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Abstract

Digital media forensics must deal with constantly increasing
volumes of data. In order to efficiently scale up, outsourcing
computation becomes an appealing solution. However, due to
the highly sensitive nature of forensic data, its privacy must be
protected when processed in an untrusted environment. This work
proposes a new framework to efficiently perform an outsourced
PRNU (Photoresponse Non-Uniformity) fingerprint extraction
and detection on encrypted images in a fully unattended way. For
this purpose, we rely on lattice-based homomorphic cryptosystems
paired with advanced optimization strategies. We evaluate our
solutions in terms of efficiency, security and performance for real
image datasets, showing the feasibility of camera attribution in
the encrypted domain.

1. Introduction
Digital media forensics is rapidly evolving as an answer to so-

cietal demands. Besides lively research topic, several commercial
applications already exist that are able to (semi-) automatically de-
tect forgeries and tampering, or identify and/or cluster acquisition
devices. Although most of these tools have relatively low computa-
tional complexity, they must be run on very large and ever increas-
ing databases, with efficiency thus becoming a major concern.
On the other hand, the still growing popularity of content-sharing
websites such as YouTube, Instagram or Facebook, and the Dark
Web [31], leads to rapidly obsolescent forensic analysis platforms,
especially in times of budget shortfalls, and quite conspicuously
so in the case of law enforcement. An increasingly appealing solu-
tion is to buy computing power and database storage as needed, by
running software and keeping data on outsourced platforms such
as Amazon Web Services, Microsoft Azure or Google Cloud. This
approach cuts down maintenance costs and dynamically scales
with computing needs. However, outsourcing faces the problem of
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guaranteeing confidentiality and privacy at the server end, much
more so considering that forensic data is highly sensitive.

One salient instance of extremely sensitive data is related
to child pornography. Some of the existing tools for camera
attribution or device clustering [17, 16, 25, 14] find an immediate
application in fighting against crimes involving depictions of
minors [1, 37, 26]. To get an estimate of the sheer size of this
problem, researchers looked during a one-year period (2010-2011)
at two of the then most common peer-to-peer networks, to find
more than 2,500,000 peers worldwide sharing child pornogra-
phy [20]. Obviously, processing this type of files outside of law
enforcement’s own infrastructure is currently out of the question;
encryption alone is not a solution either, because contents must
be opened at the server end in order to analyze them.

Opportunely, recent advances in the field of Secure Signal
Processing (SSP) [22] hint at a potential solution to cloudify
forensic analysis software and forensic data storage in such
a privacy-conscious way with zero information leakage. This
means that the server does not even learn the outcome of a
binary forensic test. Recently, some works have introduced new
solutions based on lattice cryptography which are especially
adapted to efficiently work with images, covering encrypted
operations that range from image filtering [32] and image
denoising [33] to more general image processing operations [35].

Most camera-attribution methods rely on the so-called Pho-
toresponse Non-Uniformity (PRNU). The PRNU is a specific
noise pattern inherent to digital imaging sensors which represents
the difference in response of the sensor array to a uniform light
source [19]. It is caused by random imperfections in the manufac-
turing process and it can be used as a fingerprint of the camera de-
vice, serving to determine whether a given test image was taken by
a certain camera, by matching a residual obtained from the test im-
age with the fingerprint. Due to its great potential for image foren-
sics, many works have studied the use and properties of the PRNU,
from the peculiarities of its mathematical modeling [7, 8] to a wide
range of possible applications, including source attribution [4],
source-based clustering [25], and tampering detection [21].

This work proposes a new framework for the secure outsourc-
ing of PRNU-based source attribution (including secure PRNU
extraction, detection and storage) in a fully unattended way, that is,
without the intervention of the secret key owner during the process.
To this end, we improve on the efficiency of the state-of-the-art
in secure, unattended solutions for image denoising, and we show
how filtering, polynomial, denoising and pixel-wise operations
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(e.g. element-wise division) can be homomorphically performed
in a single round without the need of an interactive protocol.

Main Contributions To the best of our knowledge,1 this is the
first work in the literature that proposes a secure implementation
of a forensic analyzer. The framework is here epitomized by
a PRNU-based extractor/detector, but it embraces many other
existing forensic tools. Other main contributions of our work are:
• Rooting in the secure wavelet-based denoising primitive

presented in [33], we improve the results therein by means
of a new threshold function. Our new procedure enables
a considerable reduction in both the depth of the evaluated
circuit and the number of effective ciphertext multiplications.
• We discuss the application of our novel homomorphic

wavelet-based denoising primitive within a complex use case:
PRNU extraction/detection for camera attribution.
• As such application requires many calls to the homomorphic

wavelet denoising primitive, we show how to optimize its
implementation. The resulting method is able to evaluate
the full extraction/detection processes while avoiding
execution-time interactions between client and server.

Notation and Structure We represent vectors and matrices by
boldface lowercase and uppercase letters respectively. Polynomi-
als are denoted with regular lowercase letters, omitting the poly-
nomial variable (e.g., a instead of a(z)) whenever there is no am-
biguity. We indicate the variable of the polynomial rings to avoid
confusion between univariate and bivariate rings; i.e., Rt[z] =
Zt[z]/(znz+1) denotes the polynomial ring in z modulo znz+1
with coefficients in Zt, whileRt[x,y]=(Rt[x])[y]/(y

ny+1) is
the bivariate polynomial ring with coefficients in Zt reduced mod-
ulo xnx+1 and yny+1 (nz, nx and ny are powers of two). We
also represent univariate (bivariate) polynomials as column vectors
(resp. matrices) of their coefficients. Finally A◦B (resp. A·B)
is the Hadamard (resp. inner) product between matrices A and B.

The rest of the paper is organized as follows: Section 2 briefly
revises the used lattice-based cryptosystems and the PRNU
matching scenario. Section 3 introduces the main scheme for
secure PRNU extraction and detection, and Section 4 evaluates
it in terms of security, efficiency and performance.

2. Preliminaries
This section summarizes the main operations performed in

a PRNU-based extractor/detector and revisits the lattice-based
cryptosystem used in our proposed scheme.

2.1. Basic structure of PRNU extraction/detection
The sensor output model can be approximated by the first

two terms of its Taylor series [8], as Y = (1+K)◦X+N ,
where Y is the output matrix of the imaging sensor, K is the
PRNU signal, 1 is a matrix filled with ones, X is the incident
light intensity and N represents other noise sources.

1Thanks to the anonymous reviewers, we were made aware of a related work by
Mohanty et al. [29]. It requires the use of a trusted environment (ARM TrustZone),
while our approach can be fully implemented on a general purpose architecture.

It is worth noting that X is unknown in practice, but an
estimate X̂ can be obtained with a denoising operation over Y .

PRNU fingerprint extraction: Let {Y (l)}Ml=1 be a set ofM
images taken with the same camera device ofNk pixels at native
resolution. The PRNU can be estimated by using the maximum
likelihood estimator (MLE) derived in [37]:

K̂=

(
M∑
l=1

W (l)◦X̂(l)

)
◦

(
M∑
l=1

(X̂(l))
◦2
)◦−1

, (1)

where W (l)=Y (l)−X̂(l) is the denoising residue of the image
Y (l), and A◦−1 (resp. A◦2) stands for the Hadamard inverse
(resp. square) of matrix A.

PRNU detection: Given a test image Yt with residue
Wt = Yt − X̂t and a PRNU estimate K̂, the following
hypothesis testing problem can be formulated:

H0: Wt and K̂ correspond to different PRNUs.
H1: Wt and K̂ correspond to the same PRNU.
As a computationally simpler alternative to the use of the Peak

to Correlation Energy (PCE) statistic [17], here we consider
u=Wt·K̂, (2)

for which an estimate of the variance is

σ2u=
1

Nk
(K̂ ·K̂)(Wt·Wt); (3)

then, for a given probability of false alarm, the test becomes [37]
u

σu

H1

≷
H0

λ, (4)

where λ is a fixed threshold that changes depending on the desired
false positive probability. In (2) we assume that the signals
Wt and K̂ are aligned; otherwise, the maximum of the cross-
correlation for every possible lag must be chosen as u in (4) [16].

2.2. A 2-RLWE based Cryptosystem

We use univariate and bivariate versions of the FV cryptosys-
tem [13] as the underlying block for our secure forensic analyzer.
Due to space constraints, we do not include here a description
of all the cryptosystem primitives (we refer the reader to [13] for
a detailed description). The plaintext elements belong to the ring
Rt[x,y] and ciphertexts are composed of two elements belonging
toRq[x,y]. When we work with bivariate polynomials instead of
the usual univariate ones, security relies on the indistinguishability
assumption of the 2-RLWE problem, defined as follows:

Definition 1 (2-RLWE problem [34, 32, 10]) Given a poly-
nomial ring Rq[x,y] = (Zq[x,y]/(xnx+1))/(yny+1) and an
error distribution χ[x,y]∈Rq[x,y] that generates small-norm
random polynomials inRq[x,y], 2-RLWE relies upon the compu-
tational indistinguishability between samples (ai,bi=ais+t·ei)
and (ai,ui), where ai, ui ←Rq[x,y] are chosen uniformly at
random from the ring Rq[x,y], while s,ei←χ[x,y] are drawn
from the error distribution, and t is relatively prime to q.
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Figure 1: Secure scheme for the PRNU extractor/detector.

The bivariate cryptosystem can encrypt images in only one ci-
phertext, instead of encrypting each pixel in a different ciphertext.
It also enables efficient pixel-wise additions with one ciphertext ad-
dition and bivariate linear/cyclic convolutions with only one cipher-
text multiplication at the cost of a small overhead (operations are
performed overZq instead ofZt with q>t). We refer the reader to
[13, 32, 33] for further details on these homomorphic operations.

To evaluate an arithmetic circuit of multiplicative depth L, we
can consider the following condition to have correct decryption
(Theorem 1 in [13]) 4nL(n+1.25)

L+1
tL−1 <

⌊
q
B

⌋
, where

n=nxny and ||χ||<B, that is, χ is aB-bounded distribution.

3. Proposed Scheme
This section describes the proposed scheme for securely

evaluating the PRNU extractor/detector. First, we give a general
overview of its structure with a brief description of each block.
Afterwards, we focus on the secure image denoising block due
to its importance for the PRNU extractor/detector. Finally, the
two main tasks (PRNU extraction/detection) which form part
of the scheme are discussed in more depth.

3.1. General Overview
We establish the following two working hypotheses for the

proposed secure solution:
• The adversary model is based on a semi-honest setting, where

the party who evaluates the encrypted PRNU extractor/detector
tries to gather as much information of the content of the input
images as possible, but does not deviate from the protocol.
• We require an unattended solution where the secret key owner

does not have to participate in the middle of the process.
Taking into account these constraints, Figure 1 sketches the

proposed scheme, which involves the two main attribution stages:
1) The extraction of the PRNU fingerprint given a training set
of images from the same camera, and 2) the detection of the
PRNU in an input image taking the previously extracted PRNU
fingerprint as a template to be matched (see Section 2.1).

Our solution uses the RLWE and 2-RLWE versions [32] of the
FV cryptosystem [13] as a means to perform encrypted arithmetic
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Figure 2: Encrypted Wavelet-based Denosing.

operations. We also make use of some of the techniques described
in [33], such as (a) a lightweight pre-/post-processing (for homo-
morphic cyclic convolutions when multiplying two ciphertexts)
and (b) the use of homomorphic NTT/INTTs (Direct/Inverse
Number Theoretic Transforms) from [36] (for element-wise
additions and multiplications between encrypted vectors).

Whereas the two main stages securely implement two different
processes (represented by, respectively, (1) and (2)), both make
use of an encrypted image denoising block. In fact, due to the high
number of denoising operations, optimizing this common block
is especially important for the efficiency of the whole pipeline.

In the following sections we explain in more detail the two
main stages in Figure 1, including our optimizations over the
state-of-the-art encrypted denoising block proposed in [33].

3.2. Encrypted Image Denoising
We consider as baseline the method for image denoising intro-

duced in [33],2 which comprises three elements: 1) homomorphic
direct/inverse wavelet transform, 2) homomorphic NTT/INTT,
and 3) threshold circuit. We considerably improve on the perfor-
mance of this method by modifying the second and third elements.

Firstly, our solution moves the homomorphic NTT/INTT to
the pre-/post-processing stage, avoiding its costly homomorphic
computation and performing most of the operations in this
batched setting. Figure 2 details the new structure of this primitive
after substituting the homomorphic NTT/INTT block.

Regarding the last element, instead of directly applying a
threshold function, we consider a quantization function which, in
practice, works similarly to the hard threshold function from [33].
The advantage of this quantization is that it can be implemented
by means of the “lowest digit removal” polynomials defined
in [18, 6]. Their use allows for a smaller depth on the threshold
circuit, hence considerably reducing the runtime of the primitive.

3.2.1 Homomorphic Wavelet Transform

We consider a filter-bank implementation for computing both
the homomorphic direct and inverse wavelet transforms of
the denoising algorithm. In [33] the authors introduce a light
pre-/post-processing which enables the efficient application of
low-/high-pass wavelets with cyclic convolutions by means of
only one multiplication between a ciphertext and a plaintext
encoding the corresponding wavelets.

After each homomorphic filtering operation, a downsampling
or upsampling by a factor of 2 has to be applied depending on
whether we work with the direct or the inverse transform. This

2This choice is mainly motivated by the widespread use of Wavelet denoising
and its good tradeoff between cost and performance.



downsampling/upsampling operation is very efficient, but it has
to be followed by a costly relinearization.

In this work, we avoid these downsampling/upsampling steps
(together with the relinearization) by previously dividing and sepa-
rately encrypting the original image into as many polyphase com-
ponents as required in the last level of the homomorphic wavelet
transform (see [36]). Restricting the wavelet transform to Haar
wavelets, their particular structure enables to express the transform
as very efficient additions among the polyphase components.3

3.2.2 Homomorphic Threshold

The approach considered in [33] for the homomorphic threshold
(see Figure 2) directly interpolates the desired function (together
with a normalization factor corresponding to the wavelet trans-
form) over the plaintext. However, as the plaintext cardinality
increases after each stage of the filter bank,4 the complexity of the
threshold circuit also increases. Hence, the results from [33] do
not scale well when working with a high number of stages (in [33]
the authors evaluate a denoising algorithm with only 2 stages).

This section introduces our quantization method to homomor-
phically evaluate both the normalization and the threshold. By
choosing the plaintext modulo t as a prime power p2 (where p
is roughly equal to the number of possible input values for the
images, e.g., p=257), we can evaluate the quantization step with
a polynomial whose maximum degree is equal to the cardinality
of the plaintext before applying the wavelet transform, which
considerably improves its performance with respect to [33].

This technique is based on the use of the “lowest digit removal”
polynomials recently introduced in [18, 6] as a means to enhance
the performance of bootstrapping for FHE (Fully Homomorphic
Encryption) schemes. Here we leverage their properties for a
different purpose: the homomorphic quantization of the plaintext.

We first present these polynomials (Lemma 3 from [6]) and
how to construct them for our particular scenario:

Lemma 1 ([6]) Let p be a prime and e≥1. Then there exists
a polynomial f of degree at most (e−1)(p−1)+1 such that
for every integer 0≤x<pe,

f(x)≡(x−(x mod p)) mod pe, (5)
where |x mod p|≤ p−1

2 when p is odd.

For e=2, f(x)=−x(x−1)...(x−p+1) (Example 4 in [6]).
In our case, the quantization function which we want to

evaluate is b xQc for positive x and d xQe for negative x. To
have this functionality, and considering e = 2, we can define
f(x) = −(x+ p−1

2 ) ...(x+ 1)x(x− 1) ...(x− p−1
2 ), which

implements the desired function for a quantization step Q=p.
Once we have f(x) mod pe we can directly divide by p to
have f(x)

p mod pe−1. When working with the FV cryptosystem
(see Section 2.2), after homomorphically evaluating f(x), this
division can be done for free, only introducing a slight increase
in the ciphertext’s noise (see [6]).

3A total of i4i ciphertext additions for i levels, where each ciphertext encrypts
a polynomial of size n

4i
and n is the size of the original image.

4For example, considering a Haar wavelet the range of plaintext values is
increased by a factor of 4 after each stage.

3.3. Homomorphic Cross-correlation Test
To securely perform the detection test, we have to homomor-

phically evaluate (2) (the general flow is depicted in Figure 1).
After the encrypted denoising block (see Section 3.2), computing
the residuals is straightforward by means of a homomorphic
subtraction. Afterwards, as the test image may have been cropped,
depending on whether it is aligned or not with the PRNU estimate
(see Section 2.1), an encrypted scalar product or an encrypted
cross-correlation operation is required.

Aligned case: To calculate the scalar product, we take
advantage of the fact that the first coefficient of the NTT is the
addition of all the coefficients in the time domain. Therefore,
the server divides the encrypted PRNU into blocks and obtains
the homomorphic NTT transform of each block, multiplies
each PRNU block with the corresponding encrypted polyphase
component of the residual, and finally adds all the encrypted
polyphase components. This method encodes the scalar product
in the first coefficient of the encrypted result. 5

Non-aligned case: Here we want to calculate the full cross-
correlation between the encrypted residuals and the reference
PRNU. To do this, the client applies a pre-/post-processing over
the plaintexts before/after encryption/decryption, and works with
a cryptosystem based on the 2-RLWE problem. Then, the server
can exploit the cyclic convolution property of the bivariate homo-
morphic INTT from [33] with the purpose of obtaining the time
domain representation of the encrypted polyphase components
(we refer the reader to [33] for details on this operation).

Once this is done, as the test image is encrypted in different
blocks with a cyclic convolution property, the server can resort
to the traditional “overlap-save” method [30] for calculating the
linear convolution between the PRNU template and the encrypted
polyphase components of the test image.

It must be noted that overlap-save discards part of the computed
values, so the server has to generate enough space inside the
ciphertexts. To achieve it, the server breaks the content of each
encrypted polyphase component into four new ciphertexts before
applying the homomorphic INTT, where each one has a quarter
of the original polyphase component (for simplicity we consider
that we are working with square images) and the rest are zero
values. This increases the number of ciphertexts by a factor of
4, yielding a total of 4i+1 when working with an i-level wavelet
denoising. The computational cost of the mentioned operation is
equivalent to applying 4i+1 times an overlap-save algorithm over
a filter encoded in the ciphertext and a PRNU 4i times smaller.

Variance normalization: The statistic presented in (2)
is normalized by σwσk

√
Nt where Ntσ2w = Wt ·Wt and

Nkσ
2
k=K̂ ·K̂ (Nt and Nk are the number of elements in Wt

and K̂ respectively). For efficiency reasons, the server calculates
the desired λ and returns the encrypted result of the scalar product

5For this scalar product we do not take advantage of the bivariate structure
of the image, so we could consider an RLWE based-cryptosystem.



or cross-correlation together with an encryption of λ scaled by
this normalizing factor. The server could also homomorphically
evaluate the division as we describe next for the PRNU extraction.

To compute these normalizing factors, the server can homomor-
phically evaluate the square of the residuals and PRNU, and add
for both the polyphase components of their results. The desired
values are stored in the first coefficient of the NTTs (see [38]).

3.4. Secure PRNU extraction
The secure PRNU extraction involves the computation of (1)

in an encrypted way. The encrypted denoising block for the input
images and the pixel-wise operations on the encrypted image
and residuals are analogous to those in (1), which are explained
in Section 3.2, so we do not repeat them again here.

Finally, several strategies can be considered to implement the
encrypted division needed to fully realize (1) under encryption;
we briefly describe them here.

Approximate division: We can consider the methods for
encrypted division used in [5, 11, 10], with which we can approx-
imate the result of the division with a predefined bit precision.

For example, the server can approximate the inverse of a
number b with 2r bits of precision with the expression:

ρ−2r
r−1∏
j=0

(
ρ2
j

+(ρ−b)2
j
)

where
ρ

2
≤|b|≤ 3ρ

2
. (6)

This approximation can be applied by adding an adequate
value to the denoised images in (1) (for both numerator and
denominator), such that all the pixels lie in the right range for
convergence (for example, if p=257 and pixel values are in the
interval [−128,128], the server could add 256).

The server can also use a gradient descent algorithm (previously
shifting the negative values to the positive side) as the Newton’s
root finding algorithm proposed in [5], where the inverse of a
number b can be calculated through an iteration of the form

ai+1=ai(2ρ
2i−bai), (7)

with b∈ [0,2k] scaled by ρ2
µ−1

(that is, (ρ2
µ−1

/b)), and being
µ the number of iterations, a0=1 and ρ=2k−1.

4. Security and Performance Evaluation
This section provides a complete evaluation of the proposed

scheme, in terms of security, efficiency and performance.
For such evaluation, and due to space constraints, we assume

that the client has control over the content of the images. This
scenario could arise when the police have seized the camera of
a suspect and wants to verify whether a certain image was taken
from that camera, but due to legal constraints it cannot be directly
outsourced in the clear. In this setting, we can safely assume that
the client can gather a set of non-sensitive training images from
the same camera (e.g., flatfield images); we can then perform the
extraction in the clear. Once the PRNU has been extracted, we do
consider that the test images may have a very high sensitive con-
tent, which requires the client to encrypt them before outsourcing.

In an extended version of this paper we will also include a
complete evaluation of the extraction in the encrypted domain.

Alternatives for PRNU extraction: As can be seen in (1),
the extraction is more costly than detection due to its high
number of denoising operations. However, we can consider other
approaches more amenable to the allowed encrypted operations.
For example, instead of separately denoising each image from the
training set, we could previously add them and apply (1) to the
resulting image. This computation is very similar to the PRNU
detection, and the homomorphic addition of all the images can be
done very efficiently with the used cryptosystem (see Section 2.2).

4.1. Security of the Proposed Scheme
The security of the proposed scheme is based on the semantic

security of the used cryptosystem, which relies on the indistin-
guishability of the RLWE and 2-RLWE distributions (see Def-
inition 1). In this work, we consider distinguishing attacks [27]
(although the considered values of n also resist the decoding at-
tacks described in [24]), aimed at breaking the indistinguishability
assumption through basis reduction algorithms (such as BKZ [9]).
The runtime of basis reduction attacks is parameterized by the root-
Hermite factor δ>1 (for details on how to calculate δ see [23, 36])
as approximately ek/logδ with a constant k; hence, a lower δ gives
higher attack runtimes. To estimate the bit security, we use the
lower bound estimate6 for BKZ tBKZ(δ) given in [24]:

tBKZ(δ)=
1.8

log2δ
−110. (8)

Bit security estimates (together with execution times) for our
proposed scheme are included in Tables 1 and 2.

4.2. Implementation and execution times
We have implemented our scheme making use of the RNS vari-

ant of the FV cryptosystem [3].7 Table 1 compares the runtimes of
our proposed encrypted denoising (with the new threshold circuit)
and the original algorithm from [33], which we already optimized
by applying the NTT/INTT before/after the pre-/post-processing,
to fairly compare the raw performance of the denoising primitive.

The runtimes substantially improve those from [33] (the
improvement would be even more significant if we did not
include our optimized NTT/INTT in our implementation of [33]).
First, we avoid the heavy homomorphic INTT/NTT computation.
Secondly, the use of a new threshold function considerably
reduces the ciphertext size and the depth of the evaluated circuit,
resulting in a much faster computation.

Table 2 reports the runtimes for the detection scenario of our
proposed scheme for PRNU extraction/detection. For efficiency
reasons we separately compute the detection statistic u and the
normalizing factor in two different ciphertexts (avoiding the costly
encrypted division, which can be computed by the client as post-
processing). The additional process of division does not add an im-
portant overhead to the secret key owner (see Table 2). Moreover,
due to the highly parallelizable structure of the operations (they
can be seamlessly parallelized even with a factor of 256), we in-
clude the runtimes considering different levels of parallelization.

6This estimate is more pessimistic than the security estimator recently
developed by Albrecht et al. [2].

7Execution times were measured on an Intel Xeon E5-2667v3 at 3.2 GHz
using one core for the non-parallelized option.



(a) Nikon D7000. (b) Nikon D90. (c) Canon 1100D. (d) Nikon D3000.

Figure 3: True Acceptance Rate (TAR) vs. False Alarm Rate (FAR) for 4 different target camera devices. PCE represents the result
obtained with the denoising in [28] and the PCE statistic [17], SPCE is the simplified detector in (4) applying the denoising in [28],
ED-PCE is the PCE statistic using the encrypted image denoising described in Section 3.2, and ED-SPCE stands for the simplified
detector discussed in Section 3.

Table 1: Performance of Encrypted Image Denoising (σ=8)
Encrypted Denoising with RLWE cryptosystem (bit security>110)

Denoising with 2 stages Optimized from [33] Our denoising

N (size imageN×N) 1024 2048 1024 2048

t 65537 65537 2572 2572

Cipher Exp. (ratio) 200.6250 210.0000 134.6250 134.6250

δ 1.00561 1.00294 1.00374 1.00374

Bit security (Eq.(8)) ≈112 ≈315 ≈223 ≈223

L (multiplicative depth) 12 12 8 8

Encrypt. + Pre-proc. (ms) 308.5 1333.4 211.2 844.9

Decrypt. + Post-proc. (ms) 591.4 2518.2 392.0 1568.2

Enc. Denoising (min) 17.42 74.21 2.79 11.19

Denoising with 3 stages Optimized from [33] Our denoising

N (size imageN×N) 1024 2048 1024 2048

t 65537 65537 2572 2572

Cipher Exp. (ratio) 652.0000 326.0000 179.5000 179.5000

δ 1.00342 1.00342 1.00374 1.00374

Bit security (Eq.(8)) ≈255 ≈255 ≈223 ≈223

L (multipplicative depth) 14 14 8 8

Encrypt. + Pre-proc. (ms) 797.2 1594.4 211.2 844.9

Decrypt. + Post-proc. (ms) 2311.7 4623.5 588.1 2352.3

Enc. Denoising (min) 98.12 196.25 2.80 11.20

Table 2: Performance of Encrypted PRNU detection (2048×2048
image, PRNU of 16 Mpixels, L=11, t=2575, σ=8, denoising
with 2 stages)

Aligned detection with RLWE cryptosystem (bit security>128)

Parallelization 1 8 16 20

Cipher Exp. (ratio) 379.95

δ 1.00396

Bit security (Eq.(8)) ≈205

Encrypt. + Pre-proc. (ms) 3642.62

Decrypt. + Post-proc. (ms) 26.87

Enc. Detection (min) 128.33 16.05 8.03 6.53

Non-aligned detection with 2-RLWE cryptosystem (bit security>128)

Parallelization 1 8 16 20

Cipher Exp. (ratio) 113.13

δ 1.00396

Bit security (Eq.(8)) ≈205

Encrypt. + Pre-proc. (ms) 3642.62

Decrypt. + Post-proc. (ms) 6878.50

Enc. Detection (min) 1140.10 142.50 71.30 57.90

4.3. Performance of the PRNU extraction/detection

In order to evaluate the feasibility of the proposed scheme in
terms of detection probabilities, we securely perform the PRNU
detection test proposed in Sect. 2.1 as described in Sect. 3.3. To do

so, we employed images from a database containing 2639 TIFF
images from 16 digital single lens reflex camera devices [15, 12].

For a given target camera device, the fingerprint is extracted
from M = 50 randomly chosen TIFF images, while crops of
the JPEG-compressed version of the TIFF images with size
1536×1536 and quality factor 95 are considered for detection
purposes. To test the H1 hypothesis, after discarding the M
images used for extraction, 20 different crops per image with
random origins are considered on the images from the target
camera, whileH0 hypothesis is tested by considering one crop
per image for all images from each remaining camera device.

Figure 3 compares the performance of the detector in (2) with
the Peak to Correlation Energy (PCE) state of the art detector [17],
both when the widely used image denoising in [28] and when the
proposed encrypted denoising filter with 2 stages (see Section 3)
are used to obtain the residue of the test images. Notice that the de-
noising procedure from [28] is used for extraction (K̂ estimation)
in all experiments, since the fingerprint is estimated in the clear.

The performance loss in the encrypted domain is mainly due
to: 1) The simpler encrypted denoising algorithm, and 2) the
simpler variance estimation on the detector in (2).

In spite of this slight loss in performance, the source attribution
problem based on PRNU detection is feasible in the encrypted
domain, achieving high true detection rates with low false alarm
rates on JPEG test images, as shown in Fig. 3.

5. Conclusions

We have proposed a novel framework for secure outsourced
camera attribution in a fully unattended way. As a fundamental
block for both PRNU extraction and detection, we also present
a new image denoising algorithm which improves the efficiency
of the state of the art. Our solutions focus on unattended
processing, where no interaction with the client is needed during
the outsourced computation. This work opens up a new set of
secure forensic applications, showing that suboptimal choices can
be more adequate for homomorphic operations. Finally, we also
evaluate our proposed scheme in terms of security, efficiency and
performance, showing the feasibility of secure camera attribution
in the encrypted domain.
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González. Multivariate Lattices for Encrypted Image Processing.
In IEEE ICASSP 2015, pages 1707–1711, April 2015. 1, 2, 3

[33] A. Pedrouzo-Ulloa, J. R. Troncoso-Pastoriza, and F. Pérez-
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