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Abstract. The stochastic representation of digital images through a
two-dimensional autoregressive (2D-AR) model offers a proper way to
approximate the empirical distribution of the eigenvalues coming from
genuine images. By considering this model, we apply random matrix the-
ory to analytically derive the asymptotic eigenvalue distribution of causal
2D-AR random fields that have undergone an upscaling operation with
a particular interpolation kernel. This eigenvalue characterization is use-
ful in developing new forensic techniques for image resampling detection
since we can use theoretical bounds to drive the decision of detectors
based on subspace decomposition. Moreover, experimental results with
real images show that the obtained asymptotic limits turn out to be
excellent approximations, even when working with images of small size.

Keywords: Image forensics, Marčenko-Pastur law, random matrix the-
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1 Introduction

In multimedia forensics, the detection of resampling traces in a digital signal is an
important step towards determining whether its content has been manipulated.
For example, the presence of resampling artifacts in a specific region of a digital
image is indicative of the application of a geometric transformation in that part
of the captured scene. This is due to the fact that any spatial transformation
requires the calculation of new samples through the interpolation of existing ones,
which unavoidably leaves characteristic dependencies among adjacent samples.

Since by exposing this characteristic footprint the presence of forgeries can be
eventually revealed, the forensic analysis of resampled signals has been largely
investigated during last years. Although many different directions have been
explored [10, 4, 7, 5], most of the available techniques share a common processing
structure: first, a residue signal (where resampling artifacts are observable) is
extracted from the image under investigation; then, given the periodic nature
of the residue signal in case of resampling, a frequency analysis is carried out
to unveil the presence of resampling traces. Very recently, however, we have
proposed in [13] and [15] a different way of analyzing resampled images under an



2 RMT for Modeling the Eigenvalue Distribution of Images under Upscaling

upscaling scenario, i.e., by approaching image resampling detection as a subspace
decomposition problem. In these works we have shown that an upscaled image
can be seen as a low-dimensional signal surrounded by a high-dimensional noise,
which through a Singular Value Decomposition (SVD) as in [13] or a precise
eigenvalue characterization as in [15] can be used to expose the implicit signal-
plus-noise structure from upscaled images that is not present in genuine ones.

In this paper, we complement the work in [15] by detailing the analytical
derivation of the asymptotic eigenvalue distribution of causal 2D-AR random
fields (used as an underlying model for genuine images) in an upscaling sce-
nario. To characterize the behavior of the eigenvalues, we resort to Random
Matrix Theory (RMT) and by using one of its fundamental results, i.e., the
Marčenko-Pastur law [8], we propose theoretical bounds to drive the decision of
the resampling detector designed in [15]. Even though the analytically obtained
decision threshold is only applicable to images without demosaicing traces, we
believe that avoiding the use of a training set to establish an empirical threshold
is an advantage over state-of-the-art techniques. Finally, since the robustness
of the resampling detector depends on the relation between the variance of the
signal and that of the background noise, we analyze the performance limits of
the proposed approach from a theoretical perspective using the 2D-AR model.

The structure of the paper is as follows. In Sect. 2, we first introduce the
notation used throughout the paper, then we describe the resampling process
together with the subspace decomposition approach, and finally we present the
2D-AR model adopted for representing genuine images. The eigenvalue charac-
terization of genuine and upscaled images is carried out in Sect. 3, while the
experimental validation with real images is performed in Sect. 4. Conclusions
are finally drawn in Sect. 5.

2 Preliminaries

Prior to the formulation of the resampling procedure and the formalization of
the model adopted for natural images, we briefly describe the notation used
throughout the paper. Matrices will be denoted by capital bold letters. Given
an arbitrary square matrix A of size N × N , we will frequently work with a
rectangular submatrix AK of size N × K and aspect ratio β , K

N
, which is

constructed by extracting K ≤ N consecutive columns from A. The sample
autocorrelation matrix of AK is K−1AKAT

K , but we will mostly work with the
renormalized sample autocorrelation ΣAK

, N−1AKAT
K . By convention, we

assume that the eigenvalues of a given matrix are sorted in descending order.
Table 1 summarizes the notation used for representing different attributes of an
arbitrary N ×N matrix A.

2.1 Resampling Process Description

Let us assume that the input to the resampling operation is a digital image with
a single color channel (hereinafter, indistinctly called genuine or natural image)
that does not contain traces from any preceding demosaicing process and has
negligible quantization noise. Representing the referred input image as a matrix
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Table 1. Summary of notation

Symbol Meaning

Ai,j (i, j)-th element of matrix A, with i, j ∈ {0, . . . , N − 1}

σ2
A Variance of the entries of A

AK N × K submatrix with K consecutive columns from A

β Aspect ratio of an N × K matrix, i.e., β = K
N

ΣAK
Renormalized sample autocorrelation matrix of AK

λi

(

ΣAK

)

i-th eigenvalue of ΣAK
, with i = 1, . . . , N

λ
−

(

ΣAK

)

Smallest eigenvalue of ΣAK

λ+

(

ΣAK

)

Largest eigenvalue of ΣAK

fΣAK
(λ) Probability density function of the eigenvalues of ΣAK

X, we consider that the resampling operation scales the two dimensions of X in
a uniform way and by means of a resampling factor ξ > 1, which is defined as
ξ , L

M
with L and M coprime natural numbers. The pixel values in the new

resampled grid are calculated by linearly combining a finite set of neighboring
samples from the input matrix X with a two-dimensional (2D) interpolation
kernel that is symmetric and separable (i.e., the kernel can be expressed as the
outer product of two vectors). Consequently, each (i, j)-th pixel value Yi,j from
an upscaled image Y can be computed as

Yi,j =
∑

u,v∈Z

h
(

iM
L

+ φ− u
)

h
(

jM
L

+ φ− v
)

Xu,v, (1)

where Xu,v denotes the (u, v)-th element of the genuine image X, φ is a shift
between the original and the resampled grid,1 and h(·) is the one-dimensional
(1D) impulse response of the interpolation kernel, whose width is kw ∈ 2Z+, i.e.,
kw is a positive even number.

Our analysis will be carried out over a block Y of size N × N extracted
from the upscaled version by ξ of a rectangular U × V genuine image X, i.e.,
with N ≤ ξ ·min(U, V ). Assuming that both matrices X and Y are aligned with
respect to their upper-left corner and also that N is a multiple of L, the N ×N
block Y can be expressed using (1) in matrix form:

Y = HX̂HT , (2)

where the entries of H are given by

Hi,j = h
(

iM
L

+ ϕ− j
)

, (3)

with ϕ , φ+ kw/2− 1, such that X̂ only contains the first R×R pixels from X
that are used in the calculation of Y with R , N M

L
+ kw, i.e., X̂u,v = Xu,v, for

u, v = 0, . . . , R − 1. Provided that N is larger than R, we will assume that the
N ×R interpolation matrix H is full column rank (i.e., rank(H) = R), which is
true for all kernels considered in this paper. However, the reader is referred to
[6] to check the conditions that H must satisfy to have full column rank.

After the calculation of all the resampled pixels from the upscaled image, a
quantization is generally applied as a last step to fit the original precision of the

1 The value of φ is generally taken as φ = 1
2

(

M
L

+ 1
)

, as in imresize from MATLAB.
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input image X. We assume that a uniform scalar quantizer with step size ∆ is
used. Denoting the resulting quantized image by a matrix Z, we can model it as

Z = Y +W, (4)

where we opt for an additive white noise model, such that the entries of the
quantization noise matrix W are i.i.d. U

[

−∆
2 ,

∆
2

)

with zero mean and variance

σ2
W = ∆2

12 . This model is suitable in practice as long as the probability density
function (pdf) of the genuine image is smooth and its variance is much larger
than the variance of the quantization noise, but it will not be valid for modeling
flat regions, which might appear in practice due to undesired artifacts such as
saturation. In Sect. 4 we will see how to deal with these special cases.

2.2 Subspace Decomposition to Expose Resampling Traces

As noted above, it was first observed in [13] that an upscaled and later quantized
image presents a particular signal-plus-noise structure that does not show up in
natural images. This comes from the fact that when a genuine image X is up-
scaled by ξ, the rank of Y in (2) is at most equal to the rank of the interpolation
matrix H (i.e., rank(Y) ≤ rank(H) = R with R ≈ N/ξ), which implies that any
N -dimensional column/row from Y will lie in an R-dimensional subspace. On
the other hand, the noise W in (4) is expected to span the full space. Therefore,
from the eigendecomposition of the sample autocorrelation matrix of Z, we count
on finding R leading eigenvalues corresponding to the signal subspace, while the
remaining ones will correspond to the background noise. This makes possible the
detection of resampling traces using any subspace decomposition approach.

In this work, we draw on the most-celebrated result from RMT, i.e., Marčenko-
Pastur Law (MPL) [8], whose main characteristic states that for a given random
matrix AK with i.i.d. entries and aspect ratio β, the eigenvalues of ΣAK

tend to
cluster around the variance σ2

A as β converges to zero. Respectively, we are inter-
ested in checking whether this property also applies when a submatrix ZK with
small β is extracted from Z in (4), so that on the one hand the signal eigenvalues
cluster around σ2

Z , while the noise eigenvalues do so around σ2
W . The eigenvalue

characterization carried out in Sect. 3 will theoretically support these findings.

2.3 Causal 2D-AR Random Fields for Modeling Genuine Images

Based on our previous analysis in [14], we consider a causal two-dimensional
autoregressive model with a single correlation coefficient ρ as the stochastic
representation for natural images without traces of demosaicing, so denoting by
X the generated 2D-AR random field of size N ×N , it can be expressed as

X = USUT , (5)

where S is an (N + Q − 1) × (N + Q − 1) random matrix whose i.i.d. entries
follow a zero-mean normal distribution with variance σ2

S , and U is a Toeplitz
matrix of size N × (N + Q − 1), with Q denoting the length of the truncated
infinite impulse response of the AR model. Hence, matrix U is fully described
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Table 2. Impulse response and width of several interpolation kernels.

Kernel Type Impulse Response

Linear

(kw = 2)
h(t) =

{

1 − |t|, if |t| ≤ kw
2

0, otherwise

Catmull-Rom

(kw = 4)
h(t) =











3
2
|t|3 − 5

2
|t|2 + 1, if |t| ≤ kw

4

− 1
2
|t|3 + 5

2
|t|2 − 4|t| + 2, if kw

4
< |t| ≤ kw

2

0, otherwise

B-spline

(kw = 4)
h(t) =











1
2
|t|3 − |t|2 + 2

3
, if |t| ≤ kw

4

− 1
6
|t|3 + |t|2 − 2|t| + 4

3
, if kw

4
< |t| ≤ kw

2

0, otherwise

Lanczos

(kw = 6)
h(t) =

{

sinc(t)sinc
(

t
3

)

, if |t| < kw
2

0, otherwise

as Ui,j = uQ[j − i], where sequence uQ[n] , ρQ−1−n, for n = 0, . . . , Q − 1, and
is zero elsewhere, i.e.,

Ui,j =

{

ρQ−1−(j−i), if (j − i) = 0, . . . , Q− 1

0, otherwise
,

where the value of Q is generally taken as Q ≥ N to minimize modeling errors
due to truncation. The practical suitability of this model is also reported in [14].

2.4 Interpolation Kernels

Even though the upcoming eigenvalue characterization can be applied to any
linear and separable interpolation kernel, we will provide examples with the
most commonly available kernels, namely: Linear, Catmull-Rom, B-spline, and
Lanczos, to highlight the different behavior among them and specific properties
of each other. Table 2 collects their 1D impulse response and their width.

3 Eigenvalue Characterization

In this section, we formally characterize the statistical distribution of the sam-
ple eigenvalues coming from genuine images (modeled as causal 2D-AR random
fields) and their upscaled versions (before and after quantization). As noted
above, we base our analysis on well-known results from RMT that allow us to
model the asymptotic behavior of the eigenvalues through deterministic func-
tions. Table 3 lists some of the solved problems in RMT that relate to our case.

The first work in Table 3 corresponds to the contribution by Marčenko-
Pastur that provides a closed-form expression for the eigenvalue distribution of
random matrices with i.i.d. entries. Although this result cannot be applied to
filtered white noise processes as the one that emerges from the 2D-AR model,
it can actually be used to represent the eigenvalues coming from the matrix
W with i.i.d. quantization noise in (4). On the other hand, the study of the
sample eigenvalues of filtered processes has been tackled in the last two works
of Table 3, where the considered random matrices have independent columns,
but an arbitrary dependence within each column. In both cases, no closed-form
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Table 3. Solved RMT problems.

Type of matrix Eigenvalue characterization from RMT

Random matrix (i.i.d. entries) Marčenko-Pastur law [8] (closed-form expression)

Random matrix (i.i.d. stationary

time series in columns)
Bai and Zhou [1] (through Stieltjes transform)

Random matrix (a linear process

in each column)
Pfaffel and Schlemm [9] (through Stieltjes transform)

solution is obtained, but the eigenvalues are characterized indirectly through the
Stieltjes transform, whose inversion formula uniquely determines their pdf.

Unfortunately, given the form of our random matrix X in (5) and its up-
scaled version Y in (2), where both matrices present dependencies among rows
and columns, neither of these results can be applied directly to our case. There-
fore, we also opt for characterizing the pdf of the sample eigenvalues indirectly
through the Stieltjes transform. To that end, we resort to a procedure proposed
by Tulino and Verdú in [12, Theorem 2.43] that addresses the calculation of the
so-called η-transform [12, Sect. 2.2.2] of an unnormalized sample autocorrela-
tion matrix BBT , where B has the form B = CSA, which coincides with the
matrix form of X and Y. Similarly, matrix S has i.i.d. entries, and matrices C
and A induce the linear dependencies. Once the η-transform is obtained, the
relationship in [12, Eq. (2.48)] allows us to retrieve the corresponding Stieltjes
transform, whose inversion formula in [12, Eq. (2.45)] finally provides the pdf of
the sample eigenvalues.

Algorithm 1 summarizes the above steps to obtain the asymptotic pdf of
the eigenvalues of ΣBK

= N−1BKBT
K when considering an arbitrary submatrix

BK of size N × K, which is made up of K ≤ N consecutive columns from an
N × N matrix B. Accordingly, in the following subsections, we particularize
the calculation of the asymptotic eigenvalue distribution for genuine images in
Sect. 3.1, and for unquantized upscaled images in Sect. 3.2. Finally, pairing these
results with the characterization of the quantization noise through the MPL, we
describe in Sect. 3.3 the gap that emerges in images that have been upscaled
and later quantized.

For the sake of simplicity, and without loss of generality, in Sects. 3.1 and 3.2
we assume that the entries of S are i.i.d. with variance σ2

S = 1 as in [12]. More
generally, in Sect. 3.3, we assume an arbitrary variance σ2

S to further evaluate
the effect of the signal-to-quantization-noise ratio. Notice that the eigenvalue
distribution for σ2

S 6= 1 is directly obtained by multiplying by σ2
S the eigenvalues

for σ2
S = 1.

3.1 Eigenvalue Distribution for Genuine Images

Given the 2D-AR causal model for genuine images in (5), here we analyze the
eigenvalues of ΣXK

when XK is constructed by taking K consecutive columns
from the N ×N random field X (without loss of generality, we will assume that
we retain the first K columns), such that

XK = UNSUT
K , (6)
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Algorithm 1 Main steps to obtain the asymptotic eigenvalue pdf of ΣBK

1. Compute the η-transform (see [14, Appendix A]): ηΣBK
(γ)

2. Retrieve the Stieltjes transform through: ηΣBK
(γ) =

SΣBK
(− 1

γ
)

γ

3. Apply the inversion formula: fΣBK
(λ) = limν→0+

1
π
Im

[

SΣBK
(λ+ jν)

]

where UK is obtained from U by keeping the first K rows, and UN = U is so
written to stress the fact that it hasN rows. In (6) S is an (N+Q−1)×(N+Q−1)
random matrix with i.i.d. N (0, 1) entries.

For the calculation of the η-transform ofΣXK
according to [12, Theorem 2.43],

we first need to derive the asymptotic spectra of the matrices that induce the
linear dependencies, i.e., D = UNUT

N and T = UT
KUK . It is easy to show that

both matrices are full-rank and, for a sufficiently large value of K and N , have
identical asymptotic spectra. Therefore, we focus on obtaining the asymptotic
spectrum of D, which can be seen as an unnormalized version of the autocorre-
lation matrix of UN , itself described by uQ[n] (see Sect. 2.3).

If we assume that Q ≥ N , we can straightforwardly show thatD is a symmet-
ric Toeplitz matrix, whose (i, j)-th element is given by (1−ρ2(Q−|i−j|))·ρ|i−j|/(1−
ρ2). If we let Q → ∞, this simplifies to Di,j = ρ|i−j|/(1 − ρ2). Now, in order
to calculate the asymptotic eigenvalue spectrum of D, we can invoke Szegö’s
fundamental theorem of eigenvalue distribution [3], which establishes that for a
Toeplitz symmetric matrix D defined by sequence d[n] (i.e., d[|i − j|] , Di,j),
where d[n] is absolutely summable,2 its asymptotic eigenvalue spectrum tends to
the Fourier transform of d[n], i.e., d(ω). Therefore, when N → ∞, the eigenvalues
of D and (by extension) T will asymptotically converge to

d(ω) =
1

1 + ρ2 − 2ρ cos(ω)
, ω ∈ [0, 2π). (7)

The η-transform of ΣXK
depends on two independent random variables D and

T which are distributed as the asymptotic spectra of D and T. Both random
variables can be seen as the result of applying the transformation d(ω) in (7) to
a random variable Ω ∼ U [0, 2π), such that D = d(Ω) and T = d(Ω). Therefore,
as described in [14, Appendix A], once d(ω) is available, the η-transform of ΣXK

can be numerically calculated. However, for completing the pdf of the eigenvalues
of ΣXK

we need to calculate its asymptotic fraction of zero eigenvalues (in the
sequel, AFZE), which is

1−min {βP(T 6= 0),P(D 6= 0)} . (8)

Given that D and T have full rank and their asymptotic spectra through (7)
satisfy d(ω) > 0, we know that P(T 6= 0) = P(D 6= 0) = 1. Therefore, since
β ≤ 1, the AFZE of ΣXK

equals (1− β). So finally, applying steps 2 and 3 from

2 There is an additional technical condition that applies in the cases considered in this
paper, namely, that the set {ω : d(ω) = x} has measure zero for all x ∈ R.
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Fig. 1. Partial representation of the analytically derived pdf of the eigenvalues of ΣXK
,

i.e., fΣXK
(λ), for different values of β and ρ = 0.97 in (a). Graphical comparison in

(b) of the theoretical result for β = 0.125 and the histogram corresponding to 50,000
realizations (N = 1024). The mass points at λ = 0 (present for β < 1) are not shown.

Algorithm 1, we obtain the asymptotic pdf of the eigenvalues of ΣXK
, i.e.,

fΣXK
(λ) = (1− β)δ(λ) + lim

ν→0+

1

π
Im

[

SΣXK
(λ+ jν)

]

,

where δ(·) denotes the Dirac delta function.
Figure 1(a) depicts the derived pdf fΣXK

(λ) for different values of β (fixing
ρ = 0.97) and quite remarkably, as predicted by MPL for random matrices with
i.i.d. entries, we find that the lower the value of β, the more the eigenvalues of
ΣXK

get squeezed towards the variance of X. This generalization of the MPL
to stochastic representations of genuine images is key for our purposes. Further-
more, in Figure 1(b), we can see that the conformity between the empirical pdf
for finite matrices (N = 1024) and its asymptotic version is nearly perfect.

3.2 Eigenvalue Distribution for (Unquantized) Upscaled Images

In this case, we are interested in computing the eigenvalue distribution of ΣYK
,

where YK is a submatrix of size N×K that is extracted from an upscaled image
Y. Modeling X̂ in (2) as in (5), we can write

YK = HNUSUTHT
K ,

where U is now a Toeplitz matrix of size R× (R+Q− 1) described by sequence
uQ[n]. In the above equation, matrices HN and HK are constructed as in (3),
with respective sizes N × R and K × R, containing both shifted copies of the
L different polyphase components of h(iM/L + ϕ), i ∈ Z. Notice that (3) is
such that the first row in HN (or HK) corresponds to the zeroth polyphase
component; however, as we will see, this arbitrary assignment has no effect on
our analytical derivations.

As in the previous section, in order to compute the η-transform of ΣYK
, we

need to characterize the asymptotic spectra of matricesD = CCT = HNUUTHT
N

and T = AAT = UTHT
KHKU. For convenience, we start focusing on the

nonzero eigenvalues of D = CCT , which are the same as those of matrix
D′ , CTC. Let us consider its inner matrix R , HT

NHN , with entries given by

Ri,j =

R−1
∑

l=0

h
(

lM
L

+ ϕ− i
)

h
(

lM
L

+ ϕ− j
)

. (9)
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Although this matrix is not Toeplitz, it can be seen to contain in its rows the
different components of a polyphase decomposition of the kernel autocorrelation
function. Since these rows are roughly similar, it makes sense to convert R into
Toeplitz by averaging those components. Let R̄ be such matrix, with

R̄i,j =
1

M

M−1
∑

k=0

R−1
∑

l=0

h
(

lM
L

+ k
L
+ ϕ− i

)

h
(

lM
L

+ k
L
+ ϕ− j

)

=
1

M

R·M−1
∑

k=0

h
(

k
L
+ ϕ− i

)

h
(

k
L
+ ϕ− j

)

, (10)

which, as it can be readily checked is symmetric Toeplitz, so R̄i,j only depends on

|i− j|. Then, R̄ is completely characterized by the sequence rhh[|i− j|] , R̄i,j .
Now, since U is also Toeplitz, by expressing products of Toeplitz matrices as
convolutions of their corresponding representative sequences, it is possible to
see that D′ = UTHT

NHNU is described by sequence uQ[n] ∗ rhh[n] ∗ uQ[−n].
This sequence is absolutely summable even for Q → ∞ and D′ is symmetric
Toeplitz; therefore, we can resort again to Szegö’s theorem [3] to approximate
the asymptotic eigenvalue distribution of D′ when both Q,N → ∞, as follows

d′(ω) =

(

1

1 + ρ2 − 2ρ cos(ω)

) kw−1
∑

n=−(kw−1)

rhh[n] cos(nω), (11)

where ω ∈ [0, 2π). This discussion extends to the nonzero eigenvalues of T, which
can also be approximated by d′(ω).

A crucial difference with respect to the case of genuine images (Sect. 3.1) is
that now both D and T will have null eigenvalues, given that matrices HN and
HK do not have full rank. Actually, the ranks of both matrices depend on the
applied resampling factor ξ, and it is easy to check that limN→∞ rank(HN )/N →
ξ−1, and limK→∞ rank(HK)/K → ξ−1. From the rank properties for real ma-
trices, we have that rank(D) = rank(C) = rank(HN ) because U has full rank,
so rank(D)/N → ξ−1 and, by extension, rank(T)/K → ξ−1. We can conclude
that the AFZE of D and T is given by (1− ξ−1).

Figure 2 depicts the eigenvalues of matrix D for different values of ξ and for
the interpolation kernels in Table 2, and the approximation in (11). Although
the derived approximation is generally accurate, we observe that for certain pairs
of ξ and kernel, it is not able to follow the existing discontinuities. The most
evident examples show up with the Linear kernel for ξ = 4

3 and ξ = 8
5 . This

difference comes from approximating R by R̄. However, since the range of the
eigenvalues is well matched and their evolution is tracked up to a good degree,
we adopt this approximation.

From the plots in Figure 2, it is interesting to observe that the largest eigen-
values of the four kernels converge to the same value, while the smallest ones
differ noticeably. Although for Catmull-Rom and Lanczos kernels the smallest
eigenvalues are almost identical, the Linear kernel provides smaller eigenvalues
as ξ gets closer to 1, and the B-spline kernel produces the smallest eigenvalues
at almost one order of magnitude below.
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(b) ρ = 0.97, ξ = 8
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(c) ρ = 0.97, ξ = 2

Fig. 2. Evolution of the nonzero eigenvalues of D for different values of ξ and the
interpolation kernels in Table 2. Solid lines represent the ordered eigenvalues λi(D),
while dashed lines correspond to the approximation d′(ω) in (11) sorted in descending
order, with ω = 2π i−1

Nξ−1 , i ∈ {1, . . . , Nξ−1}, (N = 1024).

The procedure to compute the η-transform of ΣYK
is exactly the same as

the one followed with genuine images by taking d′(ω) as d(ω) in [14, Appendix].
However, note that when computing E1 and E2 as in [14, Eq. 11] and ηΣYK

as
in [14, Eq. 12], we must take into account that now the random variable Ω is of
mixed type with a probability mass at ω = 0 of size (1− ξ−1), and a continuous
pdf fΩ(ω) = (2πξ)−1 in (0, 2π), i.e., the pdf of a uniform random variable, but
scaled by ξ−1 so that the total probability adds up to 1.

Once the η-transform has been computed, we have to determine the AFZE
of ΣYK

, which is given by (8). In this case, we know that P(T 6= 0) = P(D 6=
0) = ξ−1 and so the AFZE equals (1− βξ−1) for β ≤ 1. Finally, applying steps
2 and 3 from Algorithm 1, we have

fΣYK
(λ) =

(

1− βξ−1
)

δ(λ) + lim
ν→0+

1

π
Im

[

SΣYK
(λ+ jν)

]

.

The upper panels of Figure 3 show the derived pdf fΣYK
(λ) for different

interpolation kernels and values of β, whereas the lower ones compare the the-
oretical pdf against its empirical version under a fixed setting with N = 1024.
Clearly, the theoretical model fits very well the empirical eigenvalue distribution
and, in view of the shape of the pdfs, there is no doubt that the eigenvalues of
ΣYK

are compacted in the same way as those from ΣXK
, which confirms that

the squeezing effect of the eigenvalues as β decreases is also valid for upscaled
images. This feature will be decisive for distinguishing the signal subspace from
the background noise. Moreover, the influence of each particular interpolation
kernel on the distribution of the eigenvalues of ΣYK

for a fixed β can be appre-
ciated in the lower pannels of Figure 3. Consistent with the conclusions drawn
from Figure 2, the B-spline kernel concentrates the smallest eigenvalues towards
zero. As we will see in Sect. 4, the distinct behavior among these kernels will
result in different performance when conducting resampling detection.

3.3 Eigenvalue Distribution for Upscaled & Quantized Images

Adopting the N ×N matrix Z in (4) as the model for upscaled and later quan-
tized images, here we analyze the eigenvalues of ΣZK

, where ZK is an N ×K
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(f) Catmull-Rom
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(g) B-spline
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Fig. 3. Partial representation of the analytically derived pdf fΣYK
(λ) for different

interpolation kernels and values of β in the upper panels (ξ = 1.5, ρ = 0.97). Graphical
comparison in the lower panels of the theoretical pdf and the histogram from 50,000
realizations (N = 1024, β = 0.125, ξ = 2, ρ = 0.97). All mass points are omitted.

submatrix extracted from Z. In particular, drawing on the previous eigenvalue
characterization of ΣYK

and using the MPL for modeling the eigenvalues coming
from the quantization noise matrix W, we delve into the characteristics of the
signal-plus-noise structure of Z already discussed in Sect. 2.2.

From the preceding analysis in Sect. 3.2 we know that for a sufficiently
large value of K, the submatrix YK has rank P strictly smaller than K (i.e.,
rank(YK)/K → ξ−1). Therefore, in ΣZK

, there are P leading eigenvalues cor-
responding to the signal subspace and K − P corresponding to the background
noise (the remaining N − K are zero). To model this transition between the
signal subspace and the noise space, we center our attention on the eigenvalues
λi(ΣZK

) located on each side of the boundary. Then, we derive a lower bound for
the last eigenvalue coming from the signal subspace, i.e., λP (ΣZK

), and an up-
per bound for the first eigenvalue belonging to the noise space, i.e., λP+1(ΣZK

).
As fully reported in [14] and [15], these two bounds can be obtained by resorting
to Weyl’s inequality applied to the singular values [11, Exercise 1.3.22], so that
the following lower bound applies for λP (ΣZK

):

λP (ΣZK
) ≥ λP (ΣYK

)− λ1(ΣWK
) ≥ σ2

Sλ−(ΣYK
)− λ+(ΣWK

), (12)

where λ+(ΣWK
) denotes the largest eigenvalue of ΣWK

given by MPL and
λ−(ΣYK

) represents the smallest nonzero eigenvalue of ΣYK
. Remember that

λ−(ΣYK
) can be obtained through the calculation of fΣYK

(λ) as in Sect. 3.2,

albeit now it appears scaled by σ2
S because the derived pdf fΣYK

(λ) assumes

σ2
S = 1. On the other hand, the upper bound for λP+1(ΣZK

) is given by

λP+1(ΣZK
) ≤ λ1(ΣWK

) ≤ λ+(ΣWK
) → σ2

W (1 +
√

β)2. (13)
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Finally, combining (12) and (13) we can characterize the asymptotic gap that
marks the transition between the signal subspace and the noise as

λP (ΣZK
)

λP+1(ΣZK
)
≥ σ2

Sλ−(ΣYK
)− λ+(ΣWK

)

λ+(ΣWK
)

→
(

σ2
S

σ2
W

)

λ−(ΣYK
)

(1 +
√
β)2

− 1. (14)

From (14), it is clear that the magnitude of the gap will monotonically increase

with the signal-to-noise ratio
(

σ2
S

σ2
W

)

. In addition, it will also increase as β → 0,

since λ−(ΣYK
) and (1 +

√
β)2 respectively increases and decreases as β → 0.

However, as reported in [14], the gap will become smaller as both the resampling
factor ξ and the correlation coefficient ρ approach 1.

Regarding the impact of the interpolation kernel, since the magnitude of the
gap is directly proportional to λ−(ΣYK

), we can conclude that the smallest gap
will take place with the B-spline kernel since it contributes with the smallest
magnitude of λ−(ΣYK

) (see Figure 3(e-h)). Conversely, the Lanczos kernel will
produce the largest gap together with the Catmull-Rom, whereas the Linear
kernel will be halfway between Catmull-Rom and B-spline.

4 Experimental Results

Exploiting the above eigenvalue characterization, we have proposed in [15] a
resampling detector whose test statistic κ (cf. [15, Eq. 11]) is used to determine
whether an observed matrix Z comes from a genuine image (i.e., hypothesis H0),
or from an upscaled and quantized image (i.e., hypothesis H1). The experimental
validation of the proposed detector proved its practical applicability, but here we
are more interested in evaluating its performance from a theoretical perspective.

As an example, given that we know through (14) that the magnitude of the
gap between the signal subspace and the noise depends on the signal-to-noise

ratio
(

σ2
S

σ2
W

)

, we can evaluate the detector performance as a function of this

quantity using synthetic 2D-AR random fields. The obtained results of Area
Under the Curve (AUC) corresponding to the Receiver Operating Characteristic

(ROC) of the detector are shown in Figure 4(a) for different values of
(

σ2
S

σ2
W

)

and

ξ (using the Linear kernel and performing 1000 realizations). As expected, the
larger the signal-to-noise-ratio, the better the detection performance. Notice also
that the convergence to perfect detection is faster for larger resampling factors.

On the other hand, it is interesting to note that we can determine a theoretical
threshold to drive the decision of our detector. This comes from the analysis
performed in Sect. 3: first, we know that under H0 the last nonzero eigenvalue of
ΣZK

, i.e., λK(ΣZK
), is lower bounded by σ2

Sλ−(ΣXK
); then, from (13) we know

that the upper bound for λK(ΣZK
) under H1 is given by MPL at σ2

W (1+
√
β)2;

so, provided that σ2
S ≫ σ2

W (which is typically the case for real images), the
condition σ2

Sλ−(ΣXK
) > σ2

W (1 +
√
β)2 will be generally satisfied (recall that

λ−(ΣXK
) increases as β → 0). As a conclusion, assuming that this condition is

commonly satisfied in most practical cases, the proposed detector can operate
with a fixed threshold at σ2

W (1 +
√
β)2.
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Fig. 4. Evaluation of the detector performance in terms of AUC for different values of
(

σ2
S

σ2
W

)

and ξ in (a). In (b), histogram of the values of λK(ΣZK
) when considering real

images (top) and examples of genuine blocks with linear dependencies (bottom).

The soundness of this limit with real images is verified by testing a total
of 1317 uncompressed images from the Dresden Image Database [2] (only raw
images from different Nikon cameras are selected). To avoid the presence of
demosaicing traces, the genuine images are constructed by getting access to the
output of the camera sensor using the tool dcraw and picking always the same
green pixel position from each 2×2 Bayer pattern. For performing each full-frame
resampling operation we employ the tool convert from ImageMagick’s software.
As interpolation kernels, we use those described in Table 2. We constrain the set
of resampling factors to the interval [1.05, 2] uniformly sampled with step 0.05.

Figure 4(b) shows part of the histogram of λK(ΣZK
) under each hypothesis

after processing the central 128 × 128 block from each genuine and upscaled
image by ξ ∈ [1.05, 2] with the Linear interpolation kernel. As can be observed,
the discussed threshold almost perfectly separates both hypotheses, excepting
the highlighted cases that correspond to genuine image blocks which present
linear dependencies in their content (e.g., flat regions). This is the reason why
the test statistic κ defined in [15, Eq. 11] must consider different blocks and
identify rank-deficient matrices to circumvent these special cases and also their
upscaled versions (which do not follow the model in Sect. 2.1). Hence, when using
the test statistic κ with non-demosaiced images, we can configure the detector
to work with the above threshold so that it labels an observed image block Z as
upscaled whenever κ < σ2

W (1 +
√
β)2, and genuine otherwise.

To confirm the good behavior of our detector using this predefined threshold,
we conduct the same experiments over all the interpolation kernels, but now
processing smaller blocks of size 32 × 32, so as to test our detector in realistic
conditions where the tampered regions might be small. The performance of the
proposed detector is measured in terms of AUC and detection rate at a fixed
False Alarm Rate (FAR). For comparison, we consider our previous work in [13]
based on subspace decomposition, namely the “SVD-based” detector, and also
the state-of-the-art “LP-based” detector proposed in [5] (where LP stands for
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Fig. 5. Evaluation of our detector (solid lines) against the SVD-based [13] (dashed
lines) and the LP-based [5] (dotted lines) for image blocks of size 32× 32.

Linear Predictor). We configure our detector to work with submatrices of small
aspect ratio β = 0.2812 (i.e., K = 9, N = 32), because it makes the separation
between the smallest eigenvalue under each hypothesis more evident. For [13] we
take ξmin = 1.05 and for [5] we fix a neighborhood of 3 rows/columns.

The AUC for each combination of ξ and interpolation kernel is obtained
by applying the three detectors on both the genuine and the correspondingly
upscaled images. Given that our detector works with a predefined threshold, we
can avoid the use of a training set for computing the detection rates. However,
for deriving the empirical thresholds for the other two methods, the database is
randomly split in two disjoint sets, where 1/3 of the images are used for training
and the remaining ones for testing. The FAR obtained with the application of
our method is fixed as a reference for comparing the detection rates of the three
detectors. This means that for the detectors in [13] and [5], the training set is
used to empirically determine the thresholds that give the same FAR. Finally,
using the obtained thresholds, these detectors are applied on the test set of
upscaled images to compute the detection rates.

Figure 5(a) shows the obtained AUC for each detector. As expected from the
analysis in Figure 4(a), the detection performance of our method improves as
the resampling factor increases and, in coherence with the statistical distribution
of the eigenvalues shown in Figure 3, the best results are achieved for the in-
terpolation kernels B-spline and Linear since their smallest eigenvalues converge
faster to zero than for Catmull-Rom and Lanczos. This improves the separability
between upscaled and genuine images and, interestingly, the performance of the
SVD-based detector, which also exploits the idea behind the subspace decompo-
sition, resembles that of our method, still showing worse results. The LP-based
detector is outperformed by the other two because the spectral density estimator
used in [5] becomes inaccurate when dealing with small block sizes.

Figure 5(b) depicts the detection rates at FAR ≤ 1.2149%. Remember that
this value of FAR, which turns out to be appealing in practice, results from
the application of our detector using the predefined threshold over the genuine
images. In all cases, our method always achieves the best detection performance.
Furthermore, the results obtained in the range 1.05 ≤ ξ ≤ 1.2 are clearly superior
to those of the other methods, which is also of interest in practical scenarios,
since credible forgeries are typically performed using slight transformations.
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5 Conclusions

The eigenvalue characterization of genuine and resampled images has been ad-
dressed in this paper using a causal 2D-AR model and drawing on valuable
results from RMT. The remarkable agreement between the theoretical distribu-
tions and their empirical versions made possible the translation of theoretical
bounds to practical solutions for resampling detection. Further research should
focus on introducing a suitable model for the demosaicing process, so as to gen-
eralize all these theoretical findings to more realistic scenarios.
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