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Abstract—We discuss how a binary detector can learn whether
it is being subject to an oracle attack by resorting to a higher
level of detection (metadetection). On a second step, assuming
that the attacker is aware of the fact that the detector takes
countermeasures, we investigate a possible way for him to react.
Then, we study the interplay between the defender and the
attacker when both of them try to do their best for pursuing
their opposite goals. We focus our analysis on the metadetection
of oracle attacks based on line search algorithms, as they
are prevalent in the literature. In such scenario, we propose
metadetectors which work under very general conditions, that is,
when the oracle is not exclusively fed with line search attacking
queries, but only some of the malicious queries are made along
the lines, whereas the others are done by mimicking the behavior
of honest users. We theoretically evaluate the final achievable
performance of these metadetectors, deriving conditions under
which asymptotic powerful testing is possible. Experimental
results show the power of metadetection for countering the line
search attacks in both synthetic and real application scenarios.

Index Terms—Adversarial signal processing, composite hy-
pothesis testing, intentional attacks, sample covariance matrix
(high-dimensionality regime), singular value decomposition, zero-
bit watermarking.

I. INTRODUCTION

Adversarial Binary Detection, that is, the study of binary
detection under intentional attacks, is a prominent problem in
security-related applications, like forensic detection, biometric
authentication, fingerprint detection, network intrusion detec-
tors, spam filtering, reputation systems, etc. In these applica-
tions, in fact, detection is often hampered by adversaries that
actively modify their behavior and the observations the detec-
tion relies on to cause misclassification. As a consequence,
classical detection theory and design methods must be revised
to account for the existence of adversaries aimed at misleading
the system [1]. Among intentional attacks, those based on the
information gathered by repeatedly querying the detector, often
referred to in the literature by the name of oracle attacks, have
been shown to be very powerful (see Section II).

Oracle attacks are a serious threat for watermarking systems
[2], [3]; such type of attacks can also be found in many other
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multimedia security applications: for instance, hill-climbing at-
tacks in biometric recognition systems belong to this category
[4]–[6], as well as similar kind of attacks in spam filtering and
intrusion detection [7]–[9]. The effectiveness and generality
of oracle attacks, then, calls for the development of proper
countermeasures.

A. Introduction to Smart detection

Arming against malicious attackers that query the classifier
to learn information and then construct their attack is becom-
ing a common need in security-oriented applications (e.g.,
[10], [11], or [12], [13] for a generic adversarial strategy).
Specifically, a novel direction for counteracting oracle attacks,
relying on the use of smart detectors, has been recently
explored in [10]. A smart detector is defined as a detector
that is able to learn from and react to repeated query attacks.
Notice that detectors producing a random output close to the
boundary are not smart according to the previous definition,
because they are not able to determine whether they are being
attacked. To learn whether the system is being subject to an
oracle attack, a metadetector is proposed that works at a higher
level than the primary detector. While the operation of the
latter is not modified, the former is specifically devoted to
detect malicious queries and its definition is not affected by
the specific purpose of the primary detector. Once the smart
detector decides that an oracle attack is ongoing, effective
countermeasures can be enforced, including the prevention of
further accesses to the detector (banning), or the conservative
switch to a more convoluted detection function.

In [10], two different metadetectors are proposed; one of
them, named Closeness-To-the-Boundary (CTB) metadetector,
works under general attack models, and simply exploits the
fact that oracle attacks generally produce a large number
of queries close to the detection boundary; the other one,
named Line Search (LS) metadetector, targets the line searches
typically performed by those attacks (cf. [2], [14], [15]). Both
strategies are shown to successfully detect oracle attacks with
very few queries. The analysis of CTB-based metadetection
is generalized in [16] by removing the assumption that the
detector is exclusively fed with either malicious or honest
queries. It is worth stressing that, although [10] and [16] are
focused on watermark detection, the proposed metadetectors
are higher-level detectors that can be applied to any binary
decision problem where oracle attacks can be a threat, i.e.,
regardless of the underlying detection problem.

B. Contribution

In this paper, we propose a generalized LS metadetection
which works in a very general attacking scenario, i.e., under
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very general attacking conditions. Starting from the metade-
tector in [10], we make a step forward by considering the
possible reaction of the attacker to the countermeasures taken
by the defender in an attempt to restore the effectiveness of
the attack. The analysis of the counterattack allows us, in turn,
to refine the metadetection. Specifically, the new metadetector
takes into account the possibility that ‘useful’ attacking queries
(i.e., the aligned queries of the line search attack) are mixed
with queries explicitly generated by the attacker to mislead the
metadetection. Some practical sub-optimal metadetectors are
proposed, and their asymptotic performance is theoretically
analyzed, including the derivation of those conditions under
which asymptotically powerful testing is possible. Further-
more, such analysis permits us to determine critical values
of the system parameters for a correct detection of the oracle
attack. Experiments confirm the power of smart detection, by
showing that the metadetector is able to reliably detect oracle
attacks, even when only very few attacking queries are hidden
in a batch of misleading queries.

It is worth remarking that the refined metadetector presented
in this paper also works in the practical scenario in which
several users, potentially including both honest and malicious,
query the system during an observation period. In such situa-
tion, the metadetector has to face the slightly different problem
of discovering if there is an attacker among the users querying
the system. It is easy to see that this problem has the same
formalization as the one addressed in this paper, and then our
analysis can be also applied in this situation.

The remainder of the paper is organized as follows: in
Section II we provide a general introduction to multimedia
watermarking and to related literature on the problem of oracle
attacks. Then, in Section III we enter the heart of the paper:
we first present the metatest and then formally define the
LS metadetector. In Section IV, we discuss about possible
counterattacks (higher-level oracle attacks) and we propose
some LS metadetector implementations which are able to
cope with them. An analysis of the performance of those LS
metadetectors with respect to the design parameters is reported
in Section V. Section VI is devoted to the experimental
validation, with both synthetic signals and real images. The
paper ends with Section VII, where some conclusions are
drawn and directions for future research are highlighted.

II. PRIOR ART (ON WATERMARKING)

An important application scenario of the techniques dis-
cussed, which is used as a leading example throughout the
paper, is digital multimedia watermarking. In a multimedia
watermarking system, a watermark is imperceptibly embedded
in a multimedia content in order to, for example, protect the
copyright of its owner, hide data, or help in the authentication
of that content [17], [18]. Indeed, two general problems
are typically discerned in watermarking: watermark detection
(aka, zero-bit watermarking), and watermark decoding (aka,
multi-bit watermarking). In watermark detection one wants to
determine whether a certain watermark has been embedded in
the considered content or there is no watermark; therefore,
it is formalized as a binary hypothesis test. On the other

hand, in watermark decoding the content is assumed to be
watermarked using one among multiple possible watermarks,
each encoding a different message, and the decoder must
decide which watermark has been embedded. Consequently,
watermark decoding is a multiple hypothesis test. Both prob-
lems have security requirements, meaning that misleading the
detector or the decoder must be a hard task for those users
who do not have access to a secret key used to generate
the watermarks, and consequently defines the watermark de-
tection/decoding regions. A particular instance of watermark
embedding method, which has been extensively considered in
the literature and in practical applications, is the so-called Ad-
ditive Spread Spectrum (Add-SS) [19], where a pseudorandom
signal, independent of the multimedia host, is generated from
the secret key and added to the host. The detector in this case is
typically based on the correlation between the received content
and the watermark, and the comparison of that value with a
decision threshold; therefore, the resulting detection region is
a hyperplane.

The application scenario addressed in this work is related to
watermark detection. In particular, we consider the case where
the watermarking system is used for copyright enforcement
purposes (e.g., so that only those users in possession of
the proper rights can play a film or audio), and users have
access to the watermark detector as a black box (i.e., they
only see the binary output of the detector: watermarked vs.
non-watermarked); an example of this scenario is the DVD
copyright system [20]. In that framework, the watermark
detection system may be challenged by attackers, who want to
reverse the detector decision, i.e., they may want to convert a
watermarked content into non-watermarked, or vice versa. In
order to do so, the attackers must gain knowledge about the
watermark detection region. Although the information reported
by a binary black box detector might seem to be rather limited,
a number of attacks have been proposed in the literature
that repeatedly query the detector in order to produce an
illegitimate (i.e., illegally watermarked or non-watermarked)
content. They are globally named as oracle attacks.

The most popular oracle attack is the so-called sensitivity
attack, originally proposed in [2] for attacking the correlation-
based detector of Add-SS. The sensitivity attack works by
changing one component of the signal at a time and observing
the output of the decision function to learn the normal vector
that represents the detection region boundary. For more com-
plicated decision boundaries, more sophisticated approaches
were later proposed in [21]–[23]. In [3], [15], a powerful
variant of the sensitivity attack which implements Newton’s
descent algorithm to iteratively find a point close to the
decision boundary was proposed. The algorithm is completely
blind, in the sense that no a priori knowledge of the decision
function is needed; the information on the first and second
order local derivatives required by the iterative algorithm is
estimated by querying the detector. The algorithm, termed
Blind Newton Sensitivity Attack (BNSA), has been proven
to be very effective in removing the watermark and creating
forgeries for a number of existing schemes. Blind algorithms
have succeeded in removing the watermark for a variety of
watermarking algorithms, including those used in the BOWS



B. TONDI, P. COMESAÑA-ALFARO F. PÉREZ-GONZÁLEZ, M.BARNI: DETECTING LINE-SEARCH ATTACKS THROUGH SMART DETECTION 3

(Break Our Watermarking System) and BOWS-2 contests [24],
[25].

Many solutions have been proposed to counteract oracle
attacks. For example, efforts have been made to complicate the
shape of the decision boundary, e.g., by means of fractalization
[22] and randomization [21], [26]. These countermeasures
can be easily overcome by an attacker using the ‘envelope’
of the fractal boundary in one case, or averaging out the
boundary randomness in the other. Moreover, the use of intri-
cate decision boundaries typically entails a loss in detection
performance. Such decision boundaries are also difficult to
parameterize and, consequently, to put to work in practice.
Other solutions rely on zero-knowledge detectors, which output
the one-bit binary decision without revealing any additional
information (e.g., on the presence of the watermark [27], [28]).
Noticeably, even this minimum disclosure of information is
enough for BNSA to succeed.

III. METADETECTION OF LINE SEARCH ATTACKS

In this section we revisit the problem, originally proposed
in [10], of detecting LS attacks when either all the queries
in the batch considered by the metadetector are produced
by a legal user, or all of them come from a dishonest user
unaware of the metadetector existence (i.e., no misleading
strategies against the metadetector are implemented by the
attacker). Then, in Sect. IV we extend this analysis to the
case where the attacker is aware of the metadetector, and he
performs anti-counterattacking strategies aimed at misleading
the metadetector.

A. Notation

Throughout the paper, we use bold letters to denote vec-
tors, e.g., x. Random variables will be denoted by capital
letters, e.g., X , whereas bold capital letters will denote ran-
dom vectors, e.g., X. Given a sequence of random vectors
Xi ∈ RL, i = 1, .., N , their realizations are denoted by
xi, and we further define xN ∈ RLN as the vector built
by arranging the components of each of those vectors as
xN = (x1,1, ..., xN,1, ..., x1,L, ...., xN,L)T , and Υx as the
L × N -sized matrix containing the concatenation of the N
L-dimensional column vectors xi, i = 1, . . . , N . Similarly,
we denote by Ῡx an L × N matrix which contains the
sample mean of xi, itself denoted as x̄i, i = 1, ..., N ; further
details on the computation of x̄i are provided in Sect. IV-B.
Consequently, Σx = 1

L−1 (Υx − Ῡx)T (Υx − Ῡx) stands for
the N ×N sample covariance matrix between vectors, where
each entry (i, j) of Σx corresponds to the sample covariance
between vector xi and xj , that is Σx(i, j) = 1

L−1 (xi −
x̄i)

T (xj− x̄j). Let ΥX denote the random version of the ma-
trix. Then, ΣX = 1

LE
{

(ΥX − E{ΥX})
T (ΥX − E{ΥX})

}
stands for its statistical counterpart of the covariance matrix.
We denote with σij the (i, j)-th entry of the matrix, namely
the statistical covariance between Xi and Xj , which has
the expression σij = 1

LE
{

(Xi − E{Xi})T (Xj − E{Xj})
}

.
Then, ΣX = [σij ]

N
i,j=1. The L×L identity matrix is denoted

by IL×L. For any given pair of vectors x and y, we denote by
〈x,y〉 the scalar product between them, i.e., 〈x,y〉 =

∑
i xiyi.

Given a sequence of random variables Xi, i = 1, .., n, and
a random variable X with probability distribution f(X), we
use the notation Xi

d→ f(X) to indicate convergence in
distribution (or weak convergence) of Xi to X . For two
positive sequences {an} and {bn}, the notation an

.
= bn stands

for asymptotic equality, i.e., limn→∞ an/bn = 1. Finally, we
denote by I the indexing set {1, 2, ..., N}, and Ij stands for
the set of all the possible subsets of I of size j, i.e., an element
I ∈ Ij is a set of j indices chosen from I.

For ease of reading, we list the notation used throughout
the paper in Table I.

TABLE I
TABLE OF SYMBOLS.

x host signal, x ∈ RL

σX
2 variance of the host signal

w watermark sequence, w ∈ {−γ,+γ}L
γ watermark strength
yi i-th observed query, yi ∈ RL

yi = (yi,1, ..., yi,L)L

ȳi sample mean of yi

Σy sample covariance matrix of N queries, Σy ∈ RN×N

ΣY statistical covariance matrix of N queries, ΣY ∈ RN×N

yN vector of N observed queries, yN ∈ RLN

yN = (y1,1, ..., yN,1, ..., y1,L, ...., yN,L)T

s indicator sequence (si = 1, if yi is watermarked),
s ∈ {0, 1}N

Hw,0/Hw,1 null/alternative hypothesis of the watermark test
φw decision function of the watermark test

Rw,0, Rw,1 decision regions of the watermark test
Hq,0/Hq,1 null/alternative hypothesis of the metatest

φq decision function of the metatest
Rq,0, Rq,1 decision regions of the metatest
PF,q /PM,q false positive/negative error probability of the metatest

µ0 statistical mean of YN under Hq,0, µ0 ∈ RLN

µ1 statistical mean of YN under Hq,1, µ1 ∈ RLN

Σ0 statistical covariance matrix of YN under Hq,0,
Σ0 ∈ RLN×LN

Σ1 statistical covariance matrix of YN under Hq,1,
Σ1 ∈ RLN×LN

ψ vector of the combination weights of the line search
ψ ∈ [0, 1]N

σ2
N variance of the noise in the line search model

D / N −D number of dummies/ aligned queries
T threshold value of the metatest

λi(A) i-th eigenvalue of matrix A

B. Formalization of the metatest

We are interested in constructing a smart detector that is able
to decide whether an attacker is launching an oracle-attack
to the system. Without any loss of generality, in this work,
we formalize the primary test by referring to the watermark
detection problem. Subindices w and q are respectively used to
make distinction between primary detector and metadetector.

Formally, given a sequence under test y ∈ RL (where L
is the dimensionality of the feature space) and the watermark
sequence w, a watermark detector has to decide whether the
sequence y contains the watermark w (alternative hypothesis
Hw,1 of the watermark detector binary hypothesis test) or not
(Hw,0, null hypothesis). The watermark decision, based on a
decision function φw, splits the space of sequences into two
disjoint regions, Rw,0 and Rw,1. In this paper, we assume that
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Add-SS is used,1 so xw , x+w, where xw is the watermarked
signal and the watermark sequence w, independent of x, takes
values in {−γ,+γ}L, where γ determines the watermark
strength. The optimal detector for Add-SS in the Gaussian
i.i.d. case relies on the correlation between the observed
sequence y and the watermark w, that is, on the decision
function φw(y) , 〈y,w〉. As any binary hypothesis test, the
performance of watermark detection is quantified in terms of
the probability of false alarm and the probability of missed
detection (or equivalently, the false positive and false negative
error probabilities, respectively).

Given N consecutive observed queries yi, i = 1, .., N , the
metadetector decides whether yN is a legitimate (sometimes
also referred to as legal) batch of queries coming from
honest users, or instead the queries yN have been generated
by an attacker by using a line search (see [10]). The first
case corresponds to the null hypothesis of the metadetector
test (Hq,0), where the batch can contain both watermarked
and non-watermarked contents, while the second case is the
alternative hypothesis (Hq,1). The corresponding probability
density functions will be denoted by fYN |Hq,0

and fYN |Hq,1
,

respectively.
Let φq be the decision function of the metatest; the detector

will output φq(yN ) = 0 if yN is deemed a legitimate batch
of queries, and 1 otherwise. We denote by Rq,0 (respectively,
Rq,1) the acceptance (resp. rejection) region of the metatest.
The false positive and false negative error probabilities of
the metatest are denoted by PF,q ad PM,q, respectively. By
adopting a Neyman-Pearson approach, the metadetector puts
a constraint on the false positive error probability (or, alterna-
tively, on the false negative, depending on the application and
purpose of the test)

PF,q =

∫
Rq,1

fYN |Hq,0
(yN |Hq,0)dyN ≤ P ∗F,q,

for some prescribed value P ∗F,q, and tries to maximize PM,q.
To get a full statistical characterization of the test we need to
model the behavior of the attacker.

In [10], two types of metadetectors are presented, depending
on the assumptions made on the attacking strategy. The only
assumption made by the CTB-based metadetector is that, in
order to succeed, the attacker must submit to the detector
a number of queries close to the detection boundary. This
consideration leads to a metatest of wide-applicability. In
contrast, the LS metadetector exploits the knowledge of the
specific methodology adopted by the attacker (that is, a line
search), to develop an even more powerful defense. In this
paper, we consider this second type of metadetector introduced
in [10], i.e., the LS metadetector. Although the applicability
of this test is confined to LS attacks (implying a loss of
generality with respect to the CTB-based metadetector), it
must be noticed that virtually all oracle attacks perform line
searches.

1The reason for this assumption is mathematical tractability; however, the
metadetectors proposed in this paper can be quite straightforwardly extended
to most other embedding/detection methods.

C. Line Search metadetector
For the sake of mathematical tractability, hereafter we

assume the host signal x to be Gaussian distributed. Of course
more complicated models can be treated, probably by means
of numerical analysis.

Definition 1 (Model of legal queries): Legitimate users
can submit two kinds of queries, corresponding to water-
marked and non-watermarked signals. We model the former
by N (w, σ2

XIL×L), where the watermark w is known at
the detector. On the other hand, non-watermarked signals are
assumed to follow a N (0, σ2

XIL×L). In both cases, we assume
the variance σ2

X ∈ R+ to be the same for all the queries, and
known by the detector. Reasonably, query signals are assumed
to be mutually independent.
We will also find it useful to define the indicator s, whose
components are si = 1 if yi is watermarked and si =
0 otherwise, i = 1, . . . N , and the corresponding random
variable Si. Therefore, the null hypothesis is formalized as
Hq,0 : YN ∼ N (µ0,Σ0), where µ0 and Σ0 are, respec-
tively, the mean and the covariance matrix of YN under that
hypothesis. Then, each component of the mean vector µ0 is
set to 0 or to the corresponding component of w, depending
on whether the query corresponds to a watermarked signal or
not, and Σ0 , σ2

XINL×NL. Consequently, the null hypothesis
distribution can be parameterized by the indicator s.

By exploiting the knowledge of the attacker strategy, we
can define the model of queries under Hq,1.

Definition 2 (Model of attacking queries (metadetector-
unaware attacker)): Query signals corresponding to dishonest
users are noisy convex combinations of a watermarked signal,
which we denote by YW ∼ N (w, σ2

XIL×L), and a non-
watermarked signal, denoted by YNW ∼ N (0, σ2

XIL×L).
Specifically, we let Y1 , YW and Y2 , YNW ; then, the i-th
query (i ≥ 3) can be written as Yi , ψiY1+(1−ψi)Y2+Ni,
where 0 < ψi < 1, Ni ∼ N (0, σ2

N IL×L), i = 3, . . . , N . Since
Ni is typically used for modeling quantization effects in a
transform domain, we will assume that: 1) Ni is independent
of Y1 and Y2; 2) the Ni are mutually independent, and
identically distributed; and 3) both σ2

X and σ2
N are known by

the detector. We further assume that Y1 and Y2 are mutually
independent. The generation of attacking queries according to
the line search procedure is graphically depicted in Fig. 1.

We must remark that in a real framework the location of the
watermarked and non-watermarked signals within the batch is
unknown to the detector; therefore, under Hq,1 the indices
corresponding to the line extremes should be included in the
set of unknown parameters, jointly with ψi, i = 3, . . . , N .
Nevertheless, for the sake of notational simplicity we do
not model the line extremes differently,2 but we consider
the N aligned queries to follow the same model Yi ∼
N (ψiw,

[
(ψ2
i + (1− ψi)2)σ2

X + σ2
N

]
IL×L), i = 1, ..., N .

Besides, σij = 1
LE{(Yi − ψiw)T · (Yj − ψjw)} = (ψiψj +

(1−ψi)(1−ψj))σ2
X +σ2

Nδ[i−j], i, j = 1, ..., N , where δ[·] is
the Kronecker delta function (δ[a] = 1 if a = 0, 0 otherwise).

2The proposed formalization can be generalized to deal with the detection
of the two extreme line queries, but we consider that the substantial increase
in notational complexity only provides a minor improvement in the problem
insight, so we skip it.
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noise 

Watermarked 
query 

Non-watermarked 
query 

Fig. 1. Graphical illustration of the line search procedure of generation of
the attacking queries (metadetector-unaware attack). To ease the graphical
representation, the case L = 2 is considered.

Then, the alternative hypothesis can be formalized as
Hq,1 : YN ∼ N (µ1,Σ1) where mean µ1 and covari-
ance matrix Σ1 of Y N under Hq,1 and are built as fol-
lows: µ1 contains the mean vectors ψiw, i = 1, . . . , N ,
with the component arranged as in YN , that is µ1 ,
(ψ1w1, . . . , ψNw1, . . . , ψ1wL, . . . , ψNwL); the LN×LN co-
variance matrix Σ1 is a block diagonal matrix, made up of
the N × N statistical covariance matrix ΣY = [σij ]

N
i,j=1

repeated L times. Therefore, the alternative hypothesis can
be parameterized by ψi ∈ [0, 1], i = 1, . . . , N .

Due to the presence of nuisance parameters, both the
null and the alternative hypothesis are composite hypotheses,
so the Neyman-Pearson criterion cannot be directly applied,
and, instead, the generalized likelihood ratio test (GLRT) is
customarily used. Such test becomes

Λ(yN ) , log

(
max
ψ

fYN |Hq,1
(yN |ψ)

)
− log

(
max
s

fYN |Hq,0
(yN |s)

)
≷ τ, (1)

and the decision function of the metatest is

φq(y
N ) =

{
0 if Λ(yN ) < τ
1 if Λ(yN ) ≥ τ . (2)

By exploiting the nature of the pdf’s involved in the current
problem, the test statistic Λ(yN ) in (1) can be rewritten as

min
s∈{0,1}N

1

2

[
(yN − µ0)TΣ−1

0 (yN − µ0) + log(|Σ0|)
]

− min
ψ∈[0,1]N

1

2

[
(yN − µ1)TΣ−1

1 (yN − µ1) + log(|Σ1|)
]
.

(3)

The only remaining issue is to determine the value of the
decision threshold τ in order to verify that the false positive
error probability when the GLRT is used is smaller than
or equal to a target value P ∗F,q, i.e., PF,q = P (Λ(YN ) ≥
τ |Hq,0) ≤ P ∗F,q. This can be done by upperbounding the test
statistic by a function Λ′(yN ) which does not depend on s, i.e.,
irrespectively of whether a legitimate query corresponds to a
watermarked or non-watermarked content. From Λ′(XN ), the
threshold τ can be estimated by using Monte Carlo integration
(see [10] for the details and the computations).

Experiments in [10] show that such a detector is able to
reveal the presence of an oracle attack by observing very few
queries. For instance, for a setting with L = 2 · 104 and
σ2
X/σ

2
N ∼ U(8, 12), by considering only 3 observed queries

(i.e., N = 3), Monte Carlo simulations yield a probability of
missed detection PM,q ≈ 10−50 with a prescribed false alarm
error probability P ∗F,q ≈ 10−20.

IV. DUMMY-AWARE METADETECTION

In this section we extend the previous analysis by account-
ing for the possibility that the smart attacker reacts to the
countermeasure adopted against him by the metadetector; in
order to do so, the attacker designs a query pattern explicitly
thought to reduce the detectability of his attack. Although
finding the optimal counterattacking strategy is a hard task,
general reasonings on the possible reactions of the attacker
allow us to refine the metadetection. We will show both
theoretically (Section V) and experimentally (Section VI) that
the attacker’s task of confusing the metadetector becomes
extremely hard.

A. Counterattacking the metadetector

As a consequence of the introduction of a smart detector,
we might expect that the attacker will adapt his strategy to
react to the coutermeasures adopted by the detector. Then, the
interplay between attacker and metadetector should be studied
in order to evaluate the final achievable detection performance.
Clearly, the best strategy for the attacker depends on the
knowledge he has of the metadetector, but even assuming
that the attacker knows the specific metadetector he wants to
mislead, it is difficult to figure out what would be the best
reaction for the attacker. Moreover, being now both parties
(detector and attacker) intelligent players, a counterattack will
be presumably followed by a higher level of metadetection,
that is, the smart detector will, in turn, refine its strategy
by assuming that proper countermeasures are taken by the
attacker, thus falling into a never-ending loop.

A common and elegant way to address this problem in
detection applications is to resort to a game theoretic for-
mulation, which models the interaction between detector and
adversary, and study the existence of equilibria (e.g., this
is done in [29] for the watermark detection problem and
in [30], [31] for a general binary detection problem). A
drawback of most existing game-theoretic approaches is that
they tend to be overly conservative: the system accounts for
the worst case of an attacker trying to minimize in some
way the detection performance; then, when an attacker is not
present, the performance is highly suboptimal, as a higher
correct detection probability could be achieved for a given
false alarm rate. A way to escape this problem is to define a
metagame, where the presence or absense of the adversary
is taken into account within the game formulation. This,
however, complicates significantly the analysis. Besides, in
our case, the dynamic interaction between the players should
be formalized, which accounts for the fact that the attacker
may gain knowledge about secret information of the system
by repeatedly invoking the detector (dynamic games, [32]).
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Then, without significantly limiting the freedom of attacker
and smart detector, deriving a proper game definition is a
rather complicated task. Instead, in this paper, we make some
reasonable considerations about the reaction strategy of the
attacker in a possible second iteration of the game (tug of
war), in order to refine the metadetection.

Specifically, we consider that a reasonable strategy for the
attacker, who does not want to be detected, is to try to mimic
as close as possible the behavior of legal users. From this
perspective, the attacker will mix his attacking queries with as
many legal queries as possible. This is a simple yet effective
way for the attacker to make the batch of N queries yN to
look like a honestly generated batch. To be more specific,
such a strategy allows to increase the probability of the
attacking batch under Hq,0, i.e., fYN |Hq,0

(yN ), and decreases
its probability under Hq,1, i.e., fYN |Hq,1

(yN ) with respect to
the case in which all the N queries are attacking ones, thus
reducing the value of the likelihood ratio that purely attacking
sequences would achieve. This would allow the attacker to
increase the probability of fooling the metatest, at the price of
reducing the oracle attack effectiveness, as a number of queries
in the batch will not gather any information. Indeed, one must
also consider that the larger the number of queries performed
by the oracle attack, the higher the accuracy of the detection
boundary; in other words, the average distortion introduced
by the attacker in order to illegally remove (or introduce) the
watermark, will be smaller for a larger number of queries
of the oracle attack. Therefore, for a given target accuracy
of the attack (namely, the worst case accuracy of estimation
of the detection boundary), introducing legal queries implies
that the attacker has to spread out its line search attack over
a large number of queries. Then, the attacker has to face a
trade off between the distortion introduced by his subsequent
watermark removal/embedding attack, the probability of evad-
ing the metadetection (not being caught), and the time spread
of the attack. 3 It is worth noting that for the attacker the
choice of mixing useful with legal queries also avoids the
introduction of a new particular pattern that could be, in turn,
easily detected by the metadetector in a further iteration of
the tug of war. In addition, the idea of concealing the aligned
queries within a set of honestly generated queries has some ties
with the case where members of a rare class of data are hidden
within noise. Indeed, for the problem of detecting large-mean
variables within a pool of white Gaussian noise (a variant
of the so-called ‘needle-in-a-haystack problem’ [33], [34]), it
has been shown that the detection performance only depends
on the number of these large-mean variables relative to the
number of total samples; specifically, reducing the relative
number of large-mean variables is what makes the detection
fail. This connection with the needle-in-a-haystack problem
gives further rationale for the attacker’s mimicking strategy
discussed above. As a final observation, we point out that
such a strategy has also some ties with the evasion attacks in

3In many practical situations, as in many applications of digital audio/video
watermarking, the real-time nature of the applications imposes constraints on
the delay of the attack. In all these cases, having to spread the attack over
many batches of queries may be critical.

intrusion detection systems, where the attacker tries to match
the normal behaving profile (e.g., the polymorphic blending
attack (PBA) [8] and the mimicry attack [9]).

Then, we assume that the attacker, instead of adopting
an ’eager’ strategy by generating N queries according to
the line search, refines his approach in order to counter the
metadetection. He does so by generating a batch of N queries,
where (N −D) ‘useful’ attacking queries are mixed with D
queries generated according to Hq,0.4 We will refer to such
‘no information gathering’ queries as dummies. Alternatively,
the attacker might share the oracle with legitimate users, both
problems leading to the same formulation.

B. Dummy-aware Line Search metadetector
We generalize the analysis carried out in Sect. III-C to the

case in which some of the queries made by the attacker are
generated according to the line search procedure, and some
follow the distribution of legal queries. Accordingly, we must
redefine the model under the alternative hypothesis (model of
attacking queries) introduced in Sect. III-C:

Definition 3 (Model of attacking queries (metadetector-
aware attacker)): D out of N queries follow N (0, σ2

XIL×L)
(non-watermarked) or N (w, σ2

XIL×L) (watermarked); they
are mutually independent, and independent of the signals
we define next. Out of the remaining (N − D) queries,
one of them, denoted by YNW , follows N (0, σ2

XIL×L),
while another, denoted by YW , follows N (w, σ2

XIL×L); they
respectively correspond to a non-watermarked and a water-
marked independent signals that define the extremes of the
line search. The remaining (N −D− 2) attacking queries are
generated according to the line search procedure. Specifically,
a generic non-extreme attacking query Yi follows the model
Yi , ψiYW + (1 − ψi)YNW + Ni, where 0 < ψi <
1, and the noise random variables Ni ∼ N (0, σ2

NIL×L)
are i.i.d. and independent of YNW , YW , and ψi. Conse-
quently, Yi ∼ N (ψiw,

[
(ψ2
i + (1− ψi)2)σ2

X + σ2
N

]
IL×L),

and σij = 1
LE{(Yi−ψiw)T · (Yj−ψjw)} = L(ψiψj +(1−

ψi)(1− ψj))σ2
X + σ2

Nδ[i− j].
Note that for the sake of simplicity we focus on the detection

of a single line search with dummy queries.
Let I ∈ IN−D be the index set of the (N −D) attacking

queries; hence, I = I \ I is the set of the indices of the
honest queries. Similarly to Definition 2, in a real scenario the
location of the line extremes within the batch is not known to
the metadetector. Therefore, in the subsequent GLRT analysis,
and for the sake of notational simplicity, the pdf under the
alternative hypothesis is parameterized by the number j of
aligned queries, 3 ≤ j ≤ N , the set of indices corresponding
to those queries I ∈ Ij , the combination parameters ψi ∈ [0, 1]
for i ∈ I , and the indicators si ∈ {0, 1} for i ∈ Ī , where Ī is
the complementary set of I , i.e., the index set of the dummies.
We remark that, according to the proposed formalism, we
skip the determination of the line search extremes in the
GLRT analysis, which would have significantly increased the
notational complexity. Note that legal and aligned queries are

4Note that our analysis assumes that the attacker knows N , thus considering
a favorable situation for him; in any case, the strategy of mixing attacking
queries with dummy ones does not require the attacker to know that value.
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Fig. 2. Graphical illustration of the attacking strategy according to the
model in Definition 3 (metadetector-aware attack) with L = 2. In the
depicted case, YD

d = {Y2,Y4,Y6,Y7,Y10,Y11,Y12} and YN−D
a =

{Y1,Y3,Y5,Y8,Y9,Y13}.

interspersed in an arbitrary way; more formally, each observed
query Yi is an attacking query if i ∈ I , for some arbitrary
I ∈ IN−D, and a dummy query otherwise. Let YD

d be the
vector containing the legal queries, and YN−D

a the vector
containing the aligned queries. Fig. 2 illustrates the procedure
of generation of attacking queries according to the model given
in Definition 3. In the example considered, D = 7, N−D = 6,
YW = Y1, YNW = Y3 and I = {1, 3, 5, 8, 9, 13}. The DL-
length vector YD

d is then modeled according to Definition 1,
that is YD

d ∼ N (µ1d, σ
2
XIDL×DL), where each component

of µ1d is set to 0 or to the corresponding component of w,
depending on whether the query corresponds to a watermarked
signal or not, whereas YN−D

a is a vector of length (N −D)L
which follows the model introduced in Sect. III-C. Hence,
YN−D
a ∼ N (µ1a,Σ1a) where the mean vector µ1a contains

the mean values ψiw, i = 1, ..., N − D and Σ1a is a block
diagonal matrix where each block of size (N−D)×(N−D),
repeated L times, corresponds to the covariance matrix of the
aligned queries, namely, ΣYa

= [σij ]i,j∈I .
Accordingly, YN ∼ N (µ1,Σ1) where µ1 is obtained from

µ1d and µ1a by picking the elements according to the query
ordering in YN (i.e., according to the index sets I and I), and
matrix Σ1 is a block diagonal matrix where each block of size
N ×N corresponds to the covariance matrix of the queries in
YN and it is repeated L times. Therefore, each block of Σ1 is
a reordering of the D×D block diagonal matrix made up of
the subblock σ2

XID×D (i.e., covariance matrix of the dummy
queries) and the (N −D)× (N −D) matrix ΣYa = [σij ]i,j∈I
(i.e., covariance matrix of the attacking queries), where the
reordering goes according to the position of the queries in
YN .

Consequently, the GLRT can be written in this case as

Λ(yN ) = log

(
max
θ1

fYN |Hq,1
(yN |θ1)

)
− log

(
max

s∈{0,1}N
fYN |Hq,0

(yN |s)
)

≷ τ,

where θ1 is the concatenation of j (with j ∈ {3, . . . , N}), the
index set I ∈ Ij , the combination parameters ψi, for i ∈ I ,
and the indicators si, for i ∈ I .

Thus, for the Gaussian case

Λ(yN ) = (4)

min
si∈{0,1},i=1,...,N

1

2

[
(yN − µ0)TΣ−1

0 (yN − µ0) + log(|Σ0|)
]

− min
j=3,...,N

min
I∈Ij

min
si∈{0,1},i∈I

min
ψi∈[0,1],i∈I

1

2

[
(yN − µ1)TΣ−1

1 (yN − µ1) + log(|Σ1|)
]
.

Recall that µ0 depends on si, i = 1, . . . , N (but Σ0 does not),
while Σ1 depends on j, I and ψi, i ∈ I , and µ1 depends on
the three latter, and on si, i ∈ I . It is worth mentioning that
(4) is designed in order to cope with a single line search; this
approach can be generalized to the case where multiple line
searches are simultaneously performed.

Note that the value of (4) does not depend on si ∈
{0, 1}, i ∈ I , as the contribution of those si is the same in
both target functions and, consequently, they cancel each other
out. Hence, (4) can be rewritten as

Λ(yN ) = max
j=3,...,N

max
I∈Ij

(5)

min
si∈{0,1},i∈I

1

2

[
(yN − µ0)TΣ−1

0 (yN − µ0) + log(|Σ0|)
]

− min
ψi∈[0,1],i∈I

1

2

[
(yN − µ1)TΣ−1

1 (yN − µ1) + log(|Σ1|)
]
,

which indeed can be solved in two steps by first computing

I∗ , arg min
I∈Ij ,j=3,..,N

(6)

min
ψi∈[0,1],i∈I

[
(yN − µ1)TΣ−1

1 (yN − µ1) + log(|Σ1|)
]
,

and then

min
si∈{0,1},i∈I∗

[
(yN − µ0)TΣ−1

0 (yN − µ0) + log(|Σ0|)
]
. (7)

Furthermore, note that if I were known at the metadetector,
then (5) would be equivalent to

min
si∈{0,1},i∈I

1

2

[
(yN − µ0)TΣ−1

0 (yN − µ0) + log(|Σ0|)
]

− min
ψi∈[0,1],i∈I

1

2

[
(yN − µ1)TΣ−1

1 (yN − µ1) + log(|Σ1|)
]
,

which, as one would expect, is equivalent to (3) once the
indices in the optimization set used there (i.e., {1, . . . , N})
are replaced by I . This means that the line search detection
problem with dummy queries, when the observation indices
on the line are known to the metadetector, is the same as
the line search detection problem with no dummy queries,
but taking into account that now there are |I| = N − D
observations, instead of N . Of course, this is not a realistic
situation, and in practice the two-step minimization in (6)-(7)
must be performed.

Solving (6) is computationally demanding, as the first min-
imization requires an exhaustive search over all the possible
sets of j elements out of N possibilities (there are

(
N
j

)
of

those sets), and also one exhaustive search over j, for a total
of

N∑
j=3

(
N

j

)
= 2N − 1−N − N(N − 1)

2
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choices. Then, we consider that j-dimensional optimizations
should be performed for each set in Ij , and that a j-
dimensional optimization problem is harder to solve than j
one-dimensional optimization problems (as the multidimen-
sional problem has to deal with the combined effect of those
variables); consequently, we can state that the total complexity
of (6) is larger than the complexity of solving

N∑
j=3

j

(
N

j

)
= N/2(2N − 2N)

real scalar optimizations in [0, 1]. Just for the sake of illustra-
tion, note that for N = 50 (which is a very small value for
practical applications)5 such number is about 2.815 × 1016;
even assuming that the rate of solving those problems is
106 problems per second, this means that more than 892
years of computation would be required for solving this toy
example. Consequently, for practical values of N this is not a
computationally feasible problem.

Since a metatest based on the GLRT is hard to implement,
alternative metadetectors will be proposed next. A common
characteristic of these metadetectors is that they try to ex-
ploit the fact that if σ2

X � σ2
N , then under Hq,1 the Yi,

i = 1, . . . , N will approximately lie on a (D+2)-dimensional
subspace, while under Hq,0 they will lie on an N -dimensional
one. In order to quantify this effect, we focus on the sample
covariance matrix of the queries Σy. For computing Ῡy, the
detector exploits that sign(wj)yij ∼ N (γ, σ2

X) for water-
marked queries, and sign(wj)yij ∼ N (0, σ2

X), j = 1, ..., L,
for non-watermarked queries. Then, the sample mean of yi is
calculated as ȳi , sign(w) 1

L

∑L
j=1 sign(wj)yij , which is used

in the computation of the sample covariance matrix between
queries. Note that, in the above calculations, we assume that
the watermark strength γ does not depend on L.

Specifically, we propose to use the following metadetectors
based on statistics obtained from the sample covariance matrix
Σy:
• Determinant-based Metadetector (DM): defined as

ΛDM(yN ) , |Σy|. Under Hq,1, and due to the closeness
of some of the yi to a linear subspace discussed above,
one would expect ΛDM(yN ) to be much smaller than
under Hq,0. Specifically, by letting s(n, k) , n(n −
1) · · · (n−k+1), according to [35] (Section V) and [36],
as long as limL→∞

N
L = p, 0 < p < 1, the statistic

|Σy|
|ΣY|

(L− 1)N

s(L− 2, N)

converges in distribution to a log-normal distribution with
null mean and variance −2 log(1− p), as L→∞. Note
that under Hq,0, |ΣY| = Σ

1/L
0 = σ2N

X , while under Hq,1

|ΣY| = Σ
1/L
1 = σ

2(D+2)
X σ

2(N−D−2)
N (cf. Sect. V-B).

5Note that in practical applications the dimensionality of the watermark
detection features L is in the order of thousands or tens of thousands to
achieve robustness [2]; consequently, for a given fixed accuracy (i.e., for a
fixed value of N −D), the detection of the search lines will be an easy task
for the metadetector. Therefore, the attacker must introduce a large number
of dummy queries D, producing large values of N , in order to mislead the
metadetector decision. A more formal analysis regarding this issue can be
found in Sect. V.

• Sphericity-based Metadetector (SM): defined as
ΛSM(yN ) , log(|Σy|) − N log

[ tr(Σy)

N

]
[37], in

such a way that under Hq,0 ΛSM(yN ) will be close to 0,
while under Hq,1 it will be negative.

• Smallest Eigenvalue-based Metadetector (SEM): defined
as ΛSEM(yN ) , mini=1,...,N λi(Σy), where λi(A) is the
ith eigenvalue of square matrix A, i.e., the metadetector
considers the smallest eigenvalue of the sample covari-
ance matrix. Under Hq,0 that value is expected to be
larger than under Hq,1. A straightforward way of imple-
menting this metadetector is by computing the Singular
Value Decomposition (SVD) of the sample covariance
matrix. Nevertheless, since not all the eigenvalues, but
just the smallest one, is needed, alternative implemen-
tations exist that allow to alleviate the computational
burden of the SVD implementation; this is achieved, for
example, by computing the inverse of the sample covari-
ance matrix and then running an off-the-shelf algorithm
(e.g., the power method [38]) for numerically computing
the largest eigenvalue of the resulting matrix.6 Alternative
designs might provide larger computational savings.
Be aware that the statistical characterization of this test
(in terms of false positive and false negative probabilities)
requires to model the distribution of the smallest eigen-
value of the sample covariance matrix of non-independent
observations, which, to the best of our knowledge, is
an open problem. Therefore, for the sake of analytical
tractability, the next metadetector is also proposed.

• Genie-Aided Metadetector (GAM): defined as
ΛGAM(yN ) , min{diag(UT · Σy · U)}, where
diag(A) stands for the diagonal elements of matrix
A, and U is the orthogonal matrix that diagonalizes
Σ1. Indeed, if one calculates UT · ΣY · U under both
hypotheses, then a diagonal matrix is obtained with
the eigenvalues of ΣY . Instead, if we consider the
diagonal elements of UT · Σy · U , it is known that their
limiting distribution (as L tends to infinity) is normal
with mean λi(ΣY) and variance 2

(L−1)λ
2
i (ΣY) and

the obtained diagonal values are mutually independent
( [37, Theorem 3.4.4]). Be aware, in any case, that U
depends on which queries are involved in the line search
(and also on the corresponding ψi), and in practice that
information would not be available to the metadetector.
For this reason, we term this metadetector Genie-aided.
Although this metadetector is not realistic, we find it
useful in order to derive theoretical performance bounds
on eigenvalue-based metadetectors (as SEM).

V. PARAMETER ANALYSIS AND LIMITING PERFORMANCE
OF THE METADETECTION

A question that arises when defining the metadetector is how
to choose the batch size N . Since the defender does not have
information on how the attacker distributes the useful attacking

6For the sake of illustration, in a Core i5-4670 3.4GHz 20 GB RAM, the
average computing time of a Monte Carlo simulation for L = 100, N = 80,
σ2
X = 10, and σ2

N = 1, is about 0.623 ms for SVD and 0.260 ms for the
alternative method, while the obtained detection results are virtually the same.
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queries among the dummy ones, choosing a proper value for
N is a difficult and critical issue: with a too large N , the
defender risks that the oracle attack may succeed within those
N queries, thus failing in timely detecting it; on the other hand,
a too small N might cause that only few attacking queries are
made in each batch, so the attack can be pursued over a number
of batches. To address this problem, it is interesting to study
the behavior of the metatest with respect to N .

In this section we analyze some of the methods proposed in
Section IV-B for the dummy-aware line search metadetector.
Specifically, we provide a theoretical analysis of the perfor-
mance for DM and GAM. Interestingly, for the latter we will
prove that even a line search of only three queries is detectable
within the pool of dummy queries, for any N below a critical
value which grows exponentially with the dimensionality L.

A. DM analysis

In the case of DM, a theoretical analysis can be carried out
by exploiting the knowledge of the statistics of the determinant
of the sample covariance matrix. According to [36, Theorem
1], for the case limL→∞N/L = p, 0 < p < 1, the following
limit holds as L→∞:

log |Σy| − log |ΣY| − τL,N
σL,N

d→ N (0, 1), (8)

where τL,N ,
∑N
k=1 log(1 − k/L) and σL,N ,√

−2 log(1−N/L). From the knowledge of the value of
the determinant of the statistical covariance matrix under the
two hypotheses, it is easy to get an asymptotic evaluation
for the two error probabilities. Focusing on the false positive
probability, for large L we can write:7

PF,q =Pr{|Σy| < T |Hq,0}
=Pr{log |Σy| < log T |Hq,0}

.
=1−Q

 log T −
[
log σ2N

X +
∑N
k=1 log(1− k/L)

]
√
−2 log(1−N/L)


=1−Q

(
log T ′ − log σ2N

X√
−2 log(1−N/L)

)
, (9)

where log T ′ , log T −
∑N
k=1 log(1− k/L), and Q(·) is the

Q-function (i.e., the tail probability of the standard normal
distribution).

Similarly, for the false negative probability we have:

PM,q =Pr{|Σy| ≥ T |Hq,1}
=Pr{log |Σy| ≥ log T |Hq,1}

.
=Q

(
log T ′ − log[σ

2(D+2)
X σ

2(N−D−2)
N ]√

−2 log(1−N/L)

)
. (10)

7Throughout this section, we exploit the fact that the error probabilities can
be considered as sequences indexed by L; then, we consider the asymptotic
behavior of those sequences when L goes to infinity.

From the above expressions, we can derive necessary and
sufficient conditions for the two error probabilities tending to
zero as L→∞, which are:

lim
L→∞

log σ2N
X − log T ′√

−2 log
(
1− N

L

) =∞, and (11)

lim
L→∞

log T ′ − log σ
2(D+2)
X σ

2(N−D−2)
N√

−2 log
(
1− N

L

) =∞. (12)

Since we assume that for large L the number of observations
N grows linearly with L, the denominator tends to a constant
(i.e.,

√
−2 log (1− p)). Then, under that assumption, from

(11) and (12) it is easy to check that the simultaneous
verification of the two following conditions

limL→∞N −D =∞, and (13)

σ2
N <

(
T ′

σ
2(D+2)
X

)1/(N−D−2)

< σ2
X (14)

is indeed a sufficient condition for both error probabilities to
asymptotically go to 0. Then, a proper choice of the threshold
T can be made such that an asymptotical powerful test is
achieved if (13) holds. Note that the derived condition is
sufficient, and it was obtained under the assumption of linear
growth of N as a function of L; consequently, less restrictive
conditions might be derived. In any case, from the perspective
of the metadetector this condition is less demanding than
the condition found for the CTB-based metadetector in [16],
illustrating the advantage in terms of detectability of using LS
instead of CTB-based metadetectors whenever a Line Search
is indeed run; in fact, while here the sufficient condition only
requires that the number of aligned queries goes to infinity
with the dimensionality, the sufficient condition for the CTB-
based metadetector establishes a minimum growth rate for the
number of attacking queries. In fact, unless the number of
attacking queries increases at least logarithmically with L, the
attack is not guaranteed to be discovered by the CTB-based
metadetector.

B. GAM analysis

We now focus on the genie-aided metadetector. The test
statistic is obtained from matrix UTΣyU , by considering the
diagonal elements and looking for the smallest. Since the
statistical matrix UTΣYU is diagonal under both hypotheses,
the diagonal elements of matrix UTΣyU are asymptotically
mutually independent and normally distributed [37, Theorem
3.4.4]. Formally, for large L,

{UTΣyU}ii
d→ N

(
λi(ΣY),

2

(L− 1)
λ2
i (ΣY)

)
. (15)

From the above discussion, the evaluation of the error
probabilities for large values of L becomes an easy task. Let
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V , UTΣyU . Then, the asymptotic behavior with respect to
L of PF,q is:8

PF,q =Pr{min
i
vii ≤ T |Hq,0}

=1− Pr{v11 > T, v22 > T, ..., vNN > T |Hq,0}

.
=1−

N∏
i=1

Pr{vii > T |Hq,0}

.
=1−Q

(√
L− 1(T − σ2

X)√
2σ2

X

)N
. (16)

In order to achieve an asymptotically zero false positive error
probability, T < σ2

X must hold. For any given threshold
satisfying this condition, going on from (16) we can write

PF,q
.
= 1−

(
1−Q

(√
L− 1(|T − σ2

X |)√
2σ2

X

))N

≤ 1−

(
1− e

− (L−1)(T−σ2X )2

4σ4
X

)N

=

N∑
k=1

(
N

k

)
e
− k(L−1)(T−σ2X )2

4σ4
X

≤
N∑
k=1

(
Ne
− (L−1)(T−σ2X )2

4σ4
X

)k
.
= e
− (L−1)(T−σ2X )2

4σ4
X

+logN
, (17)

where we have exploited the Chernoff bound of the Q func-
tion, i.e., Q(x) ≤ e−x

2/2, the binomial expansion, and the
fact that in the case of interest limL→∞ exp{−(L − 1)(T −
σ2
X)2/4σ4

X +logN} = 0, and consequently the sum over k is
asymptotically equivalent to consider just k = 1. Therefore, a
sufficient condition for PF,q to go to 0 is that

T < σ2
X , and (18)

limL→∞

(
(L−1)(T−σ2

X)2

4σ4
X

− logN
)

=∞ (19)

simultaneously hold.
Let us now focus on the probability of a false negative

error PM,q. In order to evaluate PM,q, we need to determine
the eigenvalues of the statistical covariance matrix between
queries under H1, i.e., ΣY . We know that D of those
eigenvalues will be equal to σ2

X . To characterize the remaining
N −D eigenvalues, corresponding to the aligned queries, we
can resort to Weyl’s inequality [39]. According to Definition
3, the covariance matrix for the aligned queries, that is
ΣYa

= [σij ]i,j∈I , is given by
• σ1,1 = σ2,2 = σ2

X .
• σ1,2 = σ2,1 = 0.
• σ1,j = σj,1 = ψjσ

2
X , 3 ≤ j ≤ N −D.

• σ2,j = σj,2 = (1− ψj)σ2
X , 3 ≤ j ≤ N −D.

• σi,i = [ψ2
i + (1− ψi)2]σ2

X + σ2
N , 3 ≤ i ≤ N −D.

• σi,j = σj,i = [ψiψj + (1−ψi)(1−ψj)]σ2
X , 3 ≤ i 6= j ≤

N −D.

8Note that the independence between vii only holds asymptotically, when
L goes to infinity.

We observe that, since ΣYa
is symmetric, it can be rewritten

as ΣYa
= RDRT , where D is the diagonal matrix

D ,

(
σ2
XI2×2 02×(N−D−2)

0(N−D−2)×2 σ2
NI(N−D−2)×(N−D−2)

)
(20)

and R, which diagonalizes ΣYa
, is the lower triangular matrix

R ,



1 0 0 0 . . . 0
0 1 0 0 . . . 0
ψ3 (1− ψ3) 1 0 . . . 0
ψ4 (1− ψ4) 0 1 . . . 0
...

...
...

...
. . .

...
ψN−D (1− ψN−d) 0 0 . . . 1


.(21)

From matrix theory, the determinant of ΣYa
corresponds to

that of the inner diagonal matrix D, which is σ4
Xσ

2(N−D−2)
N .

In order to exploit Weyl’s inequality, we write ΣYa
as the

sum of two covariance matrices, namely Γ and Θ (relative to
the signal and noise contributions, respectively). Specifically,
ΣYa

= Γ + Θ, where the only non-zero elements of Θ are
θii = σ2

N , 3 ≤ i ≤ N −D, and Γ is the denoised version of
ΣYa

(i.e., where we set σ2
N to 0).

From the above rewriting, it is easy to infer that N −D −
2 eigenvalues of Γ are null; the other two are equal to σ2

X .
Also straightforwardly, Θ has two null eigenvalues and N −
D − 2 eigenvalues equal to σ2

N . Ordering the eigenvalues in
decreasing order, and applying Weyl’s inequality, we get:

• λi(ΣYa
) ≥ λi(Γ)+λN−D(Θ) = λi(Γ) and λi(ΣYa

) ≤
λi(Γ) + λ1(Θ) = λi(Γ) + σ2

N , so

◦ σ2
X ≤ λ1(ΣYa

) ≤ σ2
X + σ2

N ,
◦ σ2

X ≤ λ2(ΣYa
) ≤ σ2

X + σ2
N , and

◦ 0 ≤ λi(ΣYa
) ≤ σ2

N , 3 ≤ i ≤ N −D.

• λi(ΣYa
) ≥ λi(Θ) + λN−D(Γ) = λi(Θ), so

◦ λi(ΣYa
) ≥ σ2

N , 1 ≤ i ≤ N −D − 2.

By combining the inequalities, it is straightforward to conclude
that λi(ΣYa

) = σ2
N for 3 ≤ i ≤ N −D− 2 (i.e., N −D− 4

eigenvalues are equal to σ2
N ); two of the remaining ones are

smaller than or equal to σ2
N , and the last two lie in the interval

[σ2
X , σ

2
X + σ2

N ]. By exploiting the value of the determinant of
ΣYa

discussed above, we have that λ1(ΣYa
) · λ2(ΣYa

) ·
λN−D−1(ΣYa

) · λN−D(ΣYa
) = σ4

Xσ
4
N .

Let µ1 and µ2 denote the two small eigenvalues and µ3 and
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µ4 denote the large ones. Then, from (15) we can write:

PM,q =Pr{min
i
vii ≥ T |Hq,1}

=Pr{v11 ≥ T, v22 ≥ T, ..., vNN ≥ T |Hq,1}

.
=

N∏
i=1

Pr{vii ≥ T |Hq,1}

.
=Q

(√
L− 1(T − σ2

X)√
2σ2

X

)D
·

4∏
i=1

Q

(√
L− 1(T − µi)√

2µi

)

·Q

(√
L− 1(T − σ2

N )√
2σ2

N

)N−D−4

≤Q

(√
L− 1(T − σ2

X)√
2σ2

X

)D

·Q

(√
L− 1(T − σ2

N )√
2σ2

N

)N−D−2

≤Q

(√
L− 1(T − σ2

N )√
2σ2

N

)N−D−2

≤e
− (N−D−2)(L−1)(T−σ2N )2

4σ4
N , (22)

where in the first inequality we exploited the fact that the
Q terms of the product are monotonically increasing with the
eigenvalue µi; hence, the two terms corresponding to the small
eigenvalues µ1 and µ2 can be upper-bounded by replacing
them by σ2

N . The remaining two terms corresponding to the
large eigenvalues are upper bounded by 1.

Therefore, a sufficient condition for achieving an asymptot-
ically zero false negative error probability is that the inequal-
ities

T > σ2
N , and (23)

N −D > 2 (24)

(we remind that the necessary condition T < σ2
X was set in or-

der to have PF,q asymptotically going to zero) simultaneously
hold.9 Consequently, if (24) and

logN

L− 1
<

1

4

(
1

SNR
− 1

)2

, (25)

(where SNR stands for the Signal-to-Noise Ratio, i.e., SNR ,
σ2
X/σ

2
N ) simultaneously hold, then it is possible to fix a value

for the threshold T in the interval (σ2
N , σ

2
X) such that the

resulting test is asymptotically powerful, as both the sufficient
conditions in (18) and (19), and the sufficient conditions in
(23) and (24) simultaneously hold. In particular, from (25), for
a fixed L and N , we can derive a minimum SNR for which an
attack is surely correctly detected. More specifically, we can
argue that if

SNRN,L >

(
1− 2

√
logN

L− 1

)−1

, (26)

9Note that less demanding but more involved conditions on T might be
derived in order to have asymptotically zero false negative error probability.

then the test correctly detects the line search attack asymp-
totically (i.e., it is asymptotically powerful). Expectedly, such
minimum sufficient SNR decreases by increasing L.

Furthermore, from the previous analysis we can also derive
bounds on the value of N in order to ensure correct detection.
Specifically,

D + 2 < N < e
(L−1)

4 ( 1
SNR−1)

2

. (27)

Hence, 3 aligned queries (i.e., N − D = 3) are sufficient to
detect the line search attack. On the other hand, for keeping
a low probability of detecting an alignment under the null
hypothesis, the growth rate for N must be at most sub-
exponential in L. Therefore, these conditions are by far less
demanding than the ones found for DM, where the number
of attacking queries is required to go to infinity with the
dimensionality for a successful detection.

We point out that, thanks to the knowledge that the metade-
tector has on the attacking strategy, the conditions for an
asymptotical successful detection with the LS metadetection
are much less strict with respect to the case of CTB-based
metadetection analyzed in [16], where in order to ensure the
detection of the attack the number of attacking queries (N−D)
is required to grow with L at a super-logarithmic rate.

VI. EXPERIMENTAL RESULTS

A. Synthetic signals

In this section we pseudorandomly generate signals fol-
lowing the statistical models proposed in Sect. IV-B for
both the null and alternative hypotheses. Specifically, in our
experiments, the N honest queries under the null hypothesis
are randomly chosen to be watermarked or not. Concerning
the alternative hypothesis, we consider 3 aligned queries with
ψ = (0, 1, 0.5), while the remaining D = N − 3 (dummies)
are generated as honest queries. In all the reported experiments
we set σ2

N = 1, whereas several values are considered for
L, N and σ2

X . It is proper to say that we considered small
values of N and L, with respect to the typical values for
these parameters in real frameworks, in order to be able
to illustrate the behavior of the detectors and compare the
methods (for larger values of N and L, we would get smaller
error detection probability, which would not only hinder the
comparison between different scenarios, but in turn make it
more difficult to validate our analytical results). For all the
experiments, we evaluate the false positive rate (FPR), i.e.,
the fraction of legal batches of queries classified as illegal, and
true positive rate (TPR), i.e., the fraction of illegal batches of
queries correctly classified as illegitimate.

Figs. 3 and 4 show the Equal Error Rate (EER), i.e., the
metadetection error rate when the false positive and false
negative error rates take the same value. While Fig. 3 reflects
the dependence with L and N of the probability of error for
all four proposed metadetectors, Fig. 4 focuses on its behavior
with N and σ2

X . Concerning Fig. 3, as one would expect, for
a given size N of the batch of queries, the error probability
decreases when the dimensionality L of the input signals is
increased, i.e., the larger the number of components per signal
we have, the smaller the error probability. Conversely, for a
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Fig. 3. EER for (a) DM, (b) SM, (c) SEM, and (d) GAM. L ∈ [20, 400],
N ∈ [10, L − 10], σ2

X = 2. For the sake of graphical representation, those
points in the plots where N ≥ L were assigned EER = 0.5.

fixed value of the dimensionality, the larger the number of
queries grouped in a batch, the more difficult will be to make
the right decision (i.e., the error probability increases). Note
that this performance behavior is consistent with the analysis
made in Sect. V. The comparison between the different
metadetectors shows that SM outperforms DM, and both of
them improve upon SEM when N is close to L. Nevertheless,
when L is significantly larger than N , the latter shows a
better performance than both DM and SM. On the other hand,
GAM clearly outperforms them all; this is expected, since it
exploits information that is not available in practice (recall
that GAM is not a feasible detector, but we analyze it to
bound the performance of the proposed covariance matrix-
based metadetectors). Fig. 4 shows the performance of the four
metadetectors as a function of N and σ2

X . First of all, note that
the proposed metadetectors establish the detection regions un-
der the assumption that σ2

X ≥ σ2
N , and in those plots σ2

N = 1.
This explains why DM provides error probabilities larger than
0.5 for σ2

X = 0.5, and also the behavior of GAM for the same
case. Besides this degenerate case, we can see that, as a general
rule, for a given batch size N , the EER decreases with σ2

X (i.e.,
the larger σ2

X , the easier it will be to detect the oracle attack,
as the deviation of the obtained covariance matrix with respect
to the covariance matrix corresponding to the null hypothesis
is larger); on the other hand, for a given σ2

X , the larger N ,
the more difficult it will be to make a correct decision (similar
conclusions were derived from Fig. 3). Again, this behavior
is consistent with the analysis in Sect. V. Concerning the
comparison among metadetectors, once again SM outperforms
DM, and SEM shows a sharper transition from small to large
error probabilities than the former ones. Finally, GAM shows
significantly better performance than their counterparts.

Figs. 5 through 9 show the Receiver Operating Character-
istic (ROC) curve for several parameter settings. For the sake
of visualization, since we are interested in small values of
the error probabilities, the FPR is plotted in logarithmic scale.
Specifically, Figs. 5, 6, and 7 show the ROCs for L = 100,
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Fig. 4. EER for (a) DM, (b) SM, (c) SEM, and (d) GAM. N goes from 10
to 190, while σ2

X ranges from 0.5 to 10 and L = 200.
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Fig. 5. ROC curves for the four metadetectors. L = 100, N = 80, σ2
X = 10.

N = 80, with σ2
X = 10, σ2

X = 30, and σ2
X = 1.2, respectively.

The comparison confirms that the larger σ2
X , the easier is to

make the right decision. Improvements in the metadetection
performance can be also achieved by decreasing N (cf. Fig.
8), or increasing L (cf. Fig. 9; note that in this figure the GAM
curve overlaps the SEM one), validating the conclusions in
Sect. V. Furthermore, those figures show that most of the time
the metadetectors can be sorted by increasing performance as
DM, SM, SEM, and GAM, although the performance loss
of SEM is much sharper than that observed for DM and
SM. As we have discussed above with regard to Figs. 3 and
4, this seems to indicate that SEM is much more sensitive
to the values of SNR, N , and L than the other practical
metadetectors; specifically, if for some given N and L values
the SNR is not sufficiently high, then it may be the case
that the performance of SEM is even worse than that of the
other two metadetectors. Such behavior of SEM is shown in
Fig. 7 where we can also see that when the SNR is very low,
the performance of all the practical metadetectors is nearly
equivalent to a random guess. Moreover, according to the
analysis in Sect. V-B GAM is expected to be asymptotically
powerful as long as (26) holds; for L = 100 and N = 80 the
threshold value is 1.7264; therefore, for σ2

X = 1.2 one should
no longer expect the performance of GAM to be perfect, as it
is confirmed by the experimental results shown in Fig. 7.

Another relevant measure regarding the proposed metade-



B. TONDI, P. COMESAÑA-ALFARO F. PÉREZ-GONZÁLEZ, M.BARNI: DETECTING LINE-SEARCH ATTACKS THROUGH SMART DETECTION 13

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

 

 

DM
SM
SEM
GAM

Fig. 6. ROC curves for the four metadetectors. L = 100, N = 80, σ2
X = 30.
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Fig. 7. ROC curves for the four metadetectors. L = 100,N = 80, σ2
X = 1.2.

tectors is their computational cost. For the sake of illustration,
we consider the framework reported in Fig. 5 (i.e., L = 100,
N = 80, σ2

X = 10); the average time required for computing
each metadector in a 2xXeon E5-2690v3 2.6 GHz with 24 cores
and 256 GB of RAM is around 0.17 ms, 0.21 ms, 1.4 ms, and
0.17 ms for DM, SM, SEM, and GAM, respectively.

Finally, Fig. 10 illustrates the good performance of the
proposed metadetectors when the dimensionality is larger,
although still reasonable (even small) for practical scenarios,
and the batch size is large too. Specifically, we consider
L = 400, N = 300, and σ2

X = 10; the obtained plots show
that the metadetectors will be able to detect the 3 aligned
queries, even if the attacker hides them in a pool of as many
as 297 dummy queries. Therefore, the attacker would have to
significantly reduce the efficiency of his attacks (in terms of
the ratio between the number of aligned queries and dummy
queries) if he wants to go undetected. As a consequence, for
reaching a given target final accuracy without being caught,
the attacker has to spread out its attack over a large number
of queries and then is forced to significantly delay his action.

B. Real images

We also performed experiments with real images. Note that
the assumptions made in Sect. IV-B, e.g., the Gaussianity of
both the host signals and the noise, and the fact that their
samples are i.i.d., are far from holding when we work with real
images. In spite of this, we will illustrate that the qualitative
conclusions derived in Sect. IV are still applicable when real
images are considered.

The database used in these experiments is UCID [40] which
consists of 1338 images of sizes 512× 384 or 384× 512. In
order to show the behavior of the proposed metadetectors, we
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Fig. 8. ROC curves for the four metadetectors. L = 100, N = 60, σ2
X = 10.
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Fig. 9. ROC curves for the four metadetectors. L = 200, N = 80, σ2
X = 10.

have split the images into non-overlapping blocks, yielding a
database with a larger number of smaller images. This allows
us to have a larger number of realizations for plotting the
results, but also to get a wider overlapping between the pdfs
under the two tested hypotheses; as a consequence of both
factors, the reported comparisons are more illustrative.

Specifically:
• Each image in UCID is converted to grayscale.
• The resulting grayscale image is split into non-

overlapping blocks of size M×M . In the reported results
M = 16, 32, 64, so there is an integer number of blocks
per image.

• Flat areas in the original UCID database images will
produce a covariance matrix with a very small determi-
nant, even if an oracle attack is not performed. Note that
this problem comes from considering small blocks, which
may have almost no texture; in practice, this issue will not
arise with full images. To sidestep it, we disregarded the
5% blocks of the new database with the smallest variance.

• For each Monte Carlo simulation, the images in the new
database (i.e., the 95% of M×M blocks from the UCID
database with the largest variance) are pseudorandomly
permuted. Half of them are watermarked with probability
1/2, else are left unaltered, simulating the null hypoth-
esis. For the other half, we consider disjoint sets of N
images; D of them are watermarked with probability 1/2
(the dummy queries), while the remaining N−D images
are generated from 2 images:

– One of those 2 images is not watermarked.
– The other one is watermarked.
– A bisection algorithm is performed from the two
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Fig. 10. ROC curves for the metadetectors. L = 400, N = 300, σ2
X = 10.

previous images, yielding N −D− 2 images which
are convex combinations of them. The detector driv-
ing this oracle attack sets the detection boundary at
φw(y) = <w,w>

2 = Lγ2

2 .
– The resulting images are quantized to 8 bits.

Unless otherwise explicitly mentioned, in this section we
consider γ = 3. Due to the small values of the detection error
probabilities when large values of L are considered, in this
section we perform a more qualitative analysis, based on the
histograms of the metadetection statistics, and complement it
with the use of the Jensen-Shannon Divergence (JSD) [41] of
the involved histograms, which is defined as

JSD(p0, p1) ,
1

2

∑
k

p0(k) [log(p0(k))− log(p(k))]

+
1

2

∑
k

p1(k) [log(p1(k))− log(p(k))] ,

where p0(k) and p1(k) are the relative frequencies of the
kth histogram bin under the null and alternative hypotheses,
respectively, p , p0+p1

2 , and we use the base-e logarithm
(consequently the units of the reported JSD values are nats).

For example, Fig. 11 shows the histograms of the metade-
tection statistics for each metadetector under both hypotheses.
Similarly to the results reported for synthetic signals, the
results achieved for DM and SM are very similar. In this case
is striking the good behavior of SEM (note the logarithmic
scale in the X-axis), although the best performance is still
achieved by GAM. In the subsequent experiments we check
the behavior of the metadetection statistics with some of the
system parameters. In particular, in Fig. 12 we consider the
histograms of SEM statistics when N = 8 and D = 4
(as in Fig. 11(c)), but we change L to 16 × 16 = 256,
and 64 × 64 = 4096; in terms of JSD, the obtained values
are 0.1527 (L = 256), 0.1990 (L = 1024), and 0.2620
(L = 4096). Comparing those three plots we can verify that
the larger L, the easier will be to make the right decision,
thus validating the conclusions given in Sect. V and further
checked in Sect. VI-A. Similarly, in Fig. 13 we consider the
impact of the batch size on the system performance. We can
also compare those plots with Fig. 11(a). In view of those
results, we confirm that larger values of N make it harder to
make the right decision. Quantitatively, in terms of JSD the
obtained values are 0.1389, 0.0986, 0.0666, and 0.0478 for
N = 12, 16, 20, and 24, respectively. Finally, in Fig. 14 we
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Fig. 11. Histograms of the metadetection statistics for (a) DM, (b) SM, (c)
SEM, and (d) GAM. The red histogram corresponds to the null hypothesis
(no attack), and the blue one to the alternative hypothesis (oracle attack).
L = 32× 32 = 1024, N = 8, D = 4.
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Fig. 12. Histograms of the metadetection statistics for SEM for L = 256
(16× 16, solid lines), and 4096 (64× 64, dashed lines). The red histograms
correspond to the null hypothesis (no attack), and the blue ones to the
alternative hypothesis (oracle attack). N = 8, D = 4.

analyze the behavior of DM when the watermark strength γ
is modified. In particular in Fig. 14 we consider both γ = 1
and γ = 10; furthermore, we can compare both plots with
Fig. 11(a), where γ = 3. As we can observe, the obtained
histograms are virtually the same; only small differences, due
to the random nature of the histograms, can be found. Indeed,
the JSD for γ = 1 is 0.1780, while for γ = 10 we obtain
0.1781. This result validates again our conclusions in Sect. V.
Although it might seem counterintuitive at first sight, this
result is reasonable if one thinks that the proposed detectors
are based on the covariance matrix (i.e., they disregard the
signal mean, which is the statistic modified by the watermark
embedding strength).

VII. CONCLUSIONS

In this paper we have addressed the problem of metade-
tection of oracle attacks based on line searches when an
aware-attacker takes some countermeasures to avoid being
discovered by the smart detector. We have proposed several
practical metadetectors and assessed their theoretical perfor-
mance. Then, we have used an asymptotic analysis to find the
critical values of the parameters of the system allowing for a
correct detection of the oracle attacks. Experiments on both
synthetic signals and images confirm the power of the smart
detector, by showing that excellent detection performance can
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Fig. 13. Histograms of the metadetection statistics for DM for N = 12 (solid
lines), 16 (dashed lines), 20 (dotted lines), 24 (dash-dotted lines). The red
histograms correspond to the null hypothesis (no attack), and the blue ones
to the alternative hypothesis (oracle attack). L = 32× 32 = 1024, D = 4.
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Fig. 14. Histograms of the metadetection statistics for DM for γ = 1 (solid
lines), and γ = 10 (dashed lines). The red histograms correspond to the null
hypothesis (no attack), and the blue ones to the alternative hypothesis (oracle
attack). L = 32× 32 = 1024, N = 8, D = 4.

be achieved even when few attacking queries are hidden in a
large pool of dummy queries. Note again that the LS metade-
tectors developed in this paper are general purpose; we applied
them to the watermark detection problem just to illustrate their
practical usefulness. Although the LS metadetectors proposed
are applied to the watermark detection problem, this is only
a case study and our arguments about the metadetection are
general purpose. Since adversarial binary decision is one of
the core problems in adversarial signal processing [1], the
techniques developed find application in many different fields,
such as multimedia forensics, biometrics, network intrusion
detection, reputation systems, and many others.

As a future work, we plan to investigate the most suitable
strategy to be implemented by the smart detector once an
oracle attack is detected. Among the possible directions of
research, it would be also interesting to focus on a very
simple setup where it would be possible to study the interplay
between the smart detector and the adversary as a dynamic
game. Another very interesting direction would be to study the
metagame between the oracle and the attacker as an inspection
game [42]. Inspection games have been recently advocated
as a possible way to extend the classical statistical decision
problem when the distribution of the random variable observed
by the statistician, or ’inspector’, is strategically controlled
by another player, namely the ‘inspectee’. In this way, such
models account for the fact that the ‘inspectee’ can behave
either legally (H0) or illegally (H1), in which case he also
chooses a violation procedure.
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[1] M. Barni and F. Pérez-González, “Coping with the enemy: Advances in
adversary-aware signal processing,” in IEEE International Conference
on Acoustics, Speech and Signal Processing, Vancouver, Canada, May
2013, pp. 8682 – 8686.

[2] I. J. Cox and J.-P. M. G. Linnartz, “Public watermarks and resistance
to tampering,” in IEEE International Conference on Image Processing,
vol. 3, Santa Barbara, CA, USA, October 1997, pp. 26–29.
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you threatening me?: Towards smart detectors in watermarking,” in SPIE
Electronic Imaging, San Fransciso, CA, USA, February 2014.

[11] A. Globerson and S. Roweis, “Nightmare at test time: Robust learning
by feature deletion,” in International Conference on Machine Learning,
Pittsburgh, PA, USA, June 2006, pp. 353–360.

[12] B. Biggio, I. Corona, Z.-M. He, P. P. K. Chan, G. Giacinto, D. S. Yeung,
and F. Roli, “One-and-a-half-class multiple classifier systems for secure
learning against evasion attacks at test time,” in International Workshop
on Multiple Classifier Systems, Günzburg, Germany, June-July 2015, pp.
168–180.

[13] G. F. Cretu, A. Stavrou, M. E. Locasto, S. J. Stolfo, and A. D. Keromytis,
“Casting out demons: Sanitizing training data for anomaly sensors,” in
IEEE Symposium on Security and Privacy, Oakland, CA, USA, May
2008, pp. 81–95.

[14] M. El Choubassi and P. Moulin, “Sensitivity analysis attacks against
randomized detectors,” in IEEE International Conference on Image
Processing, vol. 2, San Antonio, TX, USA, September 2007, pp. 129–
132.
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