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Email: {anxotato, mosquera}@gts.uvigo.es, {pol.henarejos, ana.perez}@cttc.cat

Abstract—Index Modulations, in the form of Spatial Modulation
or Polarized Modulation, are gaining traction for both satellite
and terrestrial next generation communication systems. Adaptive
Spatial Modulation based links are needed to fully exploit the
transmission capacity of time-variant channels. The adaptation
of code and/or modulation requires a real-time evaluation of the
channel achievable rates. Some existing results in the literature
present a computational complexity which scales quadratically
with the number of transmit antennas and the constellation order.
Moreover, the accuracy of these approximations is low and it
can lead to wrong Modulation and Coding Scheme selection. In
this work we apply a Multilayer Feedforward Neural Network
to compute the achievable rate of a generic Index Modulation
link. The case of two antennas/polarizations is analyzed in depth,
showing not only a one-hundred fold decrement of the Mean
Square Error in the estimation of the capacity as compared with
existing analytical approximations, but also a fifty times reduction
of the computational complexity. Moreover, the extension to an
arbitrary number of antennas is explained and supported with
simulations. More generally, neural networks can be considered
as promising candidates for the practical estimation of complex
metrics in communication related settings.

Index Terms—Mutual Information, Capacity, Index Modulation,
Spatial Modulation, Polarized Modulation, Neural Networks,
MFNN, Machine Learning, Adaptive Communications, ACM,
Link Adaptation.

I. INTRODUCTION

The evaluation of the achievable physical layer rate of a

given modulation scheme is an important theoretical problem

with high relevance in practice. Most modern communication

standards, e.g., [1], [2] or [3], incorporate some sort of Adap-

tive Coding and Modulation (ACM) mechanism, generically

known as link adaptation. This consists typically on varying

the modulation order and/or the coding rate of the channel

encoder to track the varying channel conditions. The ultimate

goal is to adjust the transmitted bit rate to the information that

the channel can support for a given bit error probability.

Link adaptation makes it necessary for the transmitter to

estimate somehow the mutual information (MI) between the

transmit and received waveforms on a per-frame basis, so that

the most efficient Modulation and Coding Scheme (MCS) can

be chosen. In most cases, the receiver computes some metric

related to the MI and sends it back to the transmitter end. This

metric can be in the form of the average or effective Signal to

Interference and Noise Ratio (SINR), or some Channel Quality

Indicator (CQI) specifically suited to the set of MCS available

to the transmitter [4]. In essence, the receiver must estimate

the maximum amount of information that can be transmitted

reliably through the channel; for all this, the estimation of the

MI plays an instrumental role.

A particular family of modulation schemes, known as Index

Modulations (IM) [5], have attracted a great deal of interest in

the last few years. Among others, we can cite Spatial Modula-

tion (SM) [6]-[7] or Polarized Modulation (PMod) [8]. SM and

its more sophisticated variants are proposed for next generation

of wireless networks due to several advantages. In comparison

to single-antenna techniques, the spectral efficiency increases,

with a simpler and more energy efficiency hardware than in

other multi-antenna techniques [5]. As potential application,

recent works such as [9] present experimental results with

compact reconfigurable antennas for using SM in the uplink of

Internet of Things (IoT) devices in 5G networks with a high

number of antennas on the base station side. Another inter-

esting version of IM is that studied in [8], where the authors

propose the use of PMod to increase the spectral efficiency of

next generation mobile satellite communications; if Multiple-

Input-Multiple-Output (MIMO) signal processing techniques

are applied to Dual Polarization (DP) satellite systems, the

performance of single-antenna (or single polarization) links

can be notably enhanced. DP schemes were also highlighted

in [10] as a means to improve the satellite coverage in remote

areas to serve the increasing number of IoT devices.

In this paper we present a novel method to compute the

mutual information without Channel State Information at the

Transmitter (CSIT) of a 2×2 SM system, and show how to

generalize it to an arbitrary number of antennas. The results are

also valid for other types of IM, like PMod. The study is con-

ducted for conventional SM, with only one Radio Frequency

(RF) chain at the transmitter and a unique active antenna

at each time instant. If more antennas can simultaneously

transmit, the corresponding scheme is known as Generalized

SM (GSM), which can achieve a higher spectral efficiency. An

extension of the results in this paper to GSM is addressed in

[11], where we have included results for transmitters with up

to three RF chains.
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The mutual information calculation can be useful, for example,

in adaptive SM systems to select a proper MCS. Results

requiring numerical integration or Monte Carlo simulations

can be found in the literature [12], [13]. One value of this work

is that it explores a radically new approach to solve an essential

problem in the practical application of Information Theory:

the mutual information of non-conventional modulations is

computed by means of Machine Learning (ML) tools.

There is a growing number of contributions on the application

of ML to the physical layer of communications, see the recent

surveys [14] and [15]. In particular, Neural Networks (NN)

have been successfully used for channel estimation and equal-

ization [16], signal recognition and modulation classification

[17], [18], detection in MIMO Generalized SM [19], and

learning of physical layer parameters in Cognitive Radio [20],

among others. In [21] and [22] NNs are applied to perform

link adaptation in multicarrier systems. In [23], a Multilayer

Feedforward Neural Network (MFNN) is used to predict the

performance of a WiFi cell. A deep NN is proposed in [24]

to decide the optimal power allocation in a wireless resource

management problem. In this latter reference the NN is used

to obtain the optimal power allocation values, much more

efficiently (by speeding up the computational time in several

orders of magnitude) than the baseline iterative algorithm

which solves the corresponding non-convex optimization prob-

lem. Besides NNs, Support Vector Machines (SVM) have been

also studied for the selection of physical layer parameters in

communication settings with a large number of degrees of

freedom [25].

Recently, some results on the application of ML to SM systems

have appeared. For example, [26] proposes the use of deep

neural network to perform power allocation and transmit an-

tenna selection on a SM system. In [27], a deep neural network

is used to select the optimum codebook in adaptive SM, i.e.,

the particular constellation employed by each antenna. This

recent work is related with older SM publications which deal

with adaptive SM systems, such as [28] and [29]. The method

we propose here for computing the mutual information of

a SM link is a perfect complement of the referred previous

schemes, which use a target spectral efficiency which needs

to be estimated somehow. The neural network aided mutual

information calculation enables the online update of the target

bit rate so that other algorithms can select the optimum

codebook.

The current work applies a one-hidden layer MFNN as a

facilitator scheme to compute the MI in an adaptive 2 × 2
SM link, based on some specifically selected input features

which can be easily obtained from the MIMO channel matrix,

together with the Signal to Noise Ratio (SNR). To the best of

our knowledge, it is the first time that a NN is proposed to

estimate the MI of a channel. In the particular scenario of SM,

the evaluation of the capacity, needed for adaptation purposes,

is numerically demanding when needed on-the-fly.

The shallow NN proposed to calculate the MI of a generic SM

system, valid also for PMod, outperforms recent approxima-

tions found in the literature such as [13] and [30], both in terms

of estimation accuracy and computational complexity. In order

to avoid the numerical evaluation of the involved integrals,

these references provide two different approximations of the

MI for a specific symbol constellation, with a complexity

scaling with the square of the constellation size and the number

of antennas. As opposed, the proposed solution has a much

lower complexity, which is independent of the size of the

constellation.

The main contribution of this work is the accurate evaluation

of the MI of spatial modulations, which have resisted so far

those attempts to obtain simple expressions. Moderate size

standard neural networks will be seen to be up to the task

provided that a careful extraction of channel parameters and

training are performed. Moreover, due to the lower complexity

of the proposed method, the receiver can compute the MI more

often and then follow faster channel variations, so that the

adaptation speed is not necessarily limited by the complexity

of the computation of the channel capacity.

The rest of the paper is structured as follows. Section II

explains our system model and introduces the reader into SM;

Section III provides some additional motivation by presenting

an example of an adaptive SM system which can be improved

with the evaluation of MI. Then, Section IV presents the

expressions to compute the mutual information of SM. It also

replicates the analytical expressions existing in the literature

to approximate the MI, and to be used for benchmarking

purposes. Afterwards, in Section V a brief introduction to

Multilayer Feedforward Neural Networks is included before

dealing with their specific application to the evaluation of the

MI of a 2 × 2 SM for different constellations. Section VI

presents the simulation results in detail for the case of two

dimensions. Then, Section VII explains how to generalize the

method to obtain the MI of systems with a higher number of

antennas. Lastly, the main conclusions are drawn in Section

VIII.

Notation: Upper (lower) boldface letters denote matrices (vec-

tors). (·)H , (·)t, IN and 1, denote Hermitian transpose, trans-

pose, N ×N identity matrix and vector of ones, respectively.

‖·‖ applied to vectors denotes the Euclidean norm. E [·] is

the expected value operator. ◦ and � denote the Hadamard

(pointwise) matrix product and division. �{·}, �{·}, (.)∗ and

| · | denote the real part, imaginary part, conjugate and absolute

value of a complex number, respectively.

II. SYSTEM MODEL

Traditional digital modulation schemes transmit information

modulating only the amplitude, phase and/or frequency of a

sinusoidal carrier. However, Index Modulations (IM) benefit

from the fact that the transmitter has several building blocks,

being these antennas, polarizations or subcarriers, for example,

to map additional bits of information to the block selected to

transmit the conventional modulated signal [31]. As illustra-

tion, consider SM with Nt transmit antennas: in addition to

the log2(M) bits to index each symbol s in a constellation

of M elements, log2(Nt) bits can be used to select which

of the Nt antennas is active at a given instant to transmit
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the symbol. Similarly, PMod carries information by means of

the transmit polarization. In this paper, firstly we will focus

our attention in the Nt = 2 case, with just one bit selecting

the active transmit dimension; the extension to Nt > 2 is

also addressed later. Hereafter, SM is used rather than IM,

keeping in mind that results apply to generic IM regardless

of the physical interpretation of the dimensions, which can be

antennas, polarization, or frequencies among others.

The system model of a 2 × 2 SM for a given discrete time

instant is

y =
√
γHx + w (1)

where y ∈ C
2×1 is the received vector, γ the average Signal

to Noise Ratio (SNR), H ∈ C
2×2 the channel matrix, x ∈

C
2×1 the transmitted signal and w ∼ CN (0, I2) the Additive

White Gaussian (AWGN) noise vector. Since we consider a

SM system with a single RF chain, x has only one component

s ∈ C different from zero (component l), so that (1) can be

also expressed as

y =
√
γhls+w (2)

where hl denotes the l-th column of H, l ∈ {1, 2}, and s takes

values from the constellation S , which is assumed the same for

all the antennas when it comes to the evaluation of MI. We also

assume a unit power constraint, i.e., E
[
xHx

]
= E

[|s2|] = 1.

This paper addresses the evaluation of the MI in an SM

link for which the transmit symbol s comes from the same

constellation S regardless of the transmit antenna. This value

represents an upper bound for the maximum rate which can

be transmitted reliably; in this regard, our focus is not on

error metrics, which will depend on the specific encoding

scheme and receiver implementation, but rather on information

quantities which will be estimated by the neural network.

Fig. 1 shows the block diagram of a fully flexible adaptive SM

system with several degrees of freedom in the link adaptation.

On the one hand, the transmitter can modify the coding rate

r of the channel encoder for adapting the level of protection

of the information bits. On the other hand, the transmitter

can also select individually the constellation order Ml of the

symbols sent by each antenna l, as proposed in [28]. The

receiver, assumed to have perfect Channel State Information

(CSI), estimates the SNR γ and the channel matrix H; both

are used by the Adaptation Unit to select a physical layer

configuration. Then, the receiver informs the transmitter about

the specific coding rate r and codebook C to use in subsequent

transmissions. Following [27], codebook refers to the set of

constellations used by each of the transmit antennas1.

Before delving into the evaluation of mutual information

and channel transmission capacity, next section motivates the

need for these metrics in adaptive schemes. By means of

an example, we illustrate how our evaluation of the MI can

1For the evaluation of the mutual information and channel capacity, we will
consider that all the antennas are to pick symbols from the same set S at a
given channel use. The channel capacity can be used then as an upper bound
for the achievable rate also for those cases for which the constellation to use
depends on the selected antenna.

complement some of the existing adaptation schemes proposed

in the literature.

III. ADAPTIVE SPATIAL MODULATION

SM offers many degrees of freedom that can potentially be

exploited for the adaptation of the physical layer parameters in

response to the channel conditions. Yang et al. propose in [28]

the individual tuning of the constellation order of the symbols

sent from each antenna. Similarly, works such as [27] use the

term SM codebook, C, to denote the set of the constellations

associated to each antenna. In this way, for a system with Nt

antennas, the codebook C = {Ω1, . . . ,ΩNt
} indicates that the

constellation Ωi is used by the i-th transmit antenna.

The receiver, which is assumed to have full CSI, is typically

responsible for choosing the optimum codebook C∗ and feed-

ing this information back to the adaptive SM transmitter. In

[28] and [29], the authors select the codebook based on the

received minimum distance dmin(H, C) of each codebook C,

which is defined as

dmin(H, C) = min
xi,xj ,xi �=xj

‖H (xi − xj)‖2. (3)

They use the minimum distance as aapproximated perfor-

mance metric to the bit error probability. xi and xj in (3)

are vectors with a single non-zero entry, which denote all

possible transmit signals for the codebook C. Note that the

distance depends also on the channel matrix H. The optimum

C∗ is chosen to maximize the minimum distance among all

the codebooks which provide a given target spectral efficiency

m:

C∗ = argmax
C∈Ψ

dmin(H, C) subject to C with
1

Nt

Nt∑
k=1

mk = m.

(4)

In (4) Ψ denotes the set of all possible codebooks, and mk

is the spectral efficiency of the constellation Ωk used in the

antenna k with the codebook C.

Link adaptation schemes as those detailed in [27] and [28]

require as input the target spectral efficiency, the parameter m
in (4). However, they do not specify how to set the value of m
that rules the codebook selection. The method that we present

later in this paper allows to compute the maximum achievable

spectral efficiency C in an affordable way, given the involved

complexity in the evaluation of the transmission capacity of

spatial modulation. Then, from the values of spectral efficiency

attainable with the set of codebooks Ψ of the system, we

propose to select the closest value to the calculated capacity

C and use it as the target spectral efficiency m in (4).

For illustration purposes, we show some preliminary simu-

lations which make use of the method exposed later in this

paper to evaluate the maximum transmission capacity for each

channel realization. In particular, the adaptive SM link includes

a single RF chain transmitter which uses 1, 2 or 4 antennas to

transmit the spatial information and a receiver with 4 antennas.

The available constellations range from BPSK to 16QAM,

with the codebook selection performed as in [28], except that

the parameter m is computed dynamically for each channel

3
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Fig. 1: Block diagram of an adaptive Spatial Modulation system with Neural Network aided MI calculation at the receiver.

realization from the maximum transmission capacity of the

eight different configurations: SISO (one antenna), the six

possible 2× 4 SM systems and a 4× 4 SM system.

Fig. 2 shows the results of the simulations described in

the previous paragraphs. 200 Rayleigh distributed channel

matrices are generated for each value of SNR and, for each

particular channel state, the transmission of 5, 000 symbols is

simulated. The optimal codebook for each particular channel

state, i.e., for a fixed (γ,H), is chosen with (4) and used during

5, 000 transmissions. One application of the results in this

paper is the ability of adapting the target spectral efficiency to

the channel state. Thus, for the 200 simulated matrices, curves

in Fig. 2 show the minimum, maximum and average values of

the target spectral efficiency m, respectively, for each SNR.

The average throughput, computed taking into account the

symbol error probability of each simulation, is also shown. As

the channel conditions improve, the target efficiency increases

until it reaches a maximum value of 6 bits/s/Hz, which is

obtained by using the 16QAM by all the antennas.

The simulation results in Fig. 2 illustrate how the evaluation

of the SM capacity, as described in the next sections, can

complement existing SM link adaptation algorithms for se-

lecting the codebook, like those introduced in [27] and [28].

Our estimation of the SM capacity allows to update the target

spectral efficiency m and select codebooks that provide higher

data rates as the capacity of the channel increases, as can be

seen in Fig. 2. Next section will include the expressions to

compute the capacity and the MI of a SM system by means

of Monte Carlo simulations. Then, Section V will detail how a

MFNN can be used to obtain the MI of SM with high accuracy

and low complexity.

IV. CAPACITY AND MUTUAL INFORMATION

The expression of the Spatial Modulation (SM) capacity

conditioned to a given realization of the channel matrix H,

measured in bits per channel use, bpcu, is given by

C = max
fX(x)

I(x; y |H) = max
fS(s),fL(l)

I(s, l; y |H) [bpcu], (5)

where I(x;y|H) is the Mutual Information (MI) between

the two random variables x and y conditioned to H, and
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Fig. 2: Average throughput as compared with the target spec-

tral efficiency reference values in an adaptive SM system. The

codebook selection is based on the application of the channel

capacity to set the target spectral efficiency.

the maximization is performed for all possible distributions

of the transmitted signal x [32]. In (5), fX(x), fS(s) and

fL(l) denote the probability density functions (PDF) of the

complex transmit signal x, the complex transmit symbol s,

and the hopping index l which selects the antenna used to

transmit the symbols, respectively. The transmitter is expected

to operate without CSIT (it does know neither H nor γ), so it

will select either index l = {1, 2} with the same probability.

The capacity is achieved in (5) when the transmit symbols

belong to a Gaussian codebook [12], i.e., when s ∼ CN (0, 1).

The MI in (5) can be expressed, as a function of the entropies

of the involved random variables, as

C = I(x; y |H) = h(y|H)− h(y|x,H) = h(y|H)− h(w),
(6)

where h(·) is used for the differential entropy, and h(w) is

simply written as

h(w) = log2 det(πeI2). (7)

4
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As in [12], the received vector y follows a Gaussian distribu-

tion of the form

y ∼ 1

2

2∑
l=1

CN (
0, HKlH

H + I2
)
� 1

2

2∑
l=1

CN (0, Φl) ,

(8)

where K1 =

(
1 0
0 0

)
and K2 =

(
0 0
0 1

)
. With this, the

entropy of y in (6) reads as

h(y|H) = −1

2

2∑
l=1

∫
y

CN (0,Φl) log2

(
1

2

2∑
l′=1

CN (0,Φl′)

)
.

(9)

It is then clear that the computation of the unconstrained

capacity C of (6) requires the numerical evaluation of the

above integral; even for the case of constrained capacity with

finite alphabets, as we will see next, the complexity of this

computation can be too demanding for a receiver updating the

estimate of the link capacity for adaptation purposes.

Practical communication links use symbols from a constella-

tion S with a finite alphabet, which makes the constrained

capacity the practical metric of interest. Hereafter, we will

refer to the corresponding mutual information, or constrained

capacity of SM, simply as total mutual information, IT , since

this includes the information carried by both antenna selection

index l and constellation symbol s:

IT = I(x; y |H)|s∈S = I(s, l; y |H)|s∈S . (10)

The particularization of (10) for a 2 × 2 SM system and a

constellation S with M symbols has been made in [13], and

it is replicated in (11) for the sake of completeness. Note that

we assume that the same constellation S is used in all the

antennas.

The evaluation of (11) to obtain the MI can be made by

means of numerical integration or by resorting to Monte

Carlo simulations. The latter entail a much lower complexity

since the number of function evaluations required for a given

accuracy in high-dimensional integrals increases exponentially

with the number of dimensions (receive antennas) [33]. Thus,

the Monte Carlo scheme turns out to be more appropriate

than traditional numerical integration for the evaluation of

expressions such as (11).

In this article we will use Monte Carlo integration to compute

the true value of (11) for reference purposes, by generating

random values of the noise w. The number of noise samples

is chosen to keep the variance of the Monte Carlo estimation

of IT under 10−5, which was achieved in all cases with 5, 000
samples.

In an effort to find more convenient expressions of IT to

handle in practice, some results have been presented in the

literature as approximations to the mutual information (11).

On the one side, Guo et al [30] used the Jensen’s inequality

and corrected the ensuing bias to get

ITJensen
= − log2

(∑
Δx∈D e−

1
2Δ

H
x HHHΔx

(2M)2

)
. (12)

Here D is a set with (2M)2 vectors in C
2×1 of the form

Δx =
√
γ · (hlsk − hl′sk′) (13)

for l, l′ = 1, 2 and k, k′ = 1, 2, . . . ,M , where hl are the

columns of the channel matrix, and sk ∈ S ⊂ C the symbols

of the constellation.

A different approach resorting to the Taylor Series Expansion

was followed in [13], yielding expression (14) as an approxi-

mation of IT . The interested reader is referred to [13] for the

definitions of each element of the equation. One drawback of

both (12) and (14) is that the computational complexity of the

MI calculation increases with the square of the constellation

order M and the number of antennas Nt.

This paper develops a more efficient and accurate scheme,

based on a neural network, to compute the MI of an SM

system, which avoids the quadratic complexity increment with

the constellation cardinality. This is especially relevant for

practical use, given the need to estimate on the fly the channel

capacity for link adaptation purposes. The proposed scheme to

estimate the achievable rate is based on a simple NN with only

one hidden layer, and which provides different outputs, one per

constellation in case several are available. The computational

burden is much lower than that of any other previously known

alternatives, so the MI can be updated more often and faster

variations of the channel conditions can be tracked as a benefit.

In [11], we have presented a particular application of this

work to obtain the unconstrained capacity, i.e., for Gaussian

symbols, of a GSM system. In GSM, contrary to SM, there can

be multiple active antennas simultaneously. The unconstrained

capacity calculated in [11] is an upper bound of the MI for any

given constellation. It turns out that SM is usually proposed for

the uplink of IoT devices with complexity constraints [9], so

that we will provide in this work simulations for constellations

up to order 16. However, if higher dense constellations such

as 64QAM or 256QAM are used, results from [11] can be

applied to evaluate the unconstrained capacity instead.

V. NEURAL NETWORK-BASED MUTUAL INFORMATION

ESTIMATION

The evaluation of the Mutual Information (MI) (11) can be

interpreted as a non-linear mapping from the channel matrix

H and the SNR γ to the MI. Multilayer Feedforward Neural

Networks (MFNNs), well-known for their fitting capabilities

of non-linear functions [34]-[35], will be used to estimate

IT in (11). In particular, the MFNN to be employed, a one

hidden layer network, is detailed in Fig. 3. The input features,

x = [x1, x2, . . . , xF ]
t, need to be extracted by means of a

function f(·) from the channel matrix H and the SNR γ, as

x = f(γ,H). The input variable selection is highly relevant

for the performance of the learning process of the network.

Later we will detail how the feature extraction is applied

based on our domain knowledge, that is, our knowledge of

the particular problem we are addressing. Alternatively, a

more complex deep neural network with several hidden layers

could be used, so that the relevant features for this problem

are learned by the intermediate layers, and all the channel

5
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IT = log2(2M)− 1

2M

∑
s∈S

2∑
l=1

EW

⎧⎪⎪⎨
⎪⎪⎩log2

⎛
⎜⎜⎝∑

s′∈S

2∑
l′=1

e
−γ

∥
∥
∥
∥
∥
∥

hls−hl′s
′+

w√
γ

∥
∥
∥
∥
∥
∥

2

+‖w‖2

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭ (11)

ITTaylor
= log2

(
2M

G(Dsl)

)
+ A

(
log2

(
Gsl

(
Ds,l,s′,l′

Ds,l,s′,l′
))

Asl (Ds,l,s′,l′)
+

γ

log(2)D2
sl

2∑
m=1

(D2
m,sl,R +D2

m,sl,I

))
(14)

matrix coefficients are used directly as inputs without any

processing. However, as detailed later, we found this solution

underperforming the one hidden layer with carefully selected

input features.

In the following, the variables in blue will denote the internal

parameters of the neural network, and ai, i = 0, 1, 2 will be

the intermediate internal variables at the i-th layer. Each of the

F neural network inputs goes through a linear preprocessing

block to adjust the neurons input to the range [−1,+1]. This

initial scaling is expressed as

a0 = g0 ◦ (x− x0)− 1 ∈ R
F×1 (15)

with the gain g0 ∈ R
F×1 and the offset x0 ∈ R

F×1.

The hidden layer is made of N neurons, also named processing

units, each applying a weighted linear combination of its in-

puts, a bias and a non-linear function, also known as activation

function:

a1 = g(W1 · a0 + b1) ∈ R
N×1. (16)

The matrix W1 ∈ R
N×F and the vector b1 ∈ R

N×1 collect

the weights and the offsets. As activation function we will use

the hyperbolic tangent:

g(x) =
2

1 + e−2x
− 1.

The output layer of K neurons applies a linear processing of

the form

a2 = W2 · a1 + b2 ∈ R
K×1 (17)

for matrix W2 ∈ R
K×N and vector b2 ∈ R

K×1. Finally,

there is a last stage to accommodate the range of the network

outcome:

y = (a2 + 1)� g3 + y0 ∈ R
K×1 (18)

with the gain g3 ∈ R
K×1 and the offset y0 ∈ R

K×1. The

output vector is expressed as y = [y1, y2, . . . , yK ]t.

The different parameters of the network –weights and biases

in (15)-(18)– will be obtained under supervised learning. They

are initialized with the Nguyen-Widrow algorithm [36], which

generates random values for the weights and the biases for a

balanced distribution of input values across the neurons. The

Levenberg-Marquardt (LM) backprogation algorithm [37] will

be used to minimize the Mean Squared Error (MSE) on the

test set:

MSE =
1

L

L∑
�=1

‖y(�)− t(�)‖2, (19)

Fig. 3: Diagram of the neural network.

with y(�) and t(�) the network output and the true MI values,

respectively, for the training tuples (x(�), t(�)), � = 1, . . . , L.

The true MI values are obtained by numerical evaluation of

(11) for K different symbol constellations. The training of

the network is performed off-line, so that receiver terminals

only need to evaluate (15)-(18) for adaptation purposes. The

computational complexity of the NN will be evaluated later

in comparison to that of previous methods presented in the

literature [13]-[30].

Hereafter, we focus on the MI calculation of a 2 × 2 SM

system and next section will provide simulation results for this

particular case. However, the underlying philosophy applies to

SM with a higher number of antennas, not only 2. Section

VII will show how to extend the results to obtain the MI of

SM systems with a larger number of antennas. Remarkably,

the neural network entails always a degree of complexity

about two orders of magnitude lower compared to that of

the analytical approximations, even for SM systems with high

number of antennas/dimensions.

A. Input Variable Selection

The output of the network in Fig. 3 is the MI estimation for

K different constellations, as an approximation of the true MI

function (11). This depends on the channel matrix H and the

SNR γ; in the following we will see how to pre-process these

values for a better network performance.

For a Maximum Likelihood receiver, the pairwise error prob-

ability (PEP) between (s, l) and (ŝ, l̂) is given by [38],[39]

Pe(s, ŝ, l, l̂) = Q

(√
γ

2
‖hl · s− hl̂ · ŝ‖

)
(20)
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for the AWGN case. This PEP depends on the distance among

supersymbols hl · s. The set X of 2M different supersymbols

for a given channel matrix H and the transmitted constellation

S = {sk, k = 1, 2, . . . ,M} is

X = {hlsk, l = 1, 2, k = 1, 2, . . . ,M}. (21)

The MI will be also affected by all the involved distances,

as inferred from (11). For convenience, we put together the

squared distances among all the pairs of supersymbols under

the matrix D of size 2M × 2M , with the respective entries

given by

D[(l − 1)M + k, (l′ − 1)M + k′] = ‖hlsk − hl′sk′‖2 (22)

where l, l′ = {1, 2} and k, k′ = {1, 2, . . . ,M}. Matrix D can

be also expressed as

D =

(‖h1‖2DS DL

Dt
L ‖h2‖2DS

)
. (23)

The M ×M matrix DS on the diagonal is a function of the

symbols in the constellation S:

DS [k, k
′] = |sk − sk′ |2, (24)

whereas the M × M matrix DL contains all the distances

between supersymbols of different antennas/polarizations:

DL[m,n] = ‖h1sm − h2sn‖2
= ‖h1sm‖2 + ‖h2sn‖2 − 2�{s∗msnh

H
1 h2}.

(25)

Note that the matrix DL can be expressed as the sum of four

rank-1 matrices:

DL = ‖h1‖2
⎛
⎜⎝

|s1|2
...

|sM |2

⎞
⎟⎠1t+‖h2‖2 1

( |s1|2 . . . |sM |2 )

− hH
1 h2

⎛
⎜⎝

s∗1
...

s∗M

⎞
⎟⎠(

s1 . . . sM
)

− ht
1h

∗
2

⎛
⎜⎝

s1
...

sM

⎞
⎟⎠(

s∗1 . . . s∗M
)
. (26)

With this, we have that rank{DL} ≤ 4. Even further, if the

constellation of symbols {sn} is known, then only four real

values are required to describe the dependence of DL and D
with the channel matrix H, namely, ‖h1‖2, ‖h2‖2 and the real

and imaginary parts of the scalar product hH
1 h2. Alternatively,

the scalar product can be expressed as [40]

hH
1 h2 = ‖h1‖ · ‖h2‖ · cosΘH · eiϕ (27)

where ΘH ∈ [0, π/2] and ϕ ∈ [−π, π] denote, respectively, the

Hermitian angle and the Kasner’s pseudo-angle between two

complex vectors. Thus, the four values (‖h1‖, ‖h2‖,ΘH , ϕ)
serve to characterize the matrix D.

For illustration purposes, Fig. 4 shows the received symbols

for a real BPSK case. Two different SNR values and two

different channel matrices are employed to display the clouds

of received symbols. Both the SNR and the angle between

the column vectors of H determine the distance among the

different color clouds.

The impact of the two angles ΘH and ϕ in the final MI

can be grasped with the aid of Fig. 5, which shows a 3D

representation of the MI as function of both angles. Monte

Carlo simulations were run for a QPSK constellation, with

both columns having the same norm, ‖h1‖= ‖h2‖ = 1, and

γ = 2. With this, the structure of the channel matrix H is the

following:

H =

(
1 cosΘHeiϕ

0 sinΘH

)
. (28)

It can be seen that the MI has a strong dependance with the

Hermitian angle. If ΘH = π/2 the two columns are orthogonal

and the MI is maximum, whereas for ΘH = 0 the columns

are considered parallel, and the MI is reduced. Moreover, the

Kasner’s pseudoangle ϕ only affects the MI significantly when

ΘH is close to zero, creating a small ripple, due to the radial

symmetry of the constellation. However, for ΘH > π/3, the

MI is barely affected by the Kasner’s pseudoangle. Instead, if

ΘH = 0, the phase ϕ determines to which extent the receiver

can tell which antenna transmitted the observed symbol.

After extensive training cases, we have observed that perfor-

mance can be enhanced if, as part of the input parameters,

the distances among the supersymbols are also included. Four

distances, {di}, i = 1, . . . , 4, are used; this is the number

of different entries of matrix DL in (25) when a QPSK

constellation is employed. It turns out that these four quantities

suffice for the neural network to compute a good estimate of

the MI for other constellations too, such as 8PSK and 16QAM,

even though the number of different entries of the matrix is

higher. Table III in Section VI supports this claim by showing

the performance of the neural network when estimating the

MI for 8PSK and 16QAM, in addition to QPSK, without

exploiting additional distance values, thus keeping the number

of input features fixed.

B. Neural Network Operation

We will use a unique MFNN to estimate the mutual in-

formation IT for different symbol constellations. K = 3
outputs will provide the estimate of the mutual information for

QPSK, 8PSK and 16QAM constellations. Following the above

considerations, the input features x = f(γ,H) will correspond

to different options to characterize the distance matrix D.

Table I depicts the different feature sets that will be used for

testing the performance of the network. Essentially, four inputs

is the lowest number of inputs to test following the previous

discussion2. Values are sorted in ascending order given the

invariance of the capacity to the labeling of the dimensions and

symbols. As to the number of neurons, N = 10 and N = 20
will be used in the simulations.

Training of the network will be based on extensive amount

of data, by generating a large number or random channels for

2Note that the number of real values to characterize H and γ is nine.
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-8 -6 -4 -2 0 2 4 6 8

Antenna 1

-8

-6

-4

-2

0

2

4

6

8

A
nt

en
na

 2

Received symbols "real" SM-BPSK SNR = 15 dB

(d) Non-orthogonal columns, SNR= 15 dB.

Fig. 4: Received constellation for 2×2 SM-BPSK system where transmitted symbols, channel matrix and noise are real-valued.

Option Input features F Description of the features

i 4 x =

[
sort

(
[γ‖h1‖2, γ‖h2‖2]

)
, �

{
hH
1 h2

‖h1‖ · ‖h2‖

}
, �

{
hH
1 h2

‖h1‖ · ‖h2‖

}]t

ii 4 x =
[

sort
(
[γ‖h1‖2, γ‖h2‖2]

)
, ΘH , ϕ

]t
iii 6 x =

[
sort

(
[γ‖h1‖2, γ‖h2‖2]

)
, sort([γd1, γd2, γd3, γd4])

]t
iv 8 x =

[
sort

(
[γ‖h1‖2, γ‖h2‖2]

)
, sort([γd1, γd2, γd3, γd4]), �

{
hH
1 h2

‖h1‖ · ‖h2‖

}
, �

{
hH
1 h2

‖h1‖ · ‖h2‖

}]t

v 8 x =
[

sort
(
[γ‖h1‖2, γ‖h2‖2]

)
, sort([γd1, γd2, γd3, γd4]), ΘH , ϕ

]t
TABLE I: Different alternatives for selecting the NN input features.

different values of SNR. The reference true capacity values for

the different constellations will be obtained after computing

(11) by the Monte Carlo method.

VI. SIMULATION RESULTS

For performance evaluation, a dataset of 50, 000 realizations of

the channel matrix H is used, randomly generated following a

unit-variance Rayleigh distribution, i.e., hij ∼ CN (0, 1). Each

channel matrix is associated with a different SNR whose value

in decibels is drawn from a uniform random variable between

−20 and 20 dB. The true MI with QPSK, 8PSK and 16QAM

constellations of each realization of (γ,H) is calculated with

a Monte Carlo simulation using (11) with 5, 000 realizations

of the complex Gaussian noise w. We limit ourselves to these

low order constellations, which are more likely to be used

with SM. However, other constellations, like 64QAM, could

be easily added to the system at the expense of increasing

the time required for obtaining the dataset with Monte Carlo

simulations -note the two summations over all the constellation

symbols in (11).

The dataset is divided into two independent parts. 7, 500 sam-

ples (15%) are reserved for the final test of the performance of

the MFNN and the analytical approximations (equations (12

and (14)). The remaining 35, 000 samples (70%) and 7, 500
samples (15%) are employed for training and validation of the

neural network, respectively.

Firstly, the impact of the selection of the input features in

the performance of the MFNN is evaluated. For this, several

NNs are trained using in each case one of the sets of inputs

8
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Fig. 5: MI of a 2× 2 SM link with QPSK constellation as a

function of the two angles for unit-valued columns norms and

3 dBs of SNR.

detailed in Table I. Fig. 6 shows some histograms with the

statistical distribution of the features obtained from the dataset.

The distances and the norms include the SNR term and are

shown in dB, whilst the unit of the angles is the radian.

Fig. 6: Histograms with the distribution of the features (norms,

distances and angles) in the dataset of Rayleigh distributed

channel matrices and uniformly distributed SNR.

Then, the global MSE obtained with the trained NNs when

calculating the three MI values is obtained by using the entries

of the dataset reserved for testing. Table II collects the values

of MSE for five different selections of the input features and

for both numbers of neurons (N = 10 and N = 20). It

shows the best MSE in the testing dataset after 10 trainings

with different NN parameters initialization. If the NNs are

fed directly with the real and imaginary parts of the channel

matrix coefficients, the MSE is very high, in the order of 10−1.

Nevertheless, at least two orders of magnitude improvement is

achieved when the NNs are fed with the input features detailed

in Table I.

In Table II, it can be observed how the Hermitian angle

ΘH and the Kasner’s pseudoangle ϕ, options (ii) and (v),

improve the NN estimation with respect to the use of the real

and imaginary parts of the projection, options (i) and (iv).

Furthermore, the addition of the four distances to the set of

inputs, cases (iii), (iv) and (v), serves to reduce the MSE as

compared to cases (i) and (ii). Finally, the MSE reaches a

minimum value of about 3 · 10−5 when the four distances and

the two column norms are combined with the two angles for

the 20 neurons MFNN.

Secondly, the two NNs with 10 and 20 neurons and the

input features selection (v), are compared with the analytical

approximations from the literature, (12) and (14), in Table

III. Both Taylor and Jensen based approximations have a

similar MSE, around 10−2, which is outperformed by all the

NN reported in Table II. Moreover, when we compare the

analytical approximations with the best NNs of the table, the

improvement in the MSE is about 100 and 600 times with a

NN of 10 and 20 neurons, respectively.

As noted previously, the calculation of the MI could be

addressed with a deep neural network, a MFNN with several

hidden layers, using as inputs the channel matrix coefficients

(scaled by the SNR) directly. With this approach, the network

extracts the relevant features at the intermediate layers, so

that the last layer computes the MI. We have tested this

approximation for a number of layers ranging from one to

ten, and a number of neurons per layer between 20 and

50. It was found that a deep network with at least three

layers of 20 neurons can perform better than the Taylor and

Jenson approximations, yielding an MSE in the order of 10−3.

However, the deep networks do not overcome the peformance

of the one-hidden layer MFNN which the input features of row

(v) of Table I. In addition, the training of these deep networks

is much more time consuming, and the learning algorithm

has more difficulties to converge to those parameter values

providing a good performance.

As shown in Table III, the analytical approximations suffer

a maximum error of 0.741, for the 16-QAM constellation,

which is reduced to 0.105 in the case of the MFNN with

20 neurons. The improvement is even more noticeable with

the 3σ value: a little bit more than 0.300 for the analytical

approximations, and 20 times smaller with the neural network.

This significant accuracy improvement achieved by the MFNN

makes it possible for the physical layer to operate with a

transmission rate much closer to the channel transmission

capacity. We should note that there is not much more room for

improvement since the MSE with the MFNN of 20 neurons

is of the same order of magnitude than the variance in the

estimation of the MI with the Monte Carlo simulations, 10−5.

Fig. 7 shows a graphical view of the estimated MI values:

the scatter plot of the values of the true MI (X axis) are

shown together with the values of the MI computed with each

method (Y axis) for the three constellations, QPSK, 8PSK and

16QAM. The green line Y=X sets the perfect match of the MI.
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Input features option Number of features F Global MSE (10 neurons) Global MSE (20 neurons)
i) Columns norm and projection 4 1.78 · 10−3 6.98 · 10−4

ii) Columns norm and angles 4 4.29 · 10−4 3.36 · 10−4

iii) Columns norm and distances 6 1.79 · 10−4 5.21 · 10−5

iv) Columns norm, distances and projection 8 1.33 · 10−4 4.96 · 10−5

v) Columns norm, distances and angles 8 1.00 · 10−4 2.97 · 10−5

TABLE II: Comparison of the global MSE obtained with the neural network for different input features.

Global MSE QPSK 8PSK 16QAM
3σ Max. error 3σ Max. error 3σ Max. error

Taylor approximation (14) 1.87 · 10−2 0.330 0.523 0.370 0.492 0.392 0.558
Jensen based approximation (12) 1.21 · 10−2 0.229 0.300 0.291 0.498 0.300 0.741
MFNN option (v) with 10 neurons 1.00 · 10−4 0.020 0.153 0.026 0.140 0.034 0.120
MFNN option (v) with 20 neurons 2.97 · 10−5 0.016 0.067 0.015 0.046 0.018 0.105

TABLE III: Comparison of the performance of the MFNN with the analytical approximations of the literature for calculating

the MI of a 2× 2 SM.

It can be seen that the analytical approximations provide better

results for lower values of MI, while for MIs close to their

maximum (3, 4 or 5, depending on the constellation), they

have a noticeable positive bias. Remarkably, both NNs with

10 and 20 neurons in the hidden layer, match the true value of

the MI almost perfectly, clearly outperforming the analytical

approximations.

The accuracy achieved by the MFNN has a direct impact

on the implementation of adaptive SM links. The quality

of the tracking of the MI allows to use smaller back-off

margins for the selection of the coding rate or the codebooks;

large errors make it necessary to use highly conservative

margins in the selection of the physical layer configuration

to guarantee a prescribed error decoding metric, thus reducing

the transmission rate.

Finally, the ergodic MI of an 2 × 2 SM system with QPSK,

8PSK and 16QAM constellations under Rayleigh fading is

shown in Fig. 8. For each value of SNR, 100 realizations of

the channel matrix are generated, similarly to the NN dataset,

and the true MI in each case is calculated with a Monte Carlo

simulation with 1, 000 realizations of the noise. Afterwards,

the ergodic MI for each SNR point is calculated by averaging

the instantaneous values of the MI. The true ergodic MI, shown

with circles, is compared with that obtained by averaging

the instantaneous MI calculated with each method, the two

analytical approximations and the 10 neurons neural network.

As it can be seen, the neural network matches perfectly the

true ergodic MI, which is overestimated by the other methods

for moderate values of the SNR.

The accuracy improvement of the MFNN as compared with

the analytical approximations in Fig. 8 might seem small.

Nevertheless, under block fading with an almost static channel

matrix during the transmission of a frame, the instantaneous

error for a single channel matrix is more relevant. In this

latter case, the plots of Fig. 7 and the data of Table III

demonstrate that the previous analytical approximations have

a non-negligigle positive bias, whereas the MFNNs do not,

making our ML-based approach a better method for adaptation

purposes.

In addition to the estimation accuracy, the computational

complexity is key for practical implementation: the MI compu-

tation must be done at the receive side, which has knowledge

of the SNR γ and the channel matrix H. This evaluation must

be such that an on-line tracking of the channel state is made

to report the selected physical layer configuration back to the

receiver.

In this regard, Table IV shows the computational complexity of

each method after counting the number of mathematical oper-

ations required to compute the MIs for the three constellations.

In the case of the analytical approximations, the table shows a

lower bound of the number of operations since it only counts

the most demanding instructions, which are repeated (2M)2

times. In the case of the NN, all the required operations are

counted, including the preprocessing of γ and H to calculate

the inputs of the NN.

The numbers in Table IV reveal that the MFNN is not only

more accurate, but also less computationally demanding. The

MFNN requires about 90 times fewer multiplications and non

linear operations than the analytical approximations. This is in

line with the required time to compute with Matlab® the three

MIs for all the testing dataset, in a computer equipped with an

i7-4510U 2 GHz processor. From another point of view, the

laptop only allows to make an estimation of the MIs every 5.5
ms with the Taylor approximations, which gets reduced to 0.1
ms with the NN. With respect to the off-line training duration,

each training of the NN took typically less than 3 minutes.

VII. EXTENSION TO A HIGHER NUMBER OF ANTENNAS

This paper is focused mainly on a SM system with two

dimensions in order to study thoroughly the impact of the

different input features selection. However, this approach can

be easily extended to compute the MI in scenarios with a

higher number of antennas. This section aims to explain how

to apply the same philosophy to obtain the MI of a 4 × 4
and 8× 8 SM systems, providing also some clues to keep the

complexity bounded for higher numbers of antennas.

Let us recall Table I, which portraits several selections of the

NN input features for the case of 2 antennas. As can be seen,

the performance improves from the top to the botton; in order
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Fig. 7: Comparison of the scatter plots (true MI vs calculated MI) of the analytical approximation from the literature and the

MFNNs with 20 neurons for the three constellations (QPSK, 8PSK and 16QAM) in a 2× 2 SM system.

Taylor approximation Jensen based approximation MFNN option (v) 20 neurons
Real products 7, 168 32, 800 368
exp(·) 672 1, 344 20
log2(·) 112 3 -
Other non-linear operations 1, 344 - 3
Calculation time for 7,500 channel realizations 41 s 76 s 0.80 s
Calculation time for one channel realization 5.5 ms 10.1 ms 0.1 ms

TABLE IV: Comparison of complexity and computational time of the MFNN and the two methods of the literature. Total

number of operations for computing the three MI values (QPSK, 8PSK and 16QAM) in a 2× 2 SM system are given, as well

as the computational time required for one and 7, 500 channel realizations with Matlab® running in a laptop.
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Fig. 8: Ergodic MI of a 2 × 2 SM system obtained after

averaging the instantaneous MI calculated with each method

for a Rayleigh channel (QPSK, 8PSK and 16QAM).

to avoid too a large number of input features in systems with a

higher number of antennas, we propose to apply option (ii) as

a trade-off between performance and complexity. This option

makes use of the channel column norms (scaled by the SNR)

and the angles. Whilst the number of norms increases only

linearly with the transmit antennas, the number of angles raises

rapidly with Nt since there are 2
(
Nt

2

)
angles, a tuple (ΘH , ϕ)

for each possible combination of two transmit antennas. For

example, in a system with 16 antennas there are 120 pairs of

angles. However, we have found out that it is not necessary

to give the values of all the angles explicitly to the neural

network. A few values characterizing the statistical distribution

of the angles suffice for the NN to estimate the MI with an

MSE similar to those values reported in Table II.

The MI evaluation in a SM system with 4×4 antennas can be

easily done with an MFNN trained with the proper dataset,

obtained now with 4 × 4 Rayleigh matrices, and using as

input features the four values of γ‖hl‖2 and the six pairs

of angles (θH , ϕ). In the case of an 8 × 8 IM system we

propose to reduce the
(
8
2

)
= 28 pairs of angles to just

Q values per type of angle (Hermitian and Kasner). These

Q values are the quantiles of the angles distribution for Q
probabilities taken from 0 to 1 at equal steps. For example,

for Q = 5 the distribution of the angles is characterized by the

minimum, the 25th percentile, the 50th percentile (the median),

the 75th percentile and the maximum. Therefore, the MFNN

for obtaining the set of MI of an 8×8 IM system has as input

features the 8 columns norms γ‖hl‖2, and the Q quantiles

of the Hermitian angle ΘH and the Kasner’s pseudoangle ϕ,

respectively.

For testing purposes, we have generated two additional

datasets, one with 50, 000 4×4 Rayleigh matrices and another

with 25, 000 8 × 8 Rayleigh matrices. Again, each channel

matrix has associated a random SNR value between −20 and

20 dB, and we have calculated the MI of each pair (γ,H)

for several constellations (QPSK, 8PSK and 16QAM) using

Monte Carlo simulations. Following the same procedure of

training and testing described in Section VI, we have obtained

two trained MFNNs for calculating the three MI values of 4×4
and 8× 8 SM systems, respectively.

Table V sums up the results obtained with these two neural

networks. Note that for the 8 × 8 system we have used only

Q = 5 quantiles. If we compare the results of 4 and 8 antennas
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provided in Table V with those obtained with the best network

for the 2 antennas scenario from Table III, using 20 neurons

and input features option (v), the NN performs a little worse

in the setup with more antennas, although the errors are of

the same magnitude. However, a fair comparison with the NN

for 2× 2 SM which uses the same type of input features, i.e.,

option (ii) from Table II, reveals that the MSE is slightly better

when the number of dimensions grows.

Fig. 9 intends to show graphically the accuracy of the proposed

MFNNs to calculate the MI of these 4 × 4 and 8 × 8 SM

systems. Firstly, Fig. 9a contains a scatter-plot with the MI

computed with the MFNN (Y axis), and the true MI (X axis)

of a 8 × 8 SM system with the three constellations, QPSK,

8PSK and 16QAM, similarly to Fig. 7. It can bee seen how all

the points are very close to the green line, which represents

the perfect match. This behaviour, similar in the 4 × 4 case,

could be expected from the numerical results of Table V. Due

to space restrictions, we did not include here the results of the

analytical approximations for these systems with more than

two antennas; however, they perform significantly worse than

the neural network, as shown previously for the 2× 2 system.

On the other hand, Fig. 9b shows the ergodic MI of SM

systems with 4 and 8 transmit and receive antennas and two

different constellations, QPSK and 16QAM, under a Rayleigh

channel. For each point of SNR the ergodic MI is obtained

by averaging the MI of 100 channel realizations, evaluated

with the neural network (continuous line), and with the Monte

Carlo method with 1, 000 realizations of the noise (markers).

It can be seen how the ergodic MI obtained by means of the

neural network matches perfectly the true ergodic MI, which

is calculated by means of costly Monte Carlo simulations.

Lastly, the accuracy gain of the neural network as compared

with the analytical approximations of the literature comes

along with a complexity reduction also for SM systems

with a higher number of antennas. In Table VI, we provide

some numbers regarding the computational complexity of the

proposed method to calculate the three MIs (QPSK, 8PSK

and 16QAM) of an 8× 8 SM system compared with the two

analytical approximations. Similarly to the 2 × 2 case, the

Taylor and Jensen approximations require here about 55 and

100 times more computational time for obtaining the MIs for a

channel realization, respectively. Therefore, the neural network

is again not only more accurate, but also more computationally

efficient for the evaluation of the MI in SM systems with 4
and 8 transmit and receive antennas.

VIII. CONCLUSIONS

The implementation of next generation adaptive Spatial Mod-

ulation links requires practical mechanisms to estimate the

mutual information for a given signalling strategy. An accurate

and timely computation of this constrained capacity serves to

adapt the constellation order, and apply a fine tuning of the

coding rate of the channel encoder, providing a better fit to

the maximum achievable rate. The method proposed in this

paper to calculate the constrained capacity is a very simple

Multilayer Feedforward Neural Network, which can obtain

the Mutual Information for different symbol constellations

simultaneously. The neural network is more accurate and less

computationally demanding than the analytical approxima-

tions existing in the literature, and provides a valuable refer-

ence achievable rate for different adaptive Spatial Modulation

schemes.
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