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Abstract—Images are inherently sensitive signals that require privacy-
preserving solutions when processed in an untrusted environment, but
their efficient encrypted processing is particularly challenging due to
their structure and size. This work introduces a new cryptographic
hard problem called m-RLWE (multivariate Ring Learning with Errors)
extending RLWE. It gives support to lattice cryptosystems that allow for
encrypted processing of multidimensional signals. We show an example
cryptosystem and prove that it outperforms its RLWE counterpart in
terms of security against basis-reduction attacks, efficiency and cipher
expansion for encrypted image processing.

Index Terms—Security, Image Encryption, Lattice Cryptography, Ho-
momorphic Processing

I. INTRODUCTION

The emerging field of Secure Signal Processing has aimed at effi-
cient privacy-preserving solutions for secure processing of sensitive
signals [1]. Among these, images are especially challenging, mainly
due to their high size, but there are many image processing scenarios
where privacy plays a prominent role: biometric recognition, medical
imaging (e.g., Magnetic Resonance Imaging - MRI, Computerized
Tomography scans,...), social media sharing or videosurveillance are
examples where images hold very sensitive information, and must be
protected when processed in untrusted environments (like outsourced
scenarios and cloud service providers).

Homomorphic encryption, and especially additive schemes like
Paillier’s [2], have been extensively used for implementations of
encrypted linear transforms and typical signal processing primi-
tives [3]. Following Gentry’s breakthrough in Fully Homomorphic
Encryption (FHE) [4], some recent works [5] use Somewhat or
Fully Homomorphic cryptosystems to enable the simultaneous use of
fully encrypted signals and transform coefficients. All these solutions
present a high cipher expansion (ratio between cipher size and clear
text size) that has been partially mitigated with techniques like
packing several clear text inputs into one cipher [6], [7]. These
techniques lack flexibility and are not optimized to work with images,
still suffering from a high expansion and an overhead for packing and
unpacking steps. To the best of our knowledge, there is no prior work
that exploits image structure to design a low-expansion and efficient
encrypted image processing solution.

This paper proposes a new cryptosystem that exploits the poly-
nomial structure of lattice-based schemes and their relation with
images to enable very efficient encrypted image operations with a
high security and low cipher expansion. We also propose an extension
of Ring Learning with Errors (RLWE), denoted m-RLWE, to design
lattice-based image cryptosystems and exemplify some encrypted
image processing primitives with our solution. Additionally, the
proposed cryptosystem also provides a simple way to perform the
above operations for higher-dimensional signals (like 3-D imaging).

Notation and structure: We represent vectors by boldface
lowercase letters. Polynomials are denoted with regular lowercase
letters, ignoring the polynomial variable (e.g., a instead of a(x))
whenever there is no ambiguity. For the sake of clarity, we indicate

the variable(s) of polynomial rings, following a recursive definition
of multivariate modular rings: Rq[x] = Zq[x]/(f(x)) denotes the
polynomial ring in the variable x modulo f(x) with coefficients
belonging to Zq . Analogously, Rq[x, y] = (Rq[x])[y]/(f ′(y)) is the
bivariate polynomial ring with coefficients belonging to Zq reduced
modulo f(x) and f ′(y). In general, Rq[x1, . . . , xm] represents the
corresponding multivariate polynomial ring with coefficients in Zq
and the m modular functions fi(xi) with 1 ≤ i ≤ m (we will assume
all modular functions are cyclotomic polynomials of order 2ki ).
Finally, a · s is the scalar product between the vectors a, s ∈ Rlq[x].

The rest of the paper is organized as follows: Lattices and RLWE
are revisited in Section II. Section III introduces the m-RLWE
problem and our proposed new cryptosystem. Section IV exemplifies
the implementation of several encrypted image processing operations,
and Section V evaluates their security and efficiency.

II. PRELIMINARIES - RING LEARNING WITH ERRORS

The advent of fully homomorphic lattice-based cryptosystems
allows both homomorphic additions and multiplications, overcoming
some limitations of traditional additive homomorphic cryptosystems
like Paillier’s [2]. The state of the art in FHE is based on the
Learning with Errors (LWE) and Ring Learning with Errors (RLWE)
problems [8], which have proven security reductions to hard lattice
problems. Recent advances in RLWE leveled cryptosystems [9],
which enable the homomorphic execution of a bounded-degree poly-
nomial function, produce the currently most efficient FHE systems.

Both RLWE and LWE have a similar formulation, that Brakerski et
al. generalize to a common General Learning with Errors (GLWE)
problem. We recall a slightly adapted informal definition of GLWE,
as the basis for our proposals introduced in the next sections:

Definition 1 (GLWE problem [9]): Given a security parameter λ,
an integer dimension l = l(λ), two univariate polynomial rings
R[x] = Z[x]/(f(x)), Rq[x] = Zq[x]/(f(x)) with f(x) = xn + 1,
q = q(λ) a prime integer, and n = n(λ) a power of two, and an error
distribution χ[x] ∈ Rq[x] that generates small-norm random univari-
ate polynomials in Rq[x], GLWEl,f,q,χ relies upon the computational
indistinguishability between pairs of samples (ai, bi = ai ·s+ t · ei)
and (ai, ui), where ai ← Rlq[x], ui ← Rq[x] are chosen uniformly
at random, s ← χl[x] and ei ← χ[x] are drawn from the error
distribution, and t is an integer relatively prime to q.

When n = 1, GLWE becomes the standard LWEl,q,χ, and when
l = 1 it boils down to RLWEq,f,χ. LWE-based cryptosystems
are computationally demanding, reason why RLWE was defined as
an algebraic version of LWE, trading subspace dimensionality by
polynomial ring order (using an ideal ring), achieving huge efficiency
improvements. As for the generic GLWE (n > 1 and l > 1),
Brakerski et al. [9] speculate that it is hard for n·l = Ω (λ log(q/B)),
where B is a bound on the length of the elements output by χ[x].
It must be noted that despite the efficiency improvement, there are
no known attacks in RLWE that get a substantial advantage with



respect to attacks to LWE. Consequently, the currently most efficient
homomorphic cryptosystems are based on RLWE, especially the ones
proposed by Brakerski et al. [9], [10] and Lauter et al. [11]. For
a formal definition of the GLWE problem and proofs of security
reductions for RLWE and LWE, we refer the reader to [8], [9], [12].

III. PROPOSED SCHEME

The underlying contribution of this paper is a generalization of
RLWE to multivariate polynomial rings, with the specific application
to 2D-image encryption using a cryptosystem based on the bivariate
version of RLWE. Hence, we start by defining the bivariate RLWE
problem as a modification of GLWE, in order to later generalize
it to m-variate polynomial rings (m-RLWE), and finally present a
modification of Lauter et al. cryptosystem [11] based on m-RLWE.
We choose Lauter’s scheme due to its efficiency, but any other RLWE-
based cryptosystem can be extended to the m-RLWE problem by
following the introduced procedure.

A. Multivariate RLWE

We begin with the bivariate version of RLWE, which can be
achieved by substituting the polynomial ring by a bivariate one
Rq[x, y] = (Rq[x])[y]/(f ′(y)), such that the error distribution
χ[x, y] generates also low-norm bivariate polynomials from Rq[x, y]:

Problem 1 (Bivariate RLWE (2-RLWE)): Given a bivariate poly-
nomial ring Rq[x, y] with f(x) = xn1 + 1, f ′(y) = yn2 + 1
and an error distribution χ[x, y] ∈ Rq[x, y] that generates small-
norm random bivariate polynomials in Rq[x, y], 2-RLWE relies upon
the computational indistinguishability between samples (ai, bi =
ai · s + t · ei) and (ai, ui), where ai, ui ← Rq[x, y] are chosen
uniformly at random from the ring Rq[x, y], and s, ei ← χ[x, y] are
drawn from the error distribution, and t is relatively prime to q.

Informally, 2-RLWE is to GLWE what RLWE is to LWE, as we
are trading (for a second time) subspace dimensionality for a higher
polynomial ring degree, therefore increasing the security of regular
RLWE and improving on performance with respect to GLWE.

The dimensionality of the noise distribution is now n = n1 · n2,
and we preserve most of the relevant properties of the used ideals
by considering the bivariate rings as the tensor product (as R-
modules) of the ring of integers of a cyclotomic field. Also, for the
coefficient embedding the ideal lattices equivalent to this product ring
are generated by block negacyclic matrices of size n1×n2 [13]. We
now enunciate the following proposition about the security of the
new problem:

Proposition 1: The 2-RLWE problem with nx = n and ny = l is
equivalent to RLWE with nz = l · n.

We sketch the proof of Prop. 1 (an extended proof can be found
in [14]) by using a polyphase decomposition of the involved signals,
with the particularity that due to the cryptosystem requirements,
which assume polynomials modulo 1 + zn, we must work with
negacyclic convolutions [13], denoted here by ~.

Let us consider a typical RLWE sample (a, b = a · s+ e), where
a, b← Rq[z] with f(z) = zln + 1 and e← χ[z]. We can write the
polynomial b(z) =

∑l−1
k=0 z

kbk(zl) as its decomposition according
to its l first polyphase components bk(z), where

bk(z) =

n−1∑
m=0

((a[lm+ k] ~ s[lm+ k]) + e[lm+ k])zm. (1)

Hence, each RLWE sample can be represented as a set of l equations
with (n − 1)-degree polynomials. Next, we consider a 2-RLWE
sample (a, b = a · s + e) with a, s ← Rq[x, y], e ← χ[x, y],
fx(x) = xn + 1 and fy(y) = yl + 1.

If we denote the coefficients of yk for each signal as ak(x), bk(x),
sk(x), ek(x), we have the following expression for 0 ≤ k < l:

bk(x) = ek(x) +
∑
i+j=k

ai(x)sj(x)−
∑

i+j=n+k

ai(x)sj(x).

Now, if we apply to each bk(x) the reverse procedure of the polyphase
decomposition, we have:

bk(x) =

n−1∑
m=0

(a′k[lm] ~ s′k[lm])xm + ek(x), (2)

where the polynomials a′k(x) and s′k(x) have as coefficients the
different possible concatenations of ai(x) and sj(x) respectively;
that is, it is a polyphase decomposition in which the coefficients are
shuffled in blocks prior to extraction of each phase [14].

Comparing Eqs (1) and (2) as equivalent ways of expressing the
RLWE and 2-RLWE distributions respectively, the only difference
between both lies in the coefficient ordering of the used s, e
and a. Since s and e have a symmetrical distribution and a is
uniformly chosen, the distribution of both problems is exactly the
same. Therefore, if we solve 2-RLWE, we can also solve RLWE,
because both can be expressed equivalently without reducing the
entropy of the original problems.

Resorting to the recursive definition of multivariate polynomial
rings (cf. Section I), the Bivariate RLWE problem can be seam-
lessly extended to multivariate polynomials (m-RLWE) with m >
2, recursively applying the sketched modification to the general
GLWE problem. The formulation is analogous to 2-RLWE with
rings R[x1, . . . , xm] and Rq[x1, . . . , xm] and error distribution
χ[x1, . . . , xm], so we do not replicate it again here.

Proposition 2: The m-RLWE problem with ni and f(xi) = 1 +
xnii for i = 1, . . . ,m is equivalent to RLWE with n =

∏
ni.

Whenever the cyclotomic polynomials in each variable xi have
the form 1 + xnii , the same procedure sketched above for proving
Prop. 1 can be applied to prove the equivalence of m-RLWE and the
(m−1)-RLWE distributions, by “folding” two variables of the former
into one variable of the latter. Therefore, Prop. 2 can be proven by
induction; the extended version of this proof can be found in [14].

B. An m-RLWE based Cryptosystem

Any cryptosystem whose security is based on RLWE (e.g., [9],
[10], [11]) could be extended to m-RLWE. We choose Lauter et
al.’s [11], due to its efficiency and security, as a basis to exemplify
our semantically secure m-RLWE cryptosystem. Table I summarizes
its parameters and primitives.

Ciphertexts are composed by γ ≥ 2 ring elements from
Rq[x1, . . . , xm]. This size increases with each multiplication (see
Table I), and it can be brought back to the size of a fresh cipher
by means of a relinearization step, which involves using partial
encryptions of the secret key (more details can be found in [9], [11]).

Security and Correctness: The security of the cryptosystem is
based on the computational difficulty of reducing the n-dimensional
lattice (n =

∏
ni) generated by the secret key, and the semantic secu-

rity guaranteed by the underlying m-RLWE problem (two encryptions
of the same or different plaintexts cannot be distinguished). As for
correctness, q must be set such that enough space is guaranteed to
avoid decryption errors produced by wrap-arounds of the performed
homomorphic operations. Due to the analogous (not isomorphic)
structure of m-RLWE with n =

∏
ni and degree-n RLWE (cf.

Section III-A), bounds for the error norm [11] are preserved when
switching from RLWE to m-RLWE, by adjusting the increased



TABLE I
PROPOSED CRYPTOSYSTEM: PARAMETERS AND PRIMITIVES

Parameters

Let Rt[x1, . . . , xm] be the cleartext ring and Rq [x1, . . . , xm] as ciphertext’s.
The noise distribution χ[x1, . . . , xm] in Rq [x1, . . . , xm] takes its coefficients
from a spherically-symmetric truncated i.i.d Gaussian N (0, σ2I). q is a prime
q ≡ 1 mod 2n (with n =

∏
ni), and t < q is relatively prime to q.

Cryptographic Primitives

SH.KeyGen Process s, e ← χ[x1, . . . , xm], a1 ← Rq [x1, . . . , xm]
sk = s and pk = (a0 = −(a1s+ te), a1)

SH.Enc
Input pk = (a0, a1) and m← Rt[x1, . . . , xm]

Process u, f, g ← χ[x1, . . . , xm] and the fresh ciphertext is
c = (c0, c1) = (a0u+ tg +m, a1u+ tf)

SH.Dec
Input sk and c = (c0, c1, . . . , cγ−1)

Process m =
((∑γ−1

i=0 cis
i
)

mod q
)

mod t

SH.Add
Input c0 = (c0, . . . , cβ−1) and c1 = (c′0, . . . , c

′
γ−1)

Process cadd = (c0+c
′
0, . . . , cmax (β,γ)−1+c

′
max (β,γ)−1)

SH.Mult
Input c0 = (c0, . . . , cβ−1) and c1 = (c′0, . . . , c

′
γ−1)

Process
Using a symbolic variable v their product is(∑β−1

i=0 civ
i
)
·
(∑γ−1

i=0 c
′
iv
i
)

=
∑β+γ−2
i=0 c′′i v

i

dimensionality of the ring elements: for D successive products and
A sums, the needed q for correct decryption is lower-bounded by

q ≥ 4(2tσ2√n1n2 . . . nm)D+1(2n1n2 . . . nm)D/2
√
A. (3)

IV. ENCRYPTED IMAGE PROCESSING WITH 2-RLWE

Unlike RLWE-based cryptosystems, which lack support for multi-
dimensional signals, the proposed cryptosystem introduces a natural
way to work with multidimensional linear operations. Additionally,
it achieves a more compact representation of the data, as it can
effectively cipher one signal value per coefficient of the encryption
polynomial. This section exemplifies the implementation of different
representative encrypted processing like convolution, correlation or
filtering, showing the advantages of the proposed cryptosystem com-
pared to its RLWE-based counterpart. Unless otherwise stated, we
will always consider that all the used signals and filters are encrypted,
to fully conceal all the involved elements in an untrusted environment.

Convolution, correlation and filtering can all be expressed as a
linear convolution between two m-dimensional signals X and H ,
namely Y [n1, . . . , nm] = X[n1, . . . , nm] ∗H[n1, . . . , nm], which
is equivalent to the ring product of the signals represented as multi-
variate polynomials y(z1, . . . , zm) = x(z1, . . . , zm) ·h(z1, . . . , zm).

Using the original RLWE-based scheme, an encrypted convolu-
tion would comprise encoding each dimension separately as ele-
ments of the univariate polynomial ring Rt[z], resulting in two
(m−1)-dimensional elements Xn1,...,nm−1(z) and Hn1,...,nm−1(z)
of Rm−1

t [z]. If Nni,y is the number of samples in dimension ni
for the signal y, the number of involved polynomial products is∏m−1
i=1 Nni,xNni,h (i.e., N2(m−1) products if Nni,x = Nni,h = N ).
Contrarily, with our proposed cryptosystem the convolution can be

done through a single polynomial product of the encryptions, homo-
morphic to the polynomial product of the clear text. Particularly, an
encrypted image convolution with the proposed cryptosystem would
translate into the product of two bivariate polynomial encryptions.

Complex signals: Complex numbers are usually encrypted by
separating real and imaginary parts in two independent ciphers, and
performing complex products as four real products. But m-RLWE
can naturally incorporate one extra variable for the polynomial ring
Zt[w]/(w2 + 1), isomorphic to the complex integers ring, where
the variable w plays the role of the imaginary unit. While the
computational cost of complex operations would not be affected,
this is a more compact and integrated representation of encrypted
complex signals, and it effectively doubles the size of the secret key

accordingly, therefore increasing the security of the scheme.

V. SECURITY AND PERFORMANCE EVALUATION

In terms of security, we address the distinguishing attack [15]
aimed at breaking the indistinguishability assumption through basis
reduction algorithms, and we follow the procedure of [11]. Decoding
attacks (aimed at getting the secret key s) are not included due to
space limitations, but values for n =

∏
ni similar to those used

in [11] can achieve protection against decoding attacks as described
in [16]; we will therefore adhere to these minimum values for n.

We take the root Hermite factor δ for the underlying lattice as a
measure of security, as it is directly related to the running time needed
for a basis-reduction algorithm to succeed. We briefly comment on
the relation between the cryptosystem parameters and δ, and then
compare it with its RLWE counterpart [11] in terms of root Hermite
factor and computational load for encrypted image filtering.

A. Security as a function of the root Hermite factor δ

The best attacks against lattice-based cryptosystems are grounded
on basis reduction, which tries to obtain a nearly orthogonal basis
with small vectors from an arbitrary basis. BKZ [17] is currently one
of the most efficient algorithms, which uses blocks of size ranging
from 2 to the dimension of the lattice; increasing block sizes produce
better bases at the cost of a higher computational load. The root
Hermite factor δ > 1 drives the complexity of reduction attacks
on the lattice, such that the run time of an attack is approximately
proportional to ek/ log δ for a constant k: lower δ means higher
security. For the optimal distinguishing attack using BKZ, the runtime
yields the following expression in terms of δ [11]

log2(δ) = (log2(c · q/s))2/(4n log2(q)), (4)

where n is the rank of the lattice, c ≈
√

ln( 1
ε
)/π, ε is the attacker

advantage (taken as ε = 2−32), and s is a scale parameter of the
error distribution (for an n-dimensional Gaussian, s = σ

√
2π).

A lower δ is achieved with a lower s (producing shorter lattice
vectors), due to the evolution of the ratio q/s. With the bound for q
given by (3), and ignoring all the factors independent from s, it can
be shown that asymptotically q

s
∝ s2D+2

s
= s2D+1. Therefore, in (4)

both δ and q increase when s grows, producing an additional tradeoff
for s, that should be small to better resist reduction attacks, but large
enough to give enough randomness to avoid birthday attacks.

B. Evaluation for Encrypted Image Processing

We consider two privacy-preserving scenarios: the encrypted cor-
relation of two encrypted images of size N ×N , and the encrypted
filtering of an image of size N ×N by a filter of size F × F , with
F < N , and we compare security and complexity for our 2-RLWE
cryptosystem versus the RLWE counterpart [11]. Therefore, we fix
s = 2

√
n, t = 256 and D = 1 (each cipher undergoes one encrypted

product), and a maximum value for δ, i.e., a minimum security level
against reduction attacks. Hence, we use a slack variable h as the
ratio between the polynomial degree n in [11] needed to achieve the
maximum δ, and the length of the result in the ciphered dimension.

1) Encrypted correlation of two images: Given the image size
N ×N , the polynomial degree to accommodate the encrypted result
is ni ≥ 2N (and n ≥ 2N for [11]), but we have to account for the
needed δ given by h. We can estimate the relation between δ and the
computational cost of both cryptosystems using (4) and the fact that
the cost (in terms of coefficient products) is quadratic in N2:

δ
2N−1
h

2−RLWE ≈ δLauter, cost2−RLWE ≈
4

h2
costLauter.
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Fig. 2. Cost and log2δ for encrypted image filtering (F = 100, h = 8).

When h = 1, Lauter encryptions would be roughly 4 times faster
than ours, but 2-RLWE has a much higher security. For h = 2,
both have a similar cost, and ours has a much higher security
(Fig. 1). For h > 2, the proposed scheme is both more efficient
and secure. Therefore, unless the security with h = 1 is enough
for the application, the proposed scheme is more efficient and much
more secure. In fact, a reasonable security level can only be achieved
currently for lattices with n ≥ 4096. Hence, for small images
(e.g., size 512 × 512) our cryptosystem can adapt to the optimum
polynomial degree keeping a very high level of security, while [11]
will suffer a big cipher expansion with a much lower security level.

2) Encrypted image filtering: We can approximate the relation
between cost and δ for this scenario, assuming F � N , as:

δ
N+F−1

h
2−RLWE ≈ δLauter, cost2−RLWE ≈

N

h2F
costLauter.

Our scheme’s δ2−RLWE decreases exponentially with the size of
the image and the filter with respect to δLauter . As for the cost, the
proposed cryptosystem is more efficient for low-size images and/or
large filters, yielding a much higher security in the whole size range.

Figure 2 plots both δ and cost as a function of N using a 100-tap
encrypted filter and h = 8. Our scheme achieves higher efficiency
and lower δ for images with N < 6200; hence, it is more efficient
and secure for a typical size range of images in practical applications.

For completeness, we also compared the cost of both schemes with
a varying ratio F/N . With h = 8, N+F−1 = 256, nLauter = 2048
and n2−RLWE = 65536, our scheme is more efficient for filters with
more than 4 taps per dimension, as our cost, encryption size and
δ2−RLWE are constant for any F < N , while for [11], cost and q
increase with F and

√
F respectively, therefore increasing δLauter .

C. Implementation and execution times

We have implemented both Lauter RLWE-based cryptosystem and
our 2-RLWE extension in C using the GMP 6.0.0 [18] and FLINT
2.4.3 [19] libraries. We implemented bivariate polynomial products
as a recursive embedding of polynomial coefficients in each variable,
and Karatsuba multiplication algorithm for large numbers [20]. Ta-
ble II compares the encrypted image filtering performance (F = 11)
with a) our 2-RLWE cryptosystem, b) its RLWE counterpart [11]

TABLE II
ENCRYPTED FILTERING PERFORMANCE (D = 1, t = 256, s =

√
2π)

N 118 246 502 1014

Proposed cryptosystem

n 16384 65536 262144 1048576
dlog2(q)e 43 46 49 52

Enc. image size (bits) 1.4·106 6.03·106 2.57·107 1.09·108

δ 1.00045 1.00012 1.000032 1.0000085
Encrypt. time (s) 0.031 0.144 0.673 4.127
Decrypt. time (s) 0.029 0.137 0.649 4.038

Conv. time (s) 0.058 0.275 1.299 8.047

Lauter cryptosystem (h = 8)

n 1024 2048 4096 8192
dlog2(q)e 37 39 40 42

Enc. image size (bits) 8.94·106 3.93·107 1.64·108 6.98·108

δ 1.0062 1.0037 1.0017 1.00087
Encrypt. time (s) 0.062 0.258 1.248 7.122
Decrypt. time (s) 0.038 0.214 1.053 6.200

Conv. time (s) 0.737 4.342 22.206 134.719

Paillier cryptosystem (with 2048 bit modulus)

Enc. image size (bits) 5.7 · 107 2.48 · 108 1.03 · 109 4.21 · 109

Encrypt. time (s) 174 756 3150 12852
Decrypt. time (s) 205 819 3277 13107

Conv. time (s) 111 483 2011 8205

with h = 8, and c) the traditional Paillier (with a clear text filter),
on a Core i5-4670 computer with 20 GB of RAM running Linux.

The reported encryption times comprise the encryption of all
involved signals (except for Paillier, for which the filter is not
encrypted), and for the lattice cryptosystems we do not include a
relinearization step after each multiplication, but take into account the
(more demanding) decryption of the extended encryptions instead. We
can see that both lattice-based cryptosystems are far more efficient
than Paillier, also having a much lower cipher expansion. Moreover,
our scheme yields smaller encrypted images, by keeping a compact
cipher structure that adapts to both image dimensions increasing the
lattice dimensionality and, hence, the security. For typical image
sizes, it is more secure and efficient than Lauter’s for encryption,
decryption and, especially, for the whole encrypted convolution.

VI. CONCLUSIONS

This work introduces a new hard problem called m-RLWE, gen-
eralizing RLWE, aimed at processing encrypted multidimensional
signals, while improving on cipher expansion, security and efficiency.
Any RLWE based cryptosystem could be extended to m-RLWE.

We provide an example cryptosystem based on m-RLWE by
extending Lauter et al’s scheme. We show its application (in general,
any scheme based on 2-RLWE) for encrypted image filtering, sug-
gesting a compact representation for complex coefficients, supported
by the cryptosystem itself. We also show the advantages of our
scheme with respect to its RLWE counterpart and a clear-text filter
Paillier-based implementation, in terms of security, efficiency and
cipher expansion. This work opens up a broad set of encrypted image
processing applications and shows the viability of somewhat homo-
morphic encryption for efficient privacy-preserving image processing.
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