can be used in order to discriminate
between malicious and honest users. The underlying idea is
that CQI time series originated at an honest MS is related to
the time variations in the wireless channel, and therefore to



the relative speed between BS and MS, which is bounded.
This is not the case for a malicious MS, whose CQI reports
typically exhibit much faster time variations. We propose to
monitor the sample autocorrelation coefficient corresponding
to a certain time lag in order to single out malicious MSs.
Simulation results with realistic system parameters show the
efectiveness of the proposed approach.

The paper is organized as follows. The communication
setting, PFS basics and CQI misreporting attack are described
in Sec. II. In Sec. III the time-varying characteristic of the
wireless channel is described, and the proposed protection
scheme is derived. Simulation results are given in Sec. IV,
and conclusions are drawn in Sec. V.

II. PROBLEM STATEMENT
A. Communication setting

We consider a cellular system [1], [2], focusing on a
scenario with N MSs within a cell moving at speeds of
up to v, m/s and communicating with a BS. Of these,
N4 < N are malicious, with the goal of disrupting network
operation. We assume that MSs within overlapping coverages
of two neighboring cells can switch between them at will, by
triggering a handoff process as described in [10].

Network resources are shared over an OFDM downlink
channel, where subcarriers are grouped in resource blocks
consisting of several contiguous subcarriers over which the
channel frequency response can be regarded as flat [6], [19].
The temporal dimension is sliced in time slots of duration 7§,
i.e., a number of contiguous OFDM symbols for which the
channel can be regarded as quasi-static [6], [19]. Each resource
block is allocated to a single MS at each time slot. All MSs
obtain their CQI values and report them to the BS in order
to compete for the next time slot. Independent allocation of
resource blocks is assumed, so we focus on a single resource
block for clarity.

The CQI metric reported by an (honest) MS is a mapping
from the signal-to-noise ratio (SNR) experienced by that MS
over the corresponding resource block to a value indicating
the maximum rate that the channel can support under current
conditions. Based on CQI values from all N users, the BS
decides on which MS to schedule over the next time slot using
the PFS algorithm, described next.

B. Proportional Fair Scheduler

At each time slot, PFS selects for transmission the MS
maximizing the ratio of current CQI to average throughput. In
this way, low SNR users still have fair opportunities to access
the channel, whereas performance is improved with respect
to naive schemes (e.g., round-robin) [6]. At time slot ¢, PFS
selects user £* to be allocated on the next time slot as
C]?Ik(t)’ 1

k(t)
where CQI,(t) is the latest CQI value reported by the k-th
user (peak feasible data rate, in case of an honest MS), and

k™ = arg max
1<k<N

Ry (t) is the monitored average throughput of the k-th user up
to time slot ¢, which is updated as

aCQI,. () + (1 — a)Ri(t),
Rk(t—i—l):{ (l—ak)(R)k(t)(, (1)

where 0 < a < 1 is a fairness parameter that determines
the size of the smoothing window in (2). At time ¢ = 0, the
average throughput is initialized as Ry (0) = o for all k, with
ro a small constant. If user k joins the cell at time ¢t = ¢
(for example, due to a handoff from a neighboring cell), its
average throughput can be initialized in different ways. We
assume the BS allows the new user to set this parameter. While
this is beneficial when all users behave in an honest manner,
it results in added flexibility to attackers, resulting in a worst
case scenario in terms of security from the network point of
view [10].

if £k =k*,
otherwise,
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C. CQI misreporting attack

From (1), PFS allocation decisions are based on CQI
reports, and thus its operation is vulnerable to malicious users
forging CQI values [9]-[12]. In the following, we consider the
most powerful of such CQI misreporting attacks, described in
[10] and termed coordinated attack with hand-offs, which is
carried out by a set of N4 colluding attackers as follows. At
time ¢, attacker 7 computes the minimum value of its reported
rate that would secure the resource block at time ¢ + 1, i.e.,

{Rj (t) - max CQIl(t)—‘ , jJEA, 3)

i€eH  R;(t)

with H and A the sets of honest users and attackers, re-
spectively, and where the ceiling operation is included since
CQI metrics are usually integer-valued'. The corresponding
increment in reported rate is then obtained:

6j(t) = m;(t) — CQL;(t — 1), (4)

with CQI; (t — 1) the previously reported (at time slot ¢t — 1)
CQI value. Let

m;(t) =

j* =arg 1;%1}41 3,(1). 5)

Then, attacker j* reports CQI;.(t) = my«(t) to the BS,
whereas the remaining V4 — 1 attackers report their true CQI
values in order to conceal their malicious behavior.

Note that in order for attackers to keep obtaining time slots,
they not only need to have better CQI values than honest
users, but also their CQI-to-average throughput ratio must be
better. If an attacker succeeds, then its average throughput
increases while those of honest users decrease, so attackers
need to compensate for this by reporting rapidly increasing
CQI values. In practice, a maximum value CQI, . exists. As
remarked in [10], when an attacker reaches this value, it can
trigger a handoff to a neighboring cell and back. This allows
the attacker to reset its average throughput, as explained in
Sec. II-B, thus allowing a sustainable attack. This scheme has

'A method by which attackers can estimate the value max;cz Cgli(it(;) is
i

given in [10]. For simplicity, we assume this quantity is known to attackers.
This case also serves as an upper bound on the power of more realistic attacks.



been shown to capture over 90% of the available time slots
with just a few attackers [10].

III. DETECTION OF MISREPORTING ATTACKS

In contrast with previous approaches based on CQI authen-
tication [12] (which increases overhead) or scheduler modi-
fication [10], [11] (which may affect its optimality features),
we propose a detection mechanism to test whether CQI values
reported by an MS arise from honest behavior or not. In this
way, if user £ is flagged as an attacker at time ¢, it is excluded
from the competition for the next time slot.

The key observation is that, as the time-varying character-
istics of mobile wireless channels are well understood under
a number of models, they allow to single out malicious users
whose temporal behavior differs from which one would expect
as arising from an actual physical channel. To this end, note
that (honest) CQI values are directly related to the observed
SNR as follows:

22
CQL(t) = q [f (”"(f)ﬂ , (©)
Tk

where 9 (t) and 67 are the estimated values of, respectively,
the channel envelope (for the considered resource block)
and the noise power at the k-th MS; f(-) is an invertible
mapping to the logarithmic (dB) domain, and ¢[-] represents a
quantizer such that the CQI value falls within a discrete set of
available modulation/coding alternatives (note that f and g are
application specific). In practice, all such alternatives yield the
same error rate while resulting in higher data rates for larger
SNR values [1], [2]. Eq. (6) shows that the time variations
of CQI,(t) follow those of the observed SNR, and therefore
those of the wireless channel (noise power fluctuations can be
safely assumed to be much slower than those of the channel).
This is illustrated in Fig. 1(a), which shows examples of
reported CQI values along time for honest and malicious
users launching the misreporting attack from Sec. II-C for two
different values of initial average throughput after handoff,
r()““. The curves corresponding to attackers are noticeably
different from that of an honest user, more so as attackers
choose smaller values of 4 (which result in more damage
to the network, as will be discussed in Sec. IV). In addition,
Fig. 1(b) suggests that the sample correlation coefficient can
be useful in order to detect attackers, as discussed next.

The time-varying features of wireless mobile channels are
influenced by physical factors such as multipath propagation,
speed of mobile stations and/or surrounding objects, and
signal bandwidth [19], [20]. For small-scale fading (i.e., over
short time periods), a stationary assumption is well suited
for characterizing the randomly time-varying wireless channel
[21], and several models exist depending on the structure
of the propagation environment. All of them exhibit strong
correlation for short lags, since the channel response is a
low-pass process of bandwidth much smaller than that of
the transmitted signal. For example, in dense propagation
environments the Rayleigh distribution is commonly used to
describe the received envelope «y of a signal undergoing flat
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Fig. 1. Typical time histories of reported CQI values and their corresponding
sample correlation distribution, for an honest MS and an attacker. Simulation
parameters details are found in Sec. IV.

fading, and Jakes” model [20] is widely accepted to be a good
fit for its correlation coefficient in such scenarios:

() &~ J§ (27 fnT), (7)

with Jp(+) the zero-order Bessel function of the first kind, and
fm the maximum Doppler shift, related to the MS speed v, the
carrier frequency f., and the speed of light ¢ by fi, = f.v/c.

For small values of fy,,7, the correlation coefficient (7) will
be close to one. Considering practical transmission parameters
and MS speeds of interest [1], [2], and setting 7 = T (the time
slot interval), p.,(T) will typically be large; this also justifies
the assumption that the channel remains approximately con-
stant during a time slot. In contrast, misreporting attacks such
as that from Sec. II-C tend to lower the temporal correlation
of maliciously reporterd CQI sequences, when measured over
several time slots, see Fig. 1(b). This allows the BS to rephrase
the following hypothesis test for a given user:

Ho : user k is honest H, : user k is an attacker, (8)

in terms of the estimated correlation coefficient, which can be
obtained as follows. Let si(t) = 1/ f~1(CQI,(t)), which is a
quantized version of 4 (t)/5; and let

M—-2

i (t) = Ml—l S et — i) ©)

=0

be the corresponding moving average over a window of M —1
samples. Then the correlation coefficient estimate at time slot
t based on the last M received reports from user £ can be
expressed in terms of the vector sequence

Sk(t)
sp(t—1
5u(6) = k( | )

— (1)1, (10)

sp(t— M + 2)



where 1 is an (M — 1) x 1 vector of all ones, as
(8k(t), 8k(t—1))

Tre(t) = — - . an
18 (O] - |81t = D
The proposed test at time slot ¢ can then be written as
Ho
r(t) 2 € (12)
Ha

where the threshold ¢ is set in order to meet a target probability
of false alarm Pp,, i.e., the probability of declaring that an
honest user is in fact an attacker:

Ppa = Pr{f <e€ | Ho} = Fo(e), (13)

where Fj denotes the CDF of (11) under Hy. Note that the
test (12) is invariant to scalings, provided that the number of
quantization levels in ¢[-] is sufficiently large. Although no
closed form expression is available for Fjp, it can be easily
evaluated numerically by means of Monte Carlo simulations
if the estimation noise affecting 44 (¢) and 67 can be assumed
negligible. The required realizations of the channel envelope
can be obtained with standard software packages, given the
channel model (e.g. Jakes’ as in (7)), the mobile speed, and
the carrier frequency.

In practice, each MS will move at a different speed. Since
the correlation coefficient is in general a decreasing function
of MS speed for practical values of system parameters (being
close to 1 for a stationary user). Assuming a maximum
expected speed v, for the mobile users, then setting the
threshold € to meet the target Pp, for users moving at vy,
m/s results in a worst-case scenario design, such that for users
moving at speed v < vy, the corresponding Pra will satisfy
Pra < Ppy.

By monitoring 7 (t) for k = 1,..., N, the BS can use (12)
to detect malicious behavior and take appropriate measures.
For example, if user k is declared an attacker at time slot ¢,
the BS may abstain from feeding its current and future CQI
reports to the PFS for a number of time slots, so that user k
is not scheduled over such time window.

IV. PERFORMANCE EVALUATION

In order to assess the performance of the proposed scheme,
we consider a setting with N4 attackers out of N = 50 MSs.
The BS runs PFS with parameter o = 0.001 for time slot
allocation. Realistic transmission parameters are used, based
on LTE specification [1]. A 2 GHz carrier frequency OFDMA
system is considered, with 5.12 MHz bandwidth and 20 kHz
subcarrier spacing. We focus on the allocation of consecutive
time slots for a resource block consisting of 20 adjacent
subcarriers (over which the channel can be considered flat).
A time slot consists of 22 consecutive OFDM symbols, and
thus Ty = 1.1 ms, during which the channel remains quasi-
static. The mapping (6) from observed SNR and CQI is taken
from [12] and models that of LTE:

0, SNR < —16,
CQl=<¢ |58% +16.62], —16 <SNR < 14, (14)
30, SNR > 14,

where SNR is in dB and we assume that the estimation noise
in the SNR can be neglected. Regarding channel behavior,
independent flat fading channels following Jakes’ model, with
equal power of 0 dB, are generated for each MS. The noise
power is set at = —10 dB for all MSs. Performance results
are averaged over 100 independent realization, each spanning
1,000 time slots (1.1 s).

We start by assessing the performance of the proposed
scheme under CQI misreporting attacks for a given reentry
value r§!* for the attackers. The influence of this attacker-
selectable parameter on system performance will be discussed
subsequently.
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Fig. 2. Probabilities of false alarm and of detection in terms of the window
size M when all MSs move at the same speed.

A. Fixed rg'tt

We assume the attackers set r{'** = 0.01-CQI,,,.. Without
protection measures, this attack may deplete roughly 99%
of network resources. Fig. 2 shows false alarm (FPpa) and
detection (Pp) probabilities in a setting with Ny = 5 at-
tackers, considering different mobile speeds and P, targets,
in term of the window size M used for the computation
of the sample correlation coefficient; in this case, all MSs
move at the same speed. This allows to assess the accuracy
in meeting false alarm targets, see Fig. 2(a). From Fig. 2(b),
detection performance is seen to improve for low mobility,
as could be expected, since slow users will present higher
correlation values. In addition, using larger window sizes
effectively improves estimation accuracy of the sample corre-
lation coefficient, with the corresponding benefits in terms of
detection. For example, with M = 150 a detection probability
of 95% can be achieved at speeds of up to 60 km/h and 2%
false alarm probability.

Fig. 3 compares scheduler performance in a setting with
users moving at 60 km/h for three cases: no attack?, attack
without protection, and the proposed detection scheme using
M = 200 and Pj, = 0.1 (users labeled as attackers at time

%In this case each MS gets an average of 1/N = 2% time slot share.



t are not considered for scheduling in the next time slot).
The proposed method is seen to be able to reclaim a sizable
percentage of system resources from attackers.
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Fig. 3. Distributions of individual time slot share for honest users. Results
shown for N4 = 5, Ppa = 0.1, M = 200 and all users moving at 60 km/h.
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M, for MSs moving at different speeds. The threshold is set for a maximum
expected speed of 60km/h.

Next we consider a more realistic scenario in which users
move at different speeds, drawn from a Gaussian distribution
with a mean of 40 km/h and a standard deviation of 3.16
km/h. The test threshold is set for a target Pp, at a maximum
speed of v, = 60 km/h, according to the worst-case approach
discussed in Sec. III. As expected, achieved Pra values
meet the required target; in Fig. 4 results are shown for the
probability of detection and the share of time slots allocated
to honest users, in terms of the window size M, and again
with N4 = 5 attackers. The protection mechanism is effective
in this more realistic scenario as well: using M = 150, over
94% of the time slots are seen to be assigned to honest users.
Similarly to what was observed in Fig. 2(b), performance
is seen to improve for larger window sizes, suggesting to
pick M as large as possible. However, the window size also
determines the latency of the protection scheme, and thus a
detection/latency tradeoff appears. The most suitable value of

M is likely to be application-specific, depending on the type
of network traffic. In the considered scenario, for example,
there is not much incentive for using M > 200 even if the
corresponding latency can be tolerated, as Fig. 4 shows that
performance does not improve much beyond that value.
Table I summarizes results in terms of time slot allocation
for different numbers of colluding attackers N 4. The proposed
scheme can effectively protect against the CQI misreporting
attack, even when attackers represent as much as 20% of the
total number of users. Note that the percentage of system
resources assigned to attackers is in all cases below what the
scheduler would assign them if they behaved honestly.

TABLE 1
TIME SLOT PERCENTAGE ALLOCATED TO HONEST AND MALICIOUS USERS

N No Protection Proposed method
A "Honest | Attackers | Honest | Attackers | Ppa
2 3.2% 96.8% 95.6% 4.4% 0.8%
4 1.2% 98.8% 96.4% 3.6% 0.9%
6 0.5% 99.5% 94.5% 5.5% 0.9%
8 0.3% 99.7% 88.3% 11.7% 0.9%
10 0.2% 99.8% 85.3% 14.7% 0.9%

Threshold adjusted for a target Pg, = 0.1 at 60 km/h and M = 200.
Users move at speeds of up to 60 km/h, generated as for Fig. 4.

B. Influence of rj\**

Throughout Sec. IV-A it was assumed that attackers used
a reentry value 73" = 0.01 - CQI,,,, for their average
throughputs after forcing a handoff. We focus now on the
power of the CQI misreporting attack in terms of the value
for r{!** set by the attackers, and the protection capabilities of
the proposed test in such cases. In these experiments, all MSs
are assumed to move at the same speed.

Fig. 5(a) illustrates the effectiveness of the CQI misreporting
attack with Ny = 5 colluding attackers to deplete network
resources (no detection mechanism was implemented). The
attack is more powerful for lower values of 7!, since in that
case a malicious user forcing a handoff has more time slots
available during which it can collaborate in the attack before
its reported value reaches CQI, ... On the other hand, the
time correlation of its reported CQI values (computed with
M = 200 in Fig. 5) becomes significantly smaller than that
of an honest user, and therefore its malicious behavior has
a larger probability of being detected. Thus, attackers face
a power/detectability tradeoff in their choice of the reentry
value r{)““. If this value is chosen too large, covert operation
is possible, but the damage inflicted to the network is very
limited, as shown in Fig. 5(b).

Fig. 6 illustrates this tradeoff in a setting with Ny = 5
attackers, and for different mobile speeds, once the proposed
detection scheme is implemented (using M = 200 and

%y = 0.1). For small values of rg'!, the probability of
detection is close to 1 (Fig. 6(a)), and thus the fraction of
system resources captured by attackers remains small (Fig.
6(b)). For r{'’* above a threshold value (which depends
on mobiles’ speed), Pp starts to drop, and attackers’ share
of resources increases correspondingly. However, as r(j‘“ is
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further increased, attackers’ share eventually starts to drop, due
to the fact that the attack is not truly effective for very large
values of 74", as shown in Fig. 5(b). At speeds of 100 km/h,
and from the point of view of the attackers, the optimum value
of rg'* in this setting is r{'** = 0.017 - CQI,,,, for which
malicious users obtain 39% of system resources. In view of the
fact that the considered attack constitutes an upper bound on
the power of more realistic attacks, results from Fig. 6 clearly
validate the effectiveness of the proposed protection scheme.

V. CONCLUSIONS

A novel approach for protection against CQI misreporting
attacks in PFS was presented. The proposed scheme exploits
the distinctive temporal features of the mobile channel in
order to detect abnormal behavior from malicious user. This
detection method is effective and avoids the modification of
PFS, making it particularly appealing for implementation in

current systems. Further, it also avoids the overhead required
by previous authentication-based approaches.

ACKNOWLEDGMENT

Work supported by ERDF funds and the Spanish and Galician
Governments (TEC2013-47020-C2-1-R COMPASS, CN 2012/260
AtlantTIC, Consolidation of Research Units GRC2013/009, TAC-
TICA). Funding from KWF and ERDF under grant KWF-
3520/23733/35457 is acknowledged.

REFERENCES

[1] 3GPP, “Physical layer aspects for evolved UTRA,” 3GPP technical
report, TR 25.814, Ver. 1.0.3, Feb. 2006.

[2] WiMax, “IEEE standard for local and metropolitan area networks
part 16: Air interface for fixed and mobile broadband wireless access
systems,” IEEE Std 802.16e, 2006.

[3] J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. K. Soong,
and J. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun., 2014,
in press.

[4] A. Asadi and V. Mancuso, “A survey on opportunistic scheduling in
wireless communications,” IEEE Commun. Surveys Tuts., vol. 15, no. 4,
pp. 1671-1688, 2013, fourth Quarter.

[5] P. Viswanath, D. N. C. Tse, and R. Laroia, “Opportunistic beamforming
using dumb antennas,” IEEE Trans. Inf. Theory, vol. 48, pp. 1277-1294,
Jun 2002.

[6] D. Tse and P. Viswanath, Fundamentals of Wireless Communication.
Cambridge University Press, 2004.

[71 H. J. Kushner and P. A. Whiting, “Convergence of proportional-fair
sharing algorithms under general conditions,” IEEE Trans. Wireless
Commun., vol. 3, no. 4, pp. 1250-1259, Jul 2004.

[8]1 S. Borst, “User-level performance of channel-aware scheduling al-
gorithms in wireless data networks,” IEEE/ACM Trans. Networking,
vol. 13, no. 3, pp. 636—647, Jun 2005.

[9] S. Bali, S. Machiraju, H. Zang, and V. Frost, “A measurement study of

scheduler-based attacks in 3G wireless networks,” in Passive and Active

Network Measurement. Springer, 2007, pp. 105-114.

R. Racic, D. Ma, H. Chen, and X. Liu, “Exploiting and defending

opportunistic scheduling in cellular data networks,” IEEE Trans. Mobile

Computing, vol. 9, no. 5, pp. 609-620, 2010.

K. Pelechrinis, P. Krishanmurthy, and C. Gkantsidis, “Trustworthy

operations in cellular networks: The case of PF scheduler,” IEEE Trans.

Parallel Distrib. Syst., vol. 25, no. 2, pp. 292-300, 2014.

D. Kim and Y.-C. Hu, “A study on false channel condition reporting

attacks in wireless networks,” IEEE Trans. Mobile Comput., vol. 13,

no. 5, pp. 935-947, 2014.

H. Wen, S. Li, X. Zhu, and L. Zhou, “A framework of the PHY-layer

approach to defense against security threats in cognitive radio networks,”

IEEE Network, vol. 27, no. 3, pp. 34-39, May 2013.

Z. Li, W. Xu, R. Miller, and W. Trappe, “Securing wireless systems

via lower layer enforcements,” in Proc. 5th ACM Workshop on Wireless

Security, ser. WiSe '06. New York, NY, USA: ACM, 2006, pp. 33-42.

[Online]. Available: http://doi.acm.org/10.1145/1161289.1161297

L. Xiao, L. Greenstein, N. B. Mandayam, and W. Trappe, “Using the

physical layer for wireless authentication in time-variant channels,” IEEE

Trans. Wireless Commun., vol. 7, no. 7, pp. 2571-2579, July 2008.

[16] ——, “Channel-based detection of sybil attacks in wireless networks,”

IEEE Trans. Inf. Forensics Security, vol. 4, no. 3, pp. 492-503, Sep
2009.

[17] J. Tugnait, “Wireless user authentication via comparison of power

spectral densities,” IEEE J. Sel. Areas Commun., vol. 31, no. 9, pp.

1791-1802, September 2013.

D. Shan, K. Zeng, W. Xiang, P. Richardson, and Y. Dong, “PHY-CRAM:

Physical layer challenge-response authentication mechanism for wireless

networks,” IEEE J. Sel. Areas Commun., vol. 31, no. 9, pp. 1817-1827,

September 2013.

T. Rappaport, Wireless Communications - Principles & Practice. Upper

Saddle River, NJ: Prentice-Hall, 1996.

[20] W. Jakes, Microwave Mobile Communications.

1974.

S. Barbarossa and A. Scaglione, “Time-varying fading channels,” in

Signal Processing Advances in Wireless and Mobile Communications,

G. B. Giannakis, Y. Hua, P. Stoica, and L. Tong, Eds. Prentice Hall,

2000, pp. 1-57.

(10]

(1]

[12]

[13]

[14]

[15]

(18]

[19]
New York: Willey,

[21]



