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Abstract

Reliable wide–area monitoring with Wireless Sensor Networks (WSNs) re-
mains a problem of interest: simply deploying more nodes to cover wider
areas is generally not a viable solution, due to deployment and maintenance
costs and the increase in radio interference. One possible solution gaining
popularity is based on the use of a reduced number of mobile nodes with con-
trollable trajectories in the monitored field. In this framework, we present
a distributed technique for iteratively computing the trajectories of the mo-
bile nodes in a greedy fashion. The static sensor nodes actively assist the
mobile nodes in this task by means of a bidding protocol, thus participat-
ing towards the goal of maximizing the area coverage of the monitored field.
The performance of the proposed technique is evaluated on various simula-
tion scenarios with different number of mobile and static nodes in terms of
achieved coverage and mean time to achieve X% coverage. Comparison with
previous state-of-the-art techniques reveals the effectiveness and stability of
the proposed method.
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1. Introduction

Wireless Sensor Networks (WSNs) are composed by a set of small au-
tonomous systems (sensor nodes) which collaborate to jointly perform tasks
such as e.g., event, intruder and alarm detection, target classification, field
surveillance and patrolling. From a functional point of view, each node is a
small device able to collect information from the surrounding environment
through one or more sensors, to process this information locally and to com-
municate it to a data collection center called sink or base station, using gen-
erally node to node multi–hop data propagation [1, 2]. Nodes are typically
equipped with a processing unit with limited memory and computational
power, a sensing unit for data acquisition from the surrounding environment
and a communication unit, usually a radio transceiver [3]. Thus, the most
basic concept of WSN is well resumed by a simple equation: CPU + Sensing
+ Radio = Thousands of potential applications [4].

During the last decade several such potential applications sprang out of
this equation, including the possibility of large–scale node deployments for
monitoring wide physical areas [5]. However, despite the promising poten-
tial, the direct approach of simply spreading hundreds of nodes so as to
cover larger areas turns out to be impractical. The first reason is merely
economic, since a larger number of nodes results in steeper deployment and
maintenance costs. The second reason is more practical: WSNs monitoring
large areas are more likely to present coverage holes (insufficiently monitored
areas where events will go undetected) [6]. Although these holes can be re-
duced by careful node deployment [7], this also incurs in additional costs
and a larger node density, with the associated radio access issues including
frequent channel contentions, message collisions, and losses [8]. To overcome
these limitations, a trend gaining recent popularity consists of enriching the
original description of the classical WSN with a new term, namely the actua-
tor unit, enabling the movement of sensor nodes. By introducing some degree
of mobility, a WSN can better react to the effects of inaccurate deployments
and node failures. Thus, mobility provides fault tolerance, enhances sensing
and connectivity coverage, reliability, and energy efficiency, while reducing
the cost of a dense/smart deployment. Since the actuator unit comes at an
additional cost, the number of mobile units is generally kept low with respect
to the total number of nodes comprising the so–called mixed WSNs.

As reviewed in [9, 10], within the mixed WSN framework, different types
of nodes (e.g., generic nodes, sink nodes or both) can be endowed with mobil-
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ity; for instance, in two opposite approaches generic nodes are mobile whereas
sink nodes are static, or vice versa. In addition, different degrees of mobility
are possible; for example, the review in [10] considers three types of mo-
bile nodes with increasing mobility: relocatable nodes, mobile data collectors
(further cataloged into mobile sinks and mobile relays), and mobile peers.
Relocatable nodes only move to change the given topology of the network,
assumed yet to be rather dense, generally for improving connectivity and/or
coverage [11, 12]. On the other hand, mobile collectors are responsible for
visiting the network to collect data generated from source nodes, acting ei-
ther as destination nodes in the case of mobile sinks or as intermediate nodes
in the case of mobile relays. Finally, unlike mobile data collectors (either
sinks or relays), mobile peers can be both data source and data relays, while
moving within the scenario: hence, when a peer is in the communication
range of a base station, it transfers its own data as well as those gathered
from other peers. A more detailed classification can be done on the basis
of the different mobility patterns [10, 13]. In particular, mobile nodes can
follow uncontrolled (either deterministic or random) mobility patterns, or
they can actively change their locations by modifying a controllable motion
trajectory and/or speed. For a complete overview of the state of the art
in mixed WSNs, the interested reader is referred to [10] and the references
therein.

The main contribution of this paper is a distributed path–planning and
coordination technique for the mobile nodes of a mixed WSN, with the goal of
improving sensing area coverage. We consider a set of static, non-relocatable
sensor nodes randomly deployed in the scenario, and a small fraction of
mobile nodes, which can modify and control their trajectories subject to some
maneuverability constraints. Thus, according to the classification above, this
framework is composed by a static infrastructure of generic nodes, the mobile
nodes constitutes the set of mobile sinks with controllable trajectories, and
the goal is to exploit mobility to increase the sensing coverage offered by the
static infrastructure, by sampling coverage holes. A similar framework has
been considered in [14]; however, we argue that, despite its effectiveness, the
technique from [14] does not fully exploit the distributed processing power
offered by the static nodes of the network. Indeed, in [14] the mobile sinks
are the only players acting in the stage, and the static infrastructure only
passively contributes to the scene by offering its distributed sensing unit.
With the aim of leveraging the active participation of the static nodes to
the design of the mobile nodes’ trajectories, we propose a bidding strategy
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whose main idea is as follows. Whenever a mobile node has to navigate
towards a coverage hole, it sends an auction message which is received by
the static sensor nodes within its communication range. Once advertised of
the auction, the static sensor nodes independently estimate the extension and
the location of the biggest coverage hole around them and directly bid the
mobile node. Upon reception of the bids, the mobile node moves towards the
best bid (i.e., the widest coverage hole among the received ones). The use of
bidding strategies has also been applied to coverage problems in [15], but in
a different scenario consisting of a fraction of relocatable nodes. In contrast,
in our framework the generic (static) nodes are not relocatable, whereas one
or more mobile sinks are available.

The paper is organized as follows. The system model and assumptions
are described in Section 2, and in Section 3 the proposed technique is pre-
sented. Due to the several active players in the stage, some deterministic
countermeasures have to be designed in order to avoid unwanted behavior of
the mobile nodes, as described in Section 4. The proposed approach is tested
in Section 5 in several simulation scenarios and compared with previous ap-
proaches. Finally, conclusions are drawn in Section 6.

2. Model and assumptions

2.1. System model

We model the sensor field as a rectangle U ⊂ R2 with size X×Y . A total
of s+m sensor nodes are randomly deployed at locations pi = (xi, yi) ∈ U . It
is assumed that each node knows its location (by using a suitable localization
technique, see e.g., [16]) and advertises it by periodically sending beaconing
messages. For tractability, and similarly to [14], U is discretized into square
cells of size d (with d � X and d � Y ). Hence, the sensor field U can be
viewed as a grid U of size Nx × Ny, where Nx = dX/de and Ny = dY/de.
After discretization, sensor node i located at pi = (xi, yi) ∈ U is in the cell
ui = (dxi/de , dyi/de) ∈ U .

We assume isotropic sensing and communication models in which the
sensing and communication areas are given by circles with radii rs and rc,
respectively (with rs < rc, see Figure 1). Thus, two nodes i and j can
communicate with each other if and only if ‖pi − pj‖ ≤ rc. We note that
the proposed approach, to be presented in Section 3, is independent of the
specific sensing and communication models: we adopt for both the isotropic
model only for the sake of simplicity.
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Figure 1: A WSN scenario: s+m nodes are randomly deployed in U = X × Y and each
node is characterized by a sensing and communication radius, rs and rc (with rs < rc),
respectively.

The nodes with indices i = 1, . . . , s constitute the static WSN infras-
tructure, whereas indices i = s + 1, . . . , s + m correspond to the m mobile
sinks. To be consistent with the motion dynamics of physical vehicles, we
assume that each mobile sink can control its trajectory according to some
maneuverability constraints, similarly to the model described in [17]. In
particular, mobile nodes are able to move at constant speed µ and to turn
with a maximum angle φ with respect to their current direction. To bet-
ter describe the path of a mobile sink, let T denote the movement sampling
time, that is, the time interval between two successive control commands is-
sued to the actuator unit. Based on the maneuverability constraints, assume
that at time t = kT a mobile node i is located at pi(k) = (xi(k), yi(k)),
moving with constant speed µ and angle θ(k), so that its velocity vector is
(µ cos θ(k), µ sin θ(k)). Then its location pi(k + 1) at time t = (k + 1)T
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will be given by pi(k + 1) = pi(k) + µT (cos θ(k + 1), sin θ(k + 1)), where
θ(k+1) ∈ [θ(k)−φ, θ(k)+φ]. In order to formulate the path planning prob-
lem as an integer programming problem, the continuous arc of candidate
positions for pi(k + 1) is discretized into a set of n candidate positions:

CPi (k + 1) =
{
p1
i (k + 1) , . . . ,pn

i (k + 1)
}
, (1)

i.e., the set CPi (k + 1) comprises the cells in U through which the arc {pi(k)+
µT (cos θ, sin θ) | θ(k)− φ ≤ θ ≤ θ(k) + φ} passes.
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Figure 2: The adopted mobility model: a mobile node moves at constant speed µ and can
turn with a maximum angle φ with respect to its current direction θ(k). The continuous
arc of candidate positions at time (k+1)T is discretized into a set of n candidate positions.

Depending on its instantaneous location, a mobile node can directly ex-
change messages with the subset of static nodes within its communication
range. Hence, at time kT , the set of neighboring nodes of mobile node i is
defined as:

Ni(k) = {j : ‖pi(k)− pj‖ ≤ rc, j ≤ s} . (2)

Regarding the sensing area, at time kT a generic node i (either static or
mobile) covers a subset Si(k) ∈ U of cells

Si(k) =

{
(p, q) :

(
p−

⌈
xi(k)

d

⌉)2

+

(
q −

⌈
yi(k)

d

⌉)2

≤
⌈rs
d

⌉2}
, (3)
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where p and q are integers with 1 ≤ p ≤ Nx and 1 ≤ q ≤ Ny. Note that
Si(k) depends on k for mobile nodes only. The coverage status of U at time
kT is the union of all individually sensed cells up to that time:

S(k) =
⋃
l≤k

{
s+m⋃
i=1

Si(l)

}
, (4)

Clearly, cells within sensing range of one or more static nodes are continu-
ously monitored. On the other hand, cells that are not covered by any static
node can only be checked if sensed by a mobile node. Our model implicitly
assumes that, once such a cell has been so visited, the corresponding sensing
information does not get stale too quickly, in the sense that it can be assumed
to remain valid at least until the whole scenario has been covered (at least
up to a given percentage) and another coverage cycle starts anew.

2.2. Path planning strategy

The trajectories of mobile nodes are controlled by a number of techniques
that will be described in the sequel, and that can be loosely classified as short–
term and medium–term mechanisms. The goal of medium–term actions is
to compute the location of target cells in U towards which mobile nodes
should be driven. Once these targets are reached, new ones are computed,
and in this way the long–term goal of covering U will be eventually achieved.
Medium–term actions will be the object of the next section.

By means of short–term actions, at time kT each mobile node i indepen-
dently determines its next position pi(k+ 1) ∈ CPi(k+ 1) given its medium–
term target cell pt

i and its current position pi(k) [14, 17, 18]. To this purpose,
an objective function J : R2 → R is minimized over CPi(k+ 1). We consider
the following class of functions:

J(p) =
3∑

j=1

wjJj(p), (5)

where {wj} are suitable weights; generally speaking, the larger the value of
the weight wj, the larger the influence of the associated cost Jj(p) on the
overall value of J(p).

Without loss of generality, and for the sake of a fair comparison with
the technique proposed in [14], we consider three additive cost terms in (5),
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namely the distance to target, repulsion from static nodes, and boundary bar-
rier cost functions, as described next. Nevertheless, other terms (as detailed
in [19]) could be taken into account to devise more sophisticated objective
functions able to meet more specific needs; we invite the interested reader to
refer to [19] for a comprehensive description of this framework.

1. Distance to target. In order to drive the mobile node toward the target,
the first term is taken as the distance to the target, normalized by the
communication range:

J1(p) =
‖pt

i − p‖
rc

. (6)

2. Repulsion from static nodes. In order to maximize coverage, mobile
nodes should move towards their targets traveling through uncovered
zones and avoiding areas already covered by static nodes. The following
choice of J2 accordingly penalizes displacements towards static nodes
within communication range at time kT :

J2(p) = max
s∈Ni(k)

{
exp

(
−‖ps − p‖2

r2s

)}
, (7)

where the distance to static nodes is normalized by the sensing range.
In order to better understand the effect of J2 on the overall value of the
objective function J(p), Figure 3 considers a simple scenario comprised
by one mobile (blue dot) and one static node (black square). The
trajectory of the mobile node is marked with a blue line, the successive
targets to reach are shown as black crosses (to ease the understanding
of the figures, reached targets are not removed from the graph), and
covered cells are marked pink. As soon as the mobile node is within
communication range of the static node, it starts reaching the targets
computed by the latter. As can be noticed, if w2 = 0 (Figure 3(a))
the mobile node passes through the static node’s sensing area. On the
other hand, when w2 > 0, the corresponding repulsion term prevents
this from happening, and as a result, the mobile node steers around
the area covered by the static node (note the curves in the mobile
trajectory of Figure 3(b)), possibly passing by not-covered-yet areas,
hence improving coverage performance. This ultimately motivates the
inclusion of a repulsion term J2 as in (7). Regarding the values of
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weights associated to J1 and J2 (i.e., w1 and w2), after analyzing various
scenarios with different numbers of mobile and static nodes, we choose
to initialize them with the values suggested in [14]. We must also
note that in Section 4 a deterministic countermeasure that temporarily
inhibits the effect of the static nodes’ repulsion forces will be detailed.

(a) w2 = 0. (b) w2 = 0.5.

Figure 3: A comparison between (a) not including and (b) including a repulsion force in
J(p).

3. Boundary barrier. It makes sense to penalize excursions of the mobile
nodes outside the area of interest U . A simple way to do this, and in
line with [14], is to introduce a binary function J3 as follows:

J3(p) =

{
0, p ∈ U,
1, p /∈ U. (8)

The adequate value of the associated weight w3 of J3 in (5) ultimately
depends on the actual deployment. For example, if zones immediately
outside the bounds of the monitored area are steep, or generally harsh
(for instance because there is not enough space for the mobile nodes to
maneuver), or access to them is forbidden for legal motives, it makes
sense to avoid such zones at all by increasing the value of w3. On the
other hand, when out-of-bounds excursions are not a critical issue, they
may be allowed to a certain degree in order to ease maneuverability and
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avoid larger turnarounds, depending on the mobility constraints shown
in Figure 2.

3. Medium–term actions

In this section we present the techniques used for the computation of the
target positions towards which the mobile nodes should direct. The three
different ingredients will be described in turn: local computation of candidate
target positions by static nodes; dynamic interaction between static and
mobile nodes based on auctions; and local computation by (and coordination
among) mobile nodes.

3.1. Local computation at static nodes

It is clear that candidate target positions should correspond to the approx-
imate location of poorly covered areas. Thus, techniques should be provided
that estimate the location as well as the extension of coverage holes in the
sensor field. These techniques should be simple in order to allow for exe-
cution in battery–powered nodes with limited computational and memory
capabilities. Examples of such techniques include those based on Voronoi
diagrams [15], virtual potential fields [20], or divide–and–conquer recursive
methods [19, 21]. For an extensive taxonomy of coverage algorithms, the
reader is referred to [22]. For our purposes, we will adopt the so–called zoom
algorithm described in [14, 19], since it is distributed, computationally sim-
ple, and rather effective; nevertheless, any other distributed scheme could be
implemented, as long as it can be handled by the nodes.

The goal of the zoom algorithm is to determine the largest coverage hole
within a square region P ⊆ U . To this end, it partitions P into four non-
overlapping sub-squares (northeast, southeast, southwest and northwest) and
computes the number of non-covered cells in each of them. This procedure
is repeated on the winning sub-square. The iteration continues until either
(i) the corresponding sub-squares contain a single cell each, or (ii) there is a
tie among the four sub-squares. In either case, the returned location of the
coverage hole is the center of the square at the last step.

For our purposes, not only the location of coverage holes, but also their
size, will be of importance. A simple size measure, which will be adopted in
the sequel, is the total number of non-covered cells within the initial square
region P .
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In [14, 19] the zoom algorithm is executed at each time step by each
mobile node independently and based on the information about U locally
available at the mobile node itself. On the other hand, in our approach
the zoom algorithm is mainly executed by the static sensor nodes within
communication range of a mobile node asking for a target location. In this
way, the static infrastructure actively participates in the search for uncovered
zones of the scenario. In order to estimate a coverage hole of a portion of the
sensor field, a static sensor node has to be aware of the coverage status of such
portion; in fact, the zoom algorithm aims at finding the biggest coverage hole
in P , so that the coverage status of P should be known by the executing node.
As mentioned in Section 2.1, it is assumed that nodes broadcast beaconing
messages containing their current location in U . Thus, upon reception of
these messages a static node is always aware of the coverage status of the
circle Pc centered at its own location and with radius rc. Then, we build P
as the square inscribed in Pc. It follows that each static node can execute the
zoom algorithm on the square centered at its location and with side equal to√

2
2
rc.
Finally, as discussed in Section 3.3, mobile nodes will also autonomously

execute the zoom algorithm so as to (i) estimate the location of the biggest
coverage hole of particularly sparse zones of the sensor field not covered by
any static sensor node, and (ii) escape from already almost-fully covered
zones.

3.2. The bidding strategy

We regard a static sensor node is a 2–state–machine, represented in Fi-
gure 4 as an UML statechart [23]. There, a state is represented by a box, a
transition by a directed arrow (the entry transition leaves from a black point)
and the event causing a transition as an italic–capital–letters label.

FREE MONITOR

TARGET_REACHED

BEST_BID

Figure 4: Statechart of the static sensor node machine.
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At time k = 0, the states of the static nodes are conventionally set to
FREE. Since each mobile node i relies on the static sensor nodes within its
communication range to obtain a target location, i publishes an auction in
broadcast fashion. Upon the reception of an auction message, each static
node j ∈ Ni(k) whose state is set to FREE executes the zoom algorithm
on its corresponding square Pj and bids the mobile node to cover the loca-
tion of its biggest coverage hole. After a timeout, the mobile node closes
the auction and evaluates the received bids. For the sake of simplicity, we
consider the simplest evaluation criterion by which the best bid is the one
offering the maximum number of uncovered cells. Nevertheless, other criteria
can be combined together in order to obtain more sophisticated evaluations:
this research direction is left as future work. The mobile node dispatches
a BEST BID event causing the best–bidding node to change its state to
MONITOR1. This state prevents a static node to bid future auctions; more-
over, a monitoring node will continuously check the coverage status of the
target location until it is covered by a mobile node; in that case, this event
(TARGET REACHED) will be dispatched by the static monitoring node to
the mobile node directed towards the reached target, with the following two
effects: first, the state of the monitoring node is reset to FREE, and second,
the mobile node publishes a new auction.

Figure 5 shows an example of the proposed bidding strategy involving
two static sensor nodes (nodes 1 and 3) and two mobile nodes (nodes 2
and 4). At time k, mobile node 2 publishes an auction received by nodes
1 and 3. Being both in FREE state, nodes 1 and 3 independently execute
the zoom algorithm on their own squares P1 and P3 respectively, and then
bid the mobile node in the form (Tj,Nj), where Tj represents the location
of the computed target, Nj represents the number of uncovered cells in Pj

and j = 1, 3. Upon the reception of those bids, and assuming that N3 >
N1, mobile node 2 decides to move towards T3 dispatching the BEST BID
event to node 3. As a consequence, node 3 enters the MONITOR state and
keeps monitoring the coverage of location T3. Then, recalling that mobile
nodes send beaconing messages containing their current location in U (such
messages are labeled as BEACON in the figure), whenever node 3 realizes
that T3 has been covered (by any mobile node in the most general case and

1We assume that the time interval between the publishing of an auction and the best
bid event is much smaller than T .
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by node 4 in this specific example) it dispatches the TARGET REACHED
event to mobile node 2 and then resets its own state to FREE. On the mobile
node’s side, the TARGET REACHED event informs that the target has been
covered and consequently it can publish a new auction.

mobile node
[2]

static node
[3]

mobile node
[4]

static node
[1]

TARGET_REACHED

BEST_BID

BEACON

AUCTION

BID = ( T1 , N1 )

TARGET_REACHED

AUCTION

BID = ( T3 , N3 )

Figure 5: Sequence diagram of an auction involving 2 mobile nodes (nodes 2 and 4) and 2
static nodes (nodes 1 and 3). A bid is represented by a couple (Tj,Nj) representing the
location of the target location and the number of uncovered cells computed by node j on
the monitored portion Pj(k) at instant k.

From the above discussion it is clear that, upon publishing a auction, a
mobile node receives a number of bids equal to the total number of static
nodes within its communication range which are not in monitoring state and
whose monitoring area Pj is not completely covered.

3.3. The coordination algorithm

The described bidding strategy may be unable to assist the mobile nodes
traversing particularly sparse or completely covered zones of the scenario.
Indeed, when a mobile node publishes an auction while far enough from
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all the static sensor nodes, or when such auction is received only by nodes
whose monitoring areas have been completely covered already, no static node
will bid the mobile. In such situations, a mobile node cannot rely on the
static infrastructure to obtain a target location. To let a mobile node react
also in these situations, we endow it with an estimate Ŝ(k) of the global
coverage status S(k): whenever a mobile node receives no bid within a preset
timeout, in order to obtain a target location it autonomously executes the
zoom algorithm based on its estimate Ŝ(k), and starting on the square with
side 2 ·rc centered at its current position. The mobile node will move towards
the self–computed target location while publishing new auctions at each time
step, until bidden.

It must be stressed that the consistency of a mobile node’s estimate Ŝ(k)
with respect to the actual value of S(k) cannot be guaranteed if there are
several mobile nodes operating in the scenario, since they may have visited
different regions up to that time. Thus, in the proposed framework it is
essential that mobile nodes update their corresponding coverage estimates
whenever they happen to be within range of one another. This update is
performed as follows: first, one of the mobile nodes sends its estimate to the
other one, which merges it with its own estimate (the merging consists in a
bitwise OR operation); then, the merging node sends the updated estimate
back to the sender. Note that estimates Ŝ(k) are binary maps which can
be efficiently compressed (e.g., [3]), so that the overhead added by these
exchanges can be kept at bay.

Finally, when a mobile node is moving in an already completely covered
zone, the locally executed zoom algorithm is also unable to assign a target
location. In these situations, the mobile node will compute the point of in-
tersection between its current trajectory and the square on which the zoom
algorithm is executed. If such position happens to be within U , then it is
assigned as the new target; otherwise, the new target is set at a prespecified
rendezvous point, typically the center of scenario U . This strategy results
particularly effective as the coverage of U increases, i.e., as S(k) approaches
U ; moreover, by directing the mobile nodes towards a rendezvous point in-
creases their chances of merging their respective coverage estimators.

Figure 6 depicts the mobile node as 2–macro–state machine. At the
beginning it is in the DISCOVER macro–state and keeps publishing auctions
until at least a bid is received. Upon the reception of the bids, it selects the
best one and changes its state to REACH; while in the latter state, it keeps
moving towards the assigned target location, until the monitoring node will
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dispatch the TARGET COVERED event. At this point the state is reset
to DISCOVER. On the other hand, if a mobile node in DISCOVER state
is not bidden within a timeout, it executes the zoom algorithm locally. If
the locally executed zoom algorithm fails to assign a target location, then
the mobile keeps moving toward a ”fake” target along the current direction,
until such target lies out of bounds. In that case the target is switched to
the rendezvous point (center of scenario), and so on.

OUT

TARGET_COVERED

BID_RECEIVED

INBOUNDS

CENTER

SCENARIO

REACH

DISCOVER

CENTER

Figure 6: Mobile node’s state machine.

4. Deterministic countermeasures

The increased number of active players on stage may result in a unreli-
able framework unless some deterministic countermeasures are deployed, as
described next. Specifically, as we will see in Section 5.2 when comparing
our technique with the one proposed by Lambrou et al. [14], to cover large
percentages (e.g., > 90%) of U within a given maximum number of iterations
is not a straightforward task. Moreover, the solution of this problem is not
as simple as increasing the number of iterations to let the system evolve au-
tonomously, as most of the times the mobile nodes are simply unable to find
the remaining (usually small, sparse and far apart from each other) uncovered
areas of U, because they enter loops. Hence, by analysing several simulation
runs, we idientified some very specific situations in which, without relying
on ad-hoc recovery procedures, some (resp., all) nodes enter loops and the
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area coverage minimally increases (resp. do not increase) with the number
of iterations, causing starvation (resp. deadlock).

4.1. Fixed target assignment

The first deterministic countermeasure, namely the fixed target assign-
ment, was indeed implicitly developed in the previous section. It refers to the
fact that, once a mobile nodes receives a bid from a static node, it changes its
internal state to REACH, until the target location is covered by any mobile
node. The static node that wins the auction changes its internal state to
MONITOR to dispatch the TARGET REACHED event once the target is
covered.

The rationale of this strategy is three–fold. First, it allows a mobile
node to follow a smooth trajectory towards the target. Second, it avoids the
occurrence of cycles in which a mobile node starts circling around without
reaching any target, due to successive target switching. This situation is
depicted in Figure 7. There, at instant k the mobile node i in location pi(k)
decides to move towards target Ti(k) = T? (winner of the latest auction). If
the target assignment were not fixed and the mobile node kept publishing
auctions at each instant, it might happen that, at instant k + D, the best
bid yields a new target Ti(k + D) = T ′? 6= T? before T? has been reached.
In that case, the mobile node would start turning to reach such new target,
possibly ending up, at instant k + L, in a location near pi(k) (it should be
remembered that turning is not instantaneous, but subject to maneuverabil-
ity constraints). Then, if S(k) ≈ S(k + L) (i.e., the coverage status has not
substantially changed within the time interval [k, k + L]), then the best bid
at k + L would be likely equal to Ti(k + L) = T?. As a result, mobile node i
would keep turning around in a cycle until S changes due to the movements
of other mobile nodes (if they exist). Thus, in scenarios with few mobile
nodes, the risk without a fixed target assignment is to have an infinite loop.
Third, with a fixed target, mobile nodes have a better control of the path
planning strategy; this will be further developed in the following.

4.2. Inhibition of the artificial repulsion force

As introduced in Section 2.2, an artificial repulsion force due to the term
J2(p) in (7) is included as an additive term in (5), and its contribution is
tuned by acting on the corresponding weight w2. Basically, the introduction
of J2(p) prevents mobile nodes from attempting to cover those cells already
covered by the nearest static sensor node. Nevertheless, we have verified by
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Figure 7: The target switching problem.

simulation that the effect of using (7) with a constant w2 can be counter–
productive from the area coverage point of view.

Indeed, it may happen that a target location assigned to a mobile node is
close to a static sensor node (or to a group of them). Thus, as the mobile node
approaches the target, the repulsion force exerted by the nearest static node
may be strong enough to prevail over the attractive force exerted by the target
itself, pushing the mobile node away from the target as a result. Eventually,
as the mobile node moves far enough from the source of the artificial repulsion
force (and from the target), the dominance of the attractive force due to
J1(p) in (6) provokes a new approach to the target (and to the static sensor
node). In such circumstance, the mobile node is likely to end up circling the
target until finding a ”hole” in the virtual barrier due to the static nodes’
repulsion forces. With luck, the mobile node eventually finds such hole, and
the effect of this phenomenon is just some degradation in the performance of
the coverage algorithm; however, it may be possible that the assigned target
will never be reached by the mobile node, if the latter is always repelled by
the group of static nodes enclosing the target. These situations are depicted
in Figure 8. A mobile node M (dot) describes the trajectory marked by the
dotted line, with the goal of reaching the assigned target T (cross). Bold
arrows represent the directions of the dominant force at the corresponding
points; the gray areas Z− represent zones in which the dominant term of (5)
is the repulsion one, whereas the white zones Z1+ and Z2+ represent zones
where the attractive force exerted by the target is the dominant term in (5).

In order to overcome these problems, we exploit the fact that the target
location cannot change until accomplishment, and thus a mobile node may
interpret an increase in the distance to the target as the result of a dominant
effect of the repulsion applied by a static node, with respect to the attraction
exerted by the target. Therefore, we let each mobile node temporarily inhibit

17



Z-

Z1+

T

M

Z2+

(a) A ”hole” in the virtual barrier is even-
tually found.

Z-

Z1+

T

M

Z2+

(b) No ”hole” is found: the target is never
reached.

Figure 8: The barrier effect of the artificial repulsion force.

the repulsive effect of (7) by setting w2 = 0 when a repulsion counter, avail-
able at each mobile node and initially set to 1, is equal to 0. In particular,
at a given time the counter is decreased by one unit if the current distance
to the target has increased with respect to the previous time instant; when-
ever the counter equals 0, the repulsive force is inhibited for a number of
time instants equal to the maximum value the counter started from. After
such variable number of time instants, the counter is reset to the previous
maximum value, plus one unit. In general, whenever the repulsion force is
inhibited for K time instants, either the mobile node will be able to pass
through the repulsive zone within those K time instants, or the repulsion
force will be restored for K + 1 time instants before being inhibited again
for K + 1 instants. Once the target is reached, the repulsion counter is reset
to 1 and the previous distance to target conventionally set to +∞. With
this countermeasure, a mobile node is able to pass through arbitrarily wide
repulsion zones.

5. Results

In this section we evaluate the effectiveness of the proposed technique
and compare it against the approach described in [14]. We do not include
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comparisons with the method proposed by Wang et al.[15], since all the
considered scenarios are too sparse to justify the use of relocatable nodes,
while controllable mobile collectors represent the most natural and effective
solution. For the sake of fairness, design parameters are set to the same
values as those proposed by Lambrou et al.[14] whenever possible.

5.1. Simulation setup

We have built different simulation scenarios by randomly placing a vari-
able number of static and mobile nodes in a 300 m × 300 m square region U ,
divided into squares of size d = 1 m to build U . In particular, we have varied
the number of static nodes s in [0, 200] with step = 10, and the number of
mobile nodes m in [1, 5] with step = 1. For each couple (m, s) we have gen-
erated 50 random deployments and then executed our algorithm and the one
proposed in [14], for a maximum of 8000 iterations (max iter), averaging the
results. In the following we will refer to these random deployments as runs.
The communication range is fixed to rc = a·

√
2 m with a = 32 m, whereas the

sensing range is fixed to rs = 8 m. The mobile maneuverability constraints
are set as µT = 2 m (with T = 1 s) and φ = π/6, whereas n = 20 equispaced
candidate positions are considered. Regarding the weights of the different
cost functions we have fixed w3 = 1, and initialized w1 = w2 = 0.5. Finally,
the repulsion counter of each mobile node is initialized to 1 (cf. Section 4.2).

5.2. Simulation results

Figure 9 shows the results of the proposed technique for different (m, s)
pairs2, in terms of the mean number of iterations required to reach 95%
coverage of U (target coverage); error bars refer to the standard deviation
around the mean values. We recall that, while exploring the scenario, the
mobile nodes may fail to reach a given target coverage within max iter iter-
ations. Such runs are marked as “failed” and excluded from the computation
of the mean and standard deviation in Figure 9. The number of failed runs
for the experiment in Figure 9 is shown in Figure 10. It is seen that as long

2Our simulation framework was entirely developed in Matlab 8.1.0.604 (R2013a) for a
32-bit Windows 7 OS, running on a standard laptop machine equipped with 2 Intel(R)
Core(TM) i7-2620M CPUs @ 2.70 GHz and 4GB of Ram. Regarding the simulation times
of the different runs, they were obviously depending on the actual simulation parameters,
the specific algorithm and the iteration at which the target coverage was reached. Anyway
we have verified that they never exceeded 1 minute.
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Figure 9: Mean number of iterations to reach the 95% target coverage using the proposed
technique, for different (m, s) pairs.
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Figure 10: Number of runs (out of 50) for which the 95% target coverage was not reached
within 8000 iterations, in the scenario of Figure 9.
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as m > 1, the proposed technique is almost always able to reach the target
coverage in this scenario within the specified time interval. For the case of
a single mobile node (m = 1), and with the number of static sensors in the
range 10 ≤ s ≤ 60, the percentage of failed runs is not negligible, indicat-
ing some difficulty in reaching the target coverage. This is also reflected in
Figure 9: for s in the mentioned range, the number of iterations required is
perceivably larger. As the number of mobile nodes increases, this effect is
attenuated.

For instance, scenarios (m, s) = (1, 10) seem to require more iterations
to reach the target coverage, with respect to scenarios (1, 0). Specifically,
when only m = 1 mobile node is available, the added cost of deploying s
static sensor nodes actually worsens the coverage performance for values of
s below some s? ∈ [130, 140] (we will refer to s? as the break–even value).
Briefly, in scenarios (1, s) with s > s?, the effectiveness smoothly improves
as s increases. Yet attenuated, the described behavior is maintained also
in scenarios with m > 1. The reason for this phenomenon resides in the
fact that mobile nodes mainly rely on the static infrastructure to sample the
coverage holes; hence, if the number of received bids is not sufficiently high,
then the chance to move towards small coverage holes increases, with the
corresponding degradation in terms of the time required to achieve the target
coverage. By design, whenever a static node bids a mobile node, the latter
stops executing its own zoom algorithm and immediately steers to cover the
received target location. This happens even if an eventual local execution of
the zoom algorithm at the mobile node would result in a better “self-bid”
(i.e., a larger coverage hole), and until the monitored area of the bidding
node has been fully covered. Hence, a mobile node passing by a static node
will exhaustively cover all the uncovered locations within the monitored area
of the latter. It follows that, in sparse scenarios with relatively few static
nodes, rather than following their own zoom algorithm in a purely greedy
fashion, mobile nodes may spend some time before covering potentially small
holes, which may slow down the coverage rate.

Table 1 gives the mean number of iterations it0 (together with standard
deviation values [itU , itL]) required in scenarios (m, 0), and the corresponding
intervals [sU , sL] for the break–even value s?. In view of Figure 9 and Table 1,
we can assert that in the considered scenario the proposed technique is bene-
ficial whenever more than one mobile node is available and at least 90 static
nodes are deployed in the area to be monitored. It is important, however,
to realize that this conclusion strongly depends on the target coverage value
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m it0 [itU , itL] [sU , sL]
1 4220 [4247, 4068] [130, 140]
2 2437 [2477, 2356] [90, 100]
3 1734 [1873, 1659] [90, 100]
4 1343 [1428, 1256] [80, 90]
5 1079 [1132, 1009] [80, 90]

Table 1: Break–even intervals for different mobile nodes, using the proposed technique.

(95% in this example). To illustrate this, Figure 11 shows the mean coverage
as a function of time, for m = 2, 3 and different number of static nodes in
the same scenario. It is seen that, for a given m, the coverage rate (slope
of the curves) at time zero is the same regardless of the size of the static
infrastructure, with offsets determined by the initial coverage provided by all
static nodes; this initial coverage rate is faster for larger number of mobiles
m, as could be expected. As iterations progress, the coverage rate starts to
drop gradually due to the effects described in the previous paragraph. This
is more pronounced for sparse deployments (s = 50 in Figure 11). Neverthe-
less, it should not be hastily concluded that it is beneficial to dispense with
the static infrastructure and let a few mobile nodes take care of covering the
whole monitoring area, for the following reasons. First, although we have
not considered this effect in the simulations, in practice a number of cells in
the area may be inaccessible to mobile nodes (due to physical barriers, for
instance), which must then rely on carefully deployed static nodes to cover
those. Second, a static infrastructure provides an initial coverage advantage:
depending on the application, it may well be required that a relatively low
target coverage be reached as quickly as possible. For example, in Figure 11,
for a target coverage of 50%, even the sparse deployments (s = 50) outper-
form the cases in which only mobiles are used (s = 0).

Figure 12 depicts the mean number of iterations versus reached percent-
age of the total coverage, for different values of m, by fixing the number
of static sensor nodes to s = 100 and 200, respectively. We can note that,
except for the different initial coverage offsets (about 20% with s = 100 and
35% with s = 200), the proposed technique behaves quite regularly. In terms
of convergence speed, a sizable improvement is noticed by going from m = 1
to m = 2, whereas including additional mobile nodes results in diminishing
returns.

In order to compare the proposed technique with that from [14], we con-
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Figure 11: Performance of the proposed technique in terms of iterations versus reached
percentage of the total coverage for different number of mobile nodes.
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Figure 12: Performance of the proposed technique in terms of iterations versus reached
percentage of the total coverage, for different values of m, and for fixed s.
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sider the availability of 3 mobile nodes and a 95% target coverage; Figure 13
shows the results of the two approaches for different values of s. It is seen that
the approach from [14] is not affected significantly by the value of s, and that
it is more effective than our technique for sparse static infrastructures (i.e.,
10 ≤ s ≤ 50). This, again, is due to the behavior of the proposed approach
in sparse settings discussed above. However, in denser settings (s > 50)
our approach outperforms that from [14]. Note also that the performance of
the latter presents a significant dispersion with respect to its average value.
To better understand this uneven behaviour, it is instructive to look at the
number of failed runs, shown in Figure 14. It is seen that this number re-
mains significant for the approach from [14] even in denser deployments, in
contrast with the proposed method. This indicates that the technique from
[14] is facing substantial difficulties in order to reach the target coverage.
Our method seems to be more stable, as evidenced by the smaller dispersion
around the mean value observed in Figure 13.

The behavior of both methods in terms of coverage vs. time is shown in
Figure 15, again with m = 3 mobile nodes and for two values of s, corre-
sponding to a sparse setting (s = 30) and a dense one (s = 150). Loosely
speaking, we can say that these two settings represent, respectively, the least
and most favorable cases for our scheme. In the sparse deployment, it is ob-
served that, after e.g. 1700 iterations, the method from [14] has reached 90%
coverage, against 77% of our technique, whereas the 95% target coverage is
reached after 2200 and 2550 iterations, respectively. In the dense deployment,
and after 1100 iterations, our technique has reached a 90% coverage, against
the 85% of the method from [14]; whereas the target coverage is reached
after 1400 and 1900 iterations, respectively. Thus, the main advantage of
the proposed scheme resides in denser settings: as previously mentioned, in
our scheme mobile nodes will likely cover all of the area monitored by any
static node they happen to pass by, and this may slow down the coverage
rate in sparse scenarios. On the other hand, this behavior avoids leaving
small and sparse coverage holes behind the mobile nodes. Indeed, we have
verified that finding such small holes is often difficult for the mobile nodes;
this is actually evidenced by the smaller dispersion about mean values seen
in Figure 13 with respect to the method from [14].
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Figure 13: Comparison of the approaches in terms of iterations to reach a 95% target
coverage, with m = 3 mobile nodes and different values of s.
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Figure 14: Number of runs (out of 50) for which the 95% target coverage was not reached
within 8000 iterations, in the scenario of Figure 13.
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Figure 15: Comparison of the approaches in terms of iterations versus reached percentage
of the total coverage, with m = 3 and s = [30, 150].

6. Conclusions

We have proposed a technique to increase the sensing area coverage of
monitoring WSNs composed by a static infrastructure complemented by mo-
bile sensor nodes. Controllable trajectories of a reduced number of mobile
nodes have been exploited in order to improve the coverage rate. The static
infrastructure actively participates in the task of estimating coverage holes
by means of a bidding mechanism, thus assisting the navigation of the mobile
nodes towards such estimated holes, which is directed in a greedy fashion. A
number of deterministic countermeasures have been presented in order to sta-
bilize the behavior of the proposed technique. The resulting method enables
effective area coverage in scenarios composed by a different number of static
and mobile nodes, consistently outperforming a recently proposed technique
for the same task in scenarios with a sufficiently dense static infrastructure,
which constitute our main focus. Future work will address enhancing the
performance of the proposed technique in settings with sparser deployments
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by introducing further deterministic countermeasures, as well as dealing with
the presence of subregions within the monitored area physically inaccessible
to mobile nodes.
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