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Fully Private Non-interactive Face Verification
Juan Raḿon Troncoso-Pastoriza, Daniel González-Jiḿenez, Fernando Pérez-Gonźalez

Abstract—Face recognition is one of the foremost applications
in computer vision, which often involves sensitive signals; privacy
concerns have been lately raised and tackled by several recent
privacy-preserving face recognition approaches. Those systems
either take advantage of information derived from the database
templates or require several interaction rounds between client
and server, so they cannot address outsourced scenarios.

We present a private face verification system that can be exe-
cuted in the server without interaction, working with encrypted
feature vectors for both the templates and the probe face. We
achieve this by combining two significant contributions: a) a
novel feature model for Gabor coefficients’ magnitude driving
a Lloyd-Max quantizer, used for reducing plaintext cardinality
with no impact on performance; b) an extension of a quasi-fully
homomorphic encryption able to compute, without interaction,
the soft scores of an SVM operating on quantized and encrypted
parameters, features and templates. We evaluate the private ver-
ification system in terms of time and communication complexity,
and in verification accuracy in widely known face databases
(XM2VTS, FERET and LFW). These contributions open the
door to completely private and non-interactive outsourcing of
face verification.

Index Terms—Privacy, Biometrics, Face Verification, Complex-
ity, Full Homomorphic Encryption, Gabor Coefficients, General-
ized Gaussian, Gabor Magnitude, Statistical Model, Quantization

I. I NTRODUCTION

FACE recognition is an important and active area of
research [3] whose interest has increased in recent years

because of theoretical and application-driven motivations. Due
to the sensitivity of the involved biometric signals, privacy
has shown to be a serious concern when working with dig-
ital imagery, especially for those systems that must process,
recognize or classify face images (visual privacy[4]).

There are several aspects that must be taken into ac-
count when dealing with biometric signals (faces, irises,
fingerprints,. . . ), like revocability, performance and secu-
rity/privacy [5]. Revocabilitycopes with the impossibility of
reissuing the biometric information if it gets compromised; the
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performanceof the original system should not be degraded by
the template protection system. Finally,securityand privacy
are crucial aspects that deal with concealing the private bio-
metrics so that they are not disclosed to unauthorized parties.
These signals are intrinsically linked to the identity of anindi-
vidual; hence, their disclosure to an attacker may not only leak
information like age, gender or race (harming user privacy),
but it may also be used for unauthorized impersonation of that
individual (harming system security).

There are two groups of biometric template protection
techniques proposed so far [5]: those based onfeature trans-
formation (e.g., biohashing) apply a transformation function
parameterized by a random key to the biometrics before stor-
ing them on the database; matching is run on the transformed
domain. Conversely,biometric cryptosystemsor helper data-
based methods(e.g., secure sketches, fuzzy commitments,
fuzzy vaults) extract a key from the biometric features and
some auxiliary (helper) data. The latter should leak a negligible
amount of information about the biometric, as it is stored atthe
recognition server or publicly available. Matching is performed
by checking the validity of the key extracted from the query
biometric and the helper data.

All these systems construct a high entropy random sequence
related to the biometric features through a cryptographic key
or random salt. The secrecy of this key provides unlinkability,
while revocability is achieved through the regeneration ofthe
random sequence by choosing a different salt or key. But all
these approaches disclose anoisy (quantized) version of the
biometric features to the server that stores them. This version
is not fully independent of the original features; it reveals some
information about the latter, called privacy leakage [6].

An alternative formulation of privacy-preserving biometric
systems aims at either computational or statistical secrecy
about the biometric features through the use of Signal Pro-
cessing in the Encrypted Domain (SPED) techniques. These
involve semantically secure cryptosystems, homomorphic pro-
cessing and multiparty computation protocols (like garbled
circuits). SPED builds secure recognition protocols for which
unauthorized parties cannot infer any information that they
are not allowed to, so the main concern is privacy and perfor-
mance. This is the framework to which this work belongs.

A. Private Outsourced Face Verification Scenario

In a privacy-aware face recognition scenario, a user presents
his/her face for matching against a database of enrolled clients,
to find the corresponding identity. There are two possibilities:

• Verification (one-to-one): The server tests whether the
query features match the database templates for the
identity claimed by the user.
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• Identification(one-to-many): The server has to find in the
template database the identity that best matches the query
features (if there is any).

The identification scenario involves running several verifi-
cations and later carrying out a comparison to choose the best
match. In this work, we address theprivate non-interactive
verification scenario, leaving aside the last comparison step,
as it is not yet possible to perform that step non-interactively
in an efficient way.

We assume that the database and the verification process
are outsourced to an untrusted environment (e.g., a cloud).
For the sake of clarity, we can give an exemplifying use-
case, depicted in Fig. 1: a biometric access control system
with high security requirements, whose sensor nodes cannot
store the whole database of authorized users. This database
is outsourced to an untrusted cloud storage and processing
provider. Due to privacy concerns, the query faces must not be
disclosed to the cloud. In turn, the sensor device at the facility
may be a tamper-proof device, and it may have access to some
private information before producing the verification answer.
All the database information comes from the same facility, so
all the records of the database are protected with the same
encryption/decryption key pair, embedded in the tamper-proof
sensor devices. It must be noted that keeping per-user keys to
encrypt each record is also possible in the verification scenario
we address, but it could not be straightforwardly translated into
the identification one, as homomorphic operations typically
work only on values encrypted with the same key (see [7]).

Fig. 1. Secure Outsourced Face Verification Scenario.

Regarding the attack and threat model in this scenario,
we deal with semi-honest adversaries; i.e., the parties do
not deviate from the protocol, but they may be curious and
try to infer some information about the transcript. Coping
with malicious adversaries, able to perform spoofing or replay
attacks, would require additional mechanisms that fall outof
the scope of this work.

B. Related Work

There have been several proposals of efficient privacy-
preserving solutions in biometric recognition, most of them
in an identification scenario. Erkin et al. [8] and Sadeghiet
al. [9] combine additive homomorphic encryption and garbled
circuits. Both works focus on private face identification using
Eigenfaces [10], which projects faces onto a PCA (Principal
Component Analysis) subspace. Luoet al. [11] propose an
anonymous biometric access control (ABAC) system for iris-
based biometric identification using Paillier encryptions[12]
and an interactive Hamming distance calculation. Osadchy

et al. [13] design a novel face identification system using
cryptography-amenable primitives like Hamming distance,to
facilitate the design of the corresponding secure protocol.
Barni et al. [14] present a secure fingerprint-based authentica-
tion system comprising three elements: a bank of Gabor filters
for clear-text feature extraction; a secure Euclidean distance
computation protocol, and a “less than” interactive secure
protocol. Finally, Upmanyuet al. [15] use RSA’s multiplicative
homormorphism, and tune the tradeoff between identification
accuracy versus security by increasing the communication
complexity and the client-side computation load; non-linear
operations are performed either as clear-text operations at the
server, or approximated with interactive circuits.

C. Our Contributions

Our formulation clearly differs from prior SPED-based
works: they assume that the server is a trusted party with
clear-text access to the biometric database, so they do not
truly protect the privacy of the enrolled users in an outsourced
verification scenario. Cloud-based services are being increas-
ingly adopted, but, without appropriate measures, biometric
privacy is a barrier for them. Thus, their need for effective
privacy-preservation is essential [16]. This work addresses
this problem, enabling the use of cloud-based services for
biometric verification. We impose the following requirements:
a) fully encrypted template database and query faces (total
privacy); b) no interaction rounds for providing the verification
result, and c) restrict the processing done by the client to
encryption and decryption, so that lightweight client devices
can engage in the secure verification protocol.

On top of a baseline Gabor-based face verification algo-
rithm [17], we make two significant contributions that must
be combined to reach a fully non-interactive solution: a)
an efficient extension of Gentry’ssomewhathomomorphic
cryptosystem [18], able to run the whole verification algorithm
in the encrypted domain, and b) a non-linear quantization for
Gabor features that achieves a great plaintext cardinalityreduc-
tion. These two elements jointly enable the implementationof
our non-interactive private system in an untrusted environment.

The closest related work is that of Barniet al. [14],
which uses encrypted quantized Gabor features for fingerprint
recognition. Besides the different scenario and our ability to
work with encrypted query biometricsand encrypted tem-
plates, our work presents the advantage of homomorphically
calculating low-degree polynomial functions, not being limited
to Hamming distance or linear projections. Conversely, the
server in [14] needs auxiliary values to compute an Euclidean
distance, and it would also need interaction rounds for each
multiplication if the database were encrypted. Finally, the
quantization in [14] is linear, while we are proposing a non-
linear Lloyd-Max quantization driven by our model for Gabor
magnitudes.

With respect to [1], [2], here we provide a coherent and in-
tegrated vision of the two elements that comprise our privacy-
preserving solution, with a more comprehensive explanation
of the cryptosystem extension and a new security discussion;
we employ more rigorous goodness-of-fit measures to validate
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the developed Gabor magnitudes model, and we also enhance
our verification algorithm with different pre-normalization
techniques and the use of a Support Vector Machine (SVM)
classifier together with a more extensive and homogeneous
experimental validation including more databases.

D. Notation and Structure

Matrices and column vectors are respectively represented
as uppercase and lowercase boldface letters, while random
variables are represented as uppercase letters;[a]d represents
the reduction ofa mod d; vector notationa = [a0, . . . , an−1]
and polynomial notationa(x) =

∑n−1
i=0 ai · xi will be used

indistinctly when appropriate. Finally,(a(x)) represents the
ideal generated by the polynomiala(x), and JxK (resp.JxK)
represents the encryption ofx (resp. of the elements ofx).

The rest of the paper is organized as follows: Section II
presents our Gabor feature extraction process. Section III
introduces and evaluates the used statistical model and quan-
tization for Gabor coefficients magnitude. Section IV reviews
fully homomorphic cryptosystems and presents the proposed
extension and its homomorphic capacity. Section V shows
the application of both contributions to a fully-private non-
interactive face verification scenario, and evaluates its perfor-
mance figures in widely known test face databases. Finally,
Section VI discusses the security aspects of the extended
cryptosystem, and Section VII draws some conclusions and
future research lines.

II. GABOR FEATURESEXTRACTION

Gabor filters have received great attention for face process-
ing [19] due to biological reasons and because of their optimal
resolution in both frequency and spatial domains [20].

One of the drawbacks of Gabor features [17] is their huge
storage requirements. In this work, we take one step further
in the reduction of the representation length needed for an
efficient recognition, addressing the cardinality requirements
that the encryption system presented in Section IV-C poses.
In order to minimize the volume of data, we discard the
phase information and use a novel statistical characterization
to model magnitudes of Gabor coefficients [1], under the
assumption that both real and imaginary parts are generalized
Gaussian distributed with circular symmetry, and we propose
two different quantizations, using levels and indices (cf.Sec-
tion III-B). Some recent approaches showed the benefits of
keeping Gabor phase for effective recognition [21], [22], but
no clear improvements over magnitudes have been obtained
on difficult scenarios (e.g. see [22]). Furthermore, magnitude-
based systems can work, as in our case, with sparse points,
while phase-based approaches require a dense filtering, pro-
ducing feature vectors of large dimensionality. In any case, we
aim at showcasing our secure system on a baseline polynomial
verification function working with input signals of reduced
cardinality and dimensionality.

Fig. 2 depicts our feature extraction process. It comprises
a geometric normalization—so that eyes and mouth are in
fixed positions—, cropping the faces to a common size
(120 × 100 pixels), and a photometric correction (histogram

equalization and local mean removal). Afterwards, a bank of
40 Gabor filters [17] (8 orientations and 5 spatial frequencies
per orientation) is applied to each node of a10 × 10 grid
superimposed to the image of the face. The outputs are Lloyd-
Max quantized and encrypted prior to their transmission to the
secure verification system.

Geometric normalization
Eyes and mouth

Cropping
120px x 100px

Photometric correction
Histogram Equalization

Mean removal

10x10 Mesh
Gabor

Filter Bank
(8 x 5)

Vector
Encryption

Input to the
Secure

Verification
System

Extracted
Features
Vector

(4000 components)

Lloyd-Max
Quantization

Fig. 2. Preprocessing, feature extraction and encryption steps performed at
the client for our setup.

The next section presents our feature model, fit to the
magnitudes of the “Extracted Features Vector” coefficients
(Fig. 2), and used for optimal data compression at the “Lloyd-
Max quantization” step in order to discretize the inputs andto
reduce the plaintext cardinality prior to encryption.

III. T HEORETICAL MODEL FOR THE MAGNITUDE OF

GABOR COEFFICIENTS

Generalized Gaussian (GG) distributions are a good fit
for peaky and heavy-tailed random variables; examples
of GG-modeled variables can be found in coefficients of
many transforms, like DCT (Discrete Cosine Transform) or
Wavelets [23], [24], and, especially, the marginals of Gabor
coefficients [17]. A GG variable has the following density

fGG(x) =
β · c
2Γ( 1c )

· e−|βx|c , β =
1

σ

√

Γ( 3c )

Γ( 1c )
,

whereΓ(.) is the Euler Gamma functionΓ(z) =
∫∞

0
tz−1e−t ·

dt, β is a scale parameter, inversely proportional to the
standard deviationσ of the variable, andc is a shape parameter
(see [1], [17], [25] for further details). To the best of our
knowledge, there is only a previous approach to modeling
Gabor coefficients magnitude, proposed in [26], through the
so called β-Rayleigh distribution, a generalization of the
Rayleigh distribution with a shape factorβ. Unfortunately,
a β-Rayleigh-distributed magnitude cannot be obtained from
GG marginals, so this model misses a connection with current
models, which assume GG distributed real and imaginary
parts.

We derive now our model for Gabor magnitudes. Let
gi ∈ C be one of the Gabor coefficients extracted from a face,
and gri, gii ∈ R its real and imaginary parts, respectively.
Both real and imaginary parts follow Generalized Gaussian
marginals with the same parameters (c, σ) [17]. We have
observed that the phase ofgi is approximately uniform,
meaning that the distribution of eachgi presents circular
symmetry. Actually, independent bidimensional generalized
Gaussian variables are not circularly symmetric (unless they
are Gaussian,c = 2), and consequentlygri and gii are
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not independent. In order to assimilate this dependency, we
propose a doubly stochastic model for Gabor coefficients in
which real and imaginary parts are marginally GG, but locally
independent, identically distributed (i.i.d.) Gaussian with a
non-constant deviation across locations and subjects (see[1]
for further details).

For each coefficientGi, we expressGi = (Ci+ j ·Di) ·Si,
where Ci and Di are two independent GaussianN (0, 1),
andSi, independent ofCi andDi, is a non-negative random
variable that models the non-constant deviation, such thatCiSi

and DiSi, which model respectively the real and imaginary
marginals of a Gabor coefficient, are Generalized Gaussians.
As Si does not affect the phase,CiSi and DiSi preserve
the circular symmetry. This model covers all the observed
properties of Gabor coefficients, and allows us to calculate
an accurate distribution for their magnitudes, for which we
need to determine the distribution ofSi: it is the Gaussian
transform [27] of a Generalized Gaussian variable (GTGG):

fSi
(s2) =

1

s2

√
π

2s2

(

F−1
(

fGi
(
√

jω)
))

t= 1

2σ2

,

whereF−1 represents the inverse Fourier Transform.
Then, the modulus ofGi will be given by

|Gi| =
√

C2
i +D2

i
︸ ︷︷ ︸

Ri

·Si,

beingRi =
√

C2
i +D2

i Rayleigh distributed. We can obtain
the density of a Gabor magnitude, represented as the product
of a Rayleigh and an independent GTGG variable:

f|Gi|(x) =

∫ ∞

0

fSi
(σ2)

x

σ2
e−

x2

2σ2 dσ2

=

∫ ∞

0

1√
2πσ2

(
∫ ∞

−∞

βi · ci
2Γ( 1

ci
)
e−β

ci
i (jω)ci/2+j ω

2σ2 dω

)

·

x

σ2
e−

x2

2σ2 dσ.

Reversing the order of the integrals, we finally get

f|Gi|(x) =
ciβi

2 · Γ( 1
ci
) · x ·

∫ ∞

0

[

cos( 32 tan
−1( ω

x2 )− βciωci/2 sin(πci4 ))

(x4 + ω2)
3

4

·

e−βci cos(
πci
4

)ωci/2
]

dω. (1)

This integral can be numerically evaluated for a given pair
(ci, βi), obtaining a more peaky and heavy-tailed pdf than the
Rayleigh (see [1], [25] for further details).

A. Parameter Estimation and Goodness of Fit

We estimate the parametersc, σ for our model using data
from three known biometric face databases XM2VTS [28],
FERET [29], and LFW [30]; we employ maximum likelihood
(ML) estimation, using the numerical calculation of the pdf,
Eq. (1). We get a perfect agreement between our model and the
GG-marginals estimated parameters (see [1], [25] for details).

For evaluating the goodness of fit, we use two measures:
the Kullback-Leibler divergence [31] (KLD) and Pearson’s
χ2 statistic. The KLD provides a measure of the statistical
distance between two discrete distributions with probability
functionsP andQ, and is given by

KLD(P,Q) =

K−1∑

i=0

P (i) log

(
P (i)

Q(i)

)

,

where K stands for the number of possible values of the
discrete distribution. The KLD is also proportional to the
G statistic (G = 2N · KLD(P,Q), for N observations),
widely used in biometrics for hypothesis testing. Additionally,
Pearson’sχ2 statistic for a sample withNi observations for
each possible value (N = N0 + N1 + . . . + NK−1) and a
theoretical distributionQ can be calculated as

χ2 =
K−1∑

i=0

(Ni −N ·Q(i))
2

N ·Q(i)
.

Both Pearson’s statistic and theG statistic have aχ2

distribution with K − 1 degrees of freedom, which can be
used for hypothesis testing and for calculating the confidence
interval for the event that the observations be derived fromthe
distributionQ. As we are working with actual data, our model
is not intended to capture all the noise sources and uncertainty
in the observed signal, but to present a better fit than previously
used models. To this end, we show next that both the KLD
and Pearson’s statistic for our model are significantly lower
than for previously used distributions for Gabor magnitudes.

In order to calculate both the KLD and Pearson’sχ2

statistic, we discretize the theoretical pdf inK intervals
(K ∈ [512, 1024]) and compare it to the empirical discrete
pdf given by the histogram of the actual data. Fig. 3 shows
the KLD and Pearson’s statistic calculated for XM2VTS,
LFW and FERET databases for our model compared to two
distributions: Rayleigh, equivalent to considering Gaussian
i.i.d. real and imaginary part for the Gabor coefficients, and
β-Rayleigh [26]. For the three databases, our model gives a
much better fit than the Rayleigh, especially for the coefficients
with a lower shape factor, which are farther apart from the
Gaussian model. Fig. 3 also shows the pseudoperiodic effect
on c when varying the orientation [17]. This produces that
the calculated statistics for the Rayleigh have minima at those
coefficients with shape factors closest toc = 2. In any case,
as shape factors are always in the range(0.5, 1.5), our model
will always yield a better fit than the Rayleigh model.

Additionally, the improvement on the fit provided by our
model is much more noticeable for the LFW and the FERET
databases. This is due to XM2VTS’s samples be taken within
controlled conditions, thus presenting a limited set of poses
and illuminations; on the other extreme, LFW yields a much
richer variety of poses, expressions and illuminations on lower
quality images, producing a heavier-tailed distribution for the
magnitude of the coefficients that is harder to approximate
with aβ-Rayleigh. These heavy tails are very well fitted by our
model, corroborating that the original assumptions on which
it is grounded are fulfilled by the three databases.
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Fig. 3. KLD (non-marked lines) andχ2 statistic (marked lines) for
Gabor magnitudes modeled as Eq. (1), Rayleigh andβ-Rayleigh [26] for
the XM2VTS (a), the (b) FERET, and the LFW (c) databases.

B. Optimal Quantization of Biometric Data

The presented model has interest in itself, and there are
many applications that can benefit from its use. Our target here
is the minimization of the plaintext cardinality of the involved
magnitudes; this is necessary for the encrypted private system
to effectively handle the full face verification without any
interaction. Hence, we apply our model for optimal coefficient
quantization using a Lloyd-Max quantizer [32]. When an
accurate distribution of the to-be-quantized variables isgiven,

this quantizer achieves minimum mean squared error (MSE)
for a fixed numberNL of representative levels.

A Lloyd-Max strategy was also used in [17] for indepen-
dently quantizing the real and imaginary parts of Gabor coef-
ficients. If the phase information is discarded for verification,
it is more appropriate to directly quantize the magnitudes
instead. Hence, our choice gets a more significant storage
reduction, so we expect to achieve similar performance with
less representative levels. Additionally, the quantization in [17]
and [1] uses a numberNL of centroids for each coefficient,
preserving the real values of the corresponding levels as
the output quantizations. This strategy allows for a storage
reduction in a clear-text system: only the (integer) indices of
the corresponding quantization levels and the mapping from
the indices to the real levels have to be stored. However, this
mapping has to be applied to recover the quantizations before
operating on them; an encrypted system that has to work with
integer-valued numbers cannot translate this quantization into
an actual reduction in plaintext size. Instead, we propose the
use of integer quantization indices, as a more suitable strategy
for the encrypted system, i.e., all the involved variables are
mapped to integer numbers with a very low cardinality (the
number of quantization levels). Additionally, the use of indices
involves a nonlinear scaling of all the coefficients in such a
way that, after scaling, the resulting centroids are arranged
in equidistant bins, as shown in Fig. 4. This also produces
an inherent normalization, reducing coefficients with high
variance and amplifying those with low variance, and fixing
the range for all the coefficient indices.

c0 c1 c2 c3 c4 c5 c6 c7

0 321 54 6 7

f(x)

h(ci)

Fig. 4. Qualitative diagram showing the non-linear scalingproduced by the
use of integer quantization indices (lower graph) instead of the real values of
the quantization centroids for Lloyd-Max quantization (upper graph).

Section V-A will validate the achieved performance results
for a given cardinality reduction in the integrated system.
Before that, we will introduce the second essential block of
our secure verification scheme, which is fed by quantized
coefficient levels: our extended homomorphic cryptosystem.

IV. EXTENDING GENTRY’ S FULLY HOMOMORPHIC

CRYPTOSYSTEM

We take one of the latest versions of Gentry’s bootstrappable
fully homomorphic cryptosystem (GH11 [18]). The cryptosys-
tem is GGH-type (Goldreich-Goldwasser-Halevi) based on
ideal lattices. We firstly give a brief explanation of GGH
cryptosystems in general and GH11 in particular, and then
present our extension. We refer the interested reader to [16],
[25] for a more detailed description of GGH cryptosystems.

A. GGH Cryptosystems

Given a latticeL with shortest nonzero vector lengthλ1(L),
the rationale behind GGH cryptosystems lies in choosing two
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bases with differentcorrection radii. Thecorrection radiusof
a basis can be defined as the norm of the shortest error vector
that, added to a lattice point, cannot be corrected using that
basis (as it falls outside the parallelepiped—Voronoi region—
defined by the reduction modulo the basis). This radius is
upper bounded by the inner radius of the lattice, defined
as λ1

2 , that is, half the shortest distance between two lattice
points; this bound yields the maximum correctioncapacitya
lattice can achieve, depending on the basis.Good basesyield
almost spherical Voronoi regions, with a correction radius
approaching the inner radius of the lattice; bad bases have a
very small correction radius and poor correction capabilities.
This fact is used in GGH cryptosystems to choose the keys:

• Bsk constitutes the secret key; it is agood basis: it
allows to efficiently solve certain instances of the closest-
vector problem in the lattice, and its correction radius is
large enough. The basis vectors are short and almost-
orthogonal.

• Bpk (B from now on) constitutes the public key; it is a
bad basis: solving the closest vector problem inL using
B is algorithmically hard.B is usually chosen as the
Hermite Normal Form (HNF) of the lattice, as it can be
efficiently computed from any other basis, it has a very
small correction radius (asymptotically zero with growing
dimensions), and the LLL algorithm (the most widely
known lattice reduction algorithm, by Lenstra, Lenstra
and Lovasz [33]) is particularly slow [34] for the HNF.

Encryption and decryption are analogous to channel noise
addition and error correction in a digital communication
system, with the peculiarity that the information resides in the
induced channel errors. Encryptionc of a messagem consists
in the addition of a correctable error vectore (||e||2 < λ1(L)

2 ),
that encodesm, to a point in the lattice. Decryption stands for
error correction, and it can only be done with a good basis
like Bsk, by recovering the error vectore asê = c mod Bsk.

B. GH11 Cryptosystem

The somewhat homomorphicscheme presented by Gentry
and Halevi [18] uses a principal-ideal latticeJ , generated by
a polynomial v(x) (v in vector notation) witht-bit signed
random integer coefficients, in the ring of polynomials modulo
fn(x)

.
= xn +1. The HNF must have the following structure:

BT = HNF (J) =










d 0 0 0
−r 1 0 0

−[r2]d 0 1 0
. ..

−[rn−1]d 0 0 1










,

whered can be defined as the resultant of the polynomialsv(x)
andfn(x), andr is a root offn(x) mod d. B is the public-
key encryption matrix, completely determined by the pair of
integers(d, r), while the private key is given byv(x) and
its scaled (modulofn(x))-inversew(x) (i.e., v(x) × w(x) =
d mod fn(x)); only one of the coefficients ofw, denoted by
wi, is required for the decryption procedure.

As defined, this cryptosystem isquasi-homomorphic under
addition and multiplication, that are directly mapped from

the crypto-text ring (errors with respect to lattice points)
to the clear-text ring. This homomorphism is limited, as
both operations are only correctly mapped when the error
lies within the same Voronoi region of the latticeL after
applying the operation. For reaching a full homomorphism,
Gentry proposes tosquashthe decryption circuit so that it
can be homomorphically executed. Hence, it is possible to
bootstrap1 a fresh encryption from a degraded one, effectively
achieving a full homomorphism, at the cost of additional
security assumptions.

Instead of bootstrapping the decryption circuit, we propose
to trade this full homomorphic capacity for the ability to exe-
cute low to medium-degree polynomials before the cipher gets
corrupted enough to lose data. Hence, we use the cryptosystem
as a quasi-fully homomorphic scheme, while we improve
on the allowed cardinality of the plaintext as shown in the
next section. These two contributions together produce a very
versatile cryptosystem for non-interactive secure processing.

C. Proposed Extension to GH11 Cryptosystem

GH11 cryptosystem can only deal with binary numbers in
(Z2,+, ·); i.e., the homomorphic ring operations areand and
xor gates. This means that a simple arithmetic circuit with non-
binary numbers needs a high amount of binary homomorphic
operations; each of them increases the noise within the Voronoi
region of the lattice, until they wrap up producing a decoding
error. This sets a limit to the depth of a homomorphically
executable polynomial, which has been empirically calculated
by Gentry and Halevi [18].

In this section we provide an extension to the plaintext-
size, allowing for homomorphic additions and multiplications
in (Z2k ,+, ·) (powers of two are chosen for convenience).
Additionally, we give a theoretical lower bound on the maxi-
mum number of executable multiplications, that also supports
Gentry’s empirical study forZ2. Our extension seeks to
enhance the efficiency of arithmetic non-interactive operations
and decrease the cipher expansion rate. Furthermore, the key
generation process does not need to be changed2, so the same
keys can be used for the binary cryptosystem and for the
proposed extension. A sketch of the proposed encryption and
decryption operations is shown in Algorithm 1.

1) Encryption: In Gentry’s original cryptosystem, the en-
cryption operation of a bitb ∈ Z2 uses a random noise vector
u ∈ {0,±1}n. Each elementui is chosen as0 with probability
q and ±1 with probability (1 − q)/2 each (q is a security
parameter). We extend encryption for dealing withm ∈ Z2k

a = 2ku+m · e1; c = a mod B = [a(r)]d · e1,
wheree1 is the first vector of the canonical basis. The vector
c, as in the original construction, has only one non-zero
component, representative of the encryption:

c = [a(r)]d = [m+ 2k
n−1∑

i=0

uir
i]d.

1For more details on squashing and bootstrappable fully homomorphic
cryptosystems we refer the reader to [18], [35].

2See [18] for details on the key generation process.
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Algorithm 1 Proposed Encryption and Decryption
Parameters:
q: probability of a zero in the random salt vector
k: maximum bit size of the plaintext space elements
(r, d): encryption key
(wi, d): decryption key
n: lattice dimensionality

Encryption Decryption
Input: plaintextm ∈ Z2k Input: ciphertextc ∈ Zd

Output: ciphertextc ∈ Zd Output: plaintextm ∈ Z2k

1) Generate random vector
u ∈ {0,±1}n with
probability distribution
{(1 − q)/2, q, (1 − q)/2}
for the values{−1, 0, 1}.

2) Calculate the ciphertext
c = [a(r)]d =
[m+ 2k

∑n−1
i=0 uir

i]d.

Get the plaintext m = [c ·
wi]dw

−1
i mod 2k

The complexity of encrypting ak-bit number is the same
as for encrypting a bit in the original system. Furthermore,
the security in terms of Birthday-type attacks is not altered
either, as the noise vector has the same entropy; hence, given
a security levelλ, q may still be chosen such that

2(1−q)n

(
n
qn

)

> 22λ.

A discussion about the security of the extended cryptosys-
tem can be found in Section VI.

2) Decryption: For the decryption, the original scheme
uses an optimized procedure that only needs one of the
odd coefficients ofw mod d, denoted bywi. Adapting that
procedure, our decryption for ak-bit messagem becomes

m = [c · wi]dw
−1
i mod 2k.

The difference with respect to the original decryption is the
product byw−1

i mod 2k. GH11 requireswi to be odd; due
to our choice of powers of two for extended plaintexts,w−1

i

exists if wi is odd, so we impose no additional requirement
for the key generation process, and the added decryption
complexity is negligible compared to modulod operations.

D. Homomorphically Achievable Polynomial Degree

After presenting our extended cryptosystem, it is essential
to measure its homomorphic capacity, in order to predict if
it can execute the face verification function. With this target,
we derive now a theoretical upper bound on the maximum
achievable polynomial degree that the cryptosystem can eval-
uate with an arbitrarily bounded probability of incurring on
decryption errors. We will first bound the probability of incor-
rect decryption for successive homomorphic multiplications.

Incorrect decryption may only happen when the error vector
added to a lattice point lies outside the Voronoi region of the
used lattice. This condition boils down to||aTW ||∞ < d/2,
whereW is the rotation basis that generates(w(x)), having
in each row the coefficients ofw(x) · xi mod fn(x). Due to
the structure ofW (a circulant matrix with negated lower

triangular part), we can bound

||aTW ||∞ ≤||a||∞||W ||∞

=max
i

(|ai|) ·
n−1∑

i=0

|wi| ≤
n−1∑

i=0

|wi|
n−1∑

i=0

|ai| < d/2

⇒||aTW ||∞ < d/2.

The number of non-zero elements (Nzj) of a chosenuj

follows a Binomial distributionNzj ∼ Bi(n, 1−q). In a fresh
encryption, each of these elements has magnitude2k, while
the message is|m| < 2k. Hence,

∑n−1
i=0 (|ai|) < 2k(1+Nzj).

Conversely, after a multiplication between two ciphertexts
c1 and c2 (in the polynomial quotient ringZd[x]/(fn(x))),
the resulting point must also be within the Voronoi region.
The product of two polynomials modulofn(x) is equivalent
to a cyclic convolution of their coefficient vectors (with a
sign change for the overlapped subvector). Letc2 be a fresh
encryption; thus, it has the same absolute value (2k) for all
the non-zero coefficients of the used randomu. Consequently,
the l1-norm of the resulting coefficient vector of the prod-
uct of a given ciphertextc1 and c2 is upper-bounded by
||c1||1 · 2k(1 + Nz2). In general, we have that, afternm

successive products of a cipher by fresh encryptions,

||aT
nm

W ||∞ ≤
(

n−1∑

l=0

|wl|
)

nm∏

i=0

2k(1 +Nzi).

Hence, we can bound the probability of decryption error

P [dec error] = P [||aTW ||∞ ≥ d/2] ≤

P









nm∑

i=0

log(1 +Nzi)

︸ ︷︷ ︸

Nnm

≥ log

(

d

2k(nm+1)+1
∑n−1

l=0 |wl|

)









,

where Nnm
is a random variable with bounded support

(Nnm
∈ [0, (nm + 1) log(n + 1)]). Thus, it may happen that

for a low number of dimensions and few multiplications the
probability of decryption error be zero. Nevertheless,q is
chosen such that(1 − q) ≪ 1, for high enoughn (like the
commonly usedn even for short-term security), so the error
probability will not get to be identically zero in any case.
Furthermore, the pdf ofNnm

will present a narrower bell as
n or nm increase, so by virtue of the Central Limit Theorem
(CLT), Nnm

can be accurately approximated by a Gaussian
variable with parameters

µnm
=(nm + 1)µ

.
= (nm + 1)

n∑

i=0

log2(1 + i)

(
n
i

)

(1− q)iqn−i,

σ2
nm

=(nm + 1)σ2

.
=(nm + 1)

n∑

i=0

(log2(1 + i)− µ)2
(

n
i

)

(1− q)iqn−i,

that will provide a very accurate approximation near the bell
and an overestimation of the decryption error probability in
the tails, due to the bounded support ofNnm

.
We may then bound the maximum number of bits to which

we can extend the ciphertext for allowing a given numbernm
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TABLE I
LOWER BOUND ON THE MAXIMUM NUMBER OF PRODUCTS AND

GENTRY’ S EMPIRICALLY OBTAINED MAXIMUM DEGREE POLYNOMIAL AS

A FUNCTION OF t, WITH n = 128.

t 64 128 256 384

Lower bound 10 22 46 69
Empirical [18] 13 33 76 128

of successive multiplications with a given probability of error
pe using theQ function3

kmax =

⌊
log2(d/||w||1)− 1

nm + 1
− µ− Q−1(pe)σ√

nm + 1

⌋

. (2)

As expected, the maximum number of bits decreases when
increasingnm, and it is heavily influenced by the quotient
d/||w||1, representing the effective radius of the Voronoi re-
gion. It can be shown that the choice oft (bit-size of the coeffi-
cients ofv(x)) determines the maximum value of this quotient;
the proof is obtained by expressingv(x)w(x) = d mod fn(x)
in vector notation and using the Hölder inequality:

d = vT [w0,−wn−1, . . . ,−w1]
T ≤ ||v||∞||w||1 < 2t||w||1

⇒ d

||w||1
< 2t.

Hence, for a good lattice, the maximum correctable noise
norm (decryption radius) will be close tot bits (cf. Fig. 5b).
Substitutinglog2(d/||w||1) by t in Eq. (2), we get an estima-
tion of the maximum plaintext bit-size for correct decryption
after a given number of multiplications for a generic good
lattice. Reciprocally, the inverse of this expression yields
the maximum number of affordable multiplications with a
bounded decryption error. It must be noted thatns consecutive
homomorphic additions can increase at most inlog2(ns)
bits the size of the∞-norm of the noise vector; in fact,
Eq. (2) can take this into account by subtractinglog2(ns)
from t. Hence, when determining the maximum degree of a
polynomial run on freshly encrypted variables, the maximum
number of multiplications is the limiting factor. Gentry and
Halevi provide an approximation of the maximum degree
deg of an elementary symmetric polynomial evaluated onm
encrypted binary variables, bounding the decryption radius by
the approximated Euclidean norm of the polynomial output:

2t ≥ cdeg

√
(

m
deg

)

. However, for largem this expression

overestimates the effect of additions: as the combinatorial
number of summed monomials grows above the lattice di-
mensionality, they cannot be considered independent anymore.
Table I shows the validity of our bound compared to the
experimental results by Gentry.

Fig. 5a represents the number of sequential products with
new fresh ciphers before a decryption error occurs (forn =
512, t = 380 and q = 1 − 20/512, picking the minimum
of 1000 trials), and our lower bound forpe = 10−4. The

3TheQ function can be defined as

Q(x) =
1√
2π

∫

∞

x
e−u2/2du

bound is fairly conservative for small plaintexts that allow for
a high amount of products, as it is a worst-case bound, but it
becomes tight for medium-to-highk, even when the Gaussian
approximation in those cases provides an overestimation of
the decryption error. We also obtained very similar resultswith
bigger lattices, due to two facts: a) the quotientlog2(d/||w||1)
is almost constant for random lattices (see Fig. 5b), and b) the
binomial distribution barely changes with highn for a fixed
rate (1− q)n.
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Fig. 5. (a) Minimum number of multiplications (Eq. (2)) withoutdecoding
error after 1000 trials as a function ofk and (b) quotientlog2(d/||w||1) for
random lattices of several dimensions with fixedt = 380.

V. FULLY PRIVATE NON-INTERACTIVE FACE

VERIFICATION

The combination of the quantization strategy of Section III
together with the extended cryptosystem presented in Sec-
tion IV provides an efficient and accurate solution for a fully
private outsourced face verification scenario (see SectionI-A).
Algorithm 2 shows a sketch of the proposed protocol.

Unlike previous works [1], our system uses the integer
indices of quantized coefficients instead of the actual quantized
values. This allows for a hugely reduced plaintext size without
much degradation in system performance (cf. Section V-A),
and benefits from an inherent normalization of the jets, as the
Lloyd-Max quantization already performs a nonlinear normal-
ization (cf. Section III-B). The verification algorithm canbe
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based either on average correlation (cosine distance) or onav-
erage Euclidean distance; both can be efficiently calculated in
the encrypted domain, and there are no statistically significant
differences in verification performance between both distances.
Actually, the proposed cryptosystem could work with other
l-norms, wheneverl fits within the homomorphic capacity
for a given bit size of the quantized inputs. This enables the
use of the homomorphic cryptosystem for many verification
functions without any intermediate decryption, i.e., in a fully
non-interactive way.

In the enrollment phase, the presented feature vectors are
encrypted and stored in a central database for later use as tem-
plates; each user may have up toNtp templates. The verifica-
tion thresholdη is a system parameter also kept encrypted. We
employ a linear-kernel Support Vector Machine (SVM [36]),
previously trained on local distances, that produces a weight
vectorα, resulting from the linear combination of the support
vectors{sj}M−1

j=1

scoreSVM (x) =
M−1∑

j=0

βjs
T
j · x− η = xT

M−1∑

j=0

βjsj

︸ ︷︷ ︸

α

−η; (3)

the score is classified astrue if it is non-negative, and asfalse
otherwise. For each pair of compared feature vectorsa and
b, if the input to the SVM is chosen asxj = (aj − bj)

2.
The effect of the weight vectorα is to produce a weighted
Euclidean distance dist(a, b) =

∑N−1
i=0 αi · (ai − bi)

2 as the
verification score. In theverification phase, a user presents
an ID to be matched together with the encrypted quantization
indicesĝ of his/her Gabor features vector. The database holder
homomorphically calculates the encryption of thesoft score

soft score(ĝ(id), id) =

Ntp−1
∑

i=0

dist(g(id)
i , ĝ(id))−Ntpη,

that is returned as the output of the verification process. Itmust
be noted that more involved kernels like RBF (Radial Basis
Functions) or sigmoid have not shown a net improvement in
the performance of this kind of verification systems, and they
would add too much complexity to a non-interactive private
solution. Using the proposed linear SVM adds little compu-
tation complexity to the non-weighted original approach (the
number of products is doubled), while considerably enhancing
the verification accuracy (cf. Section V-A).

As a last remark, a hard score may be required for some
applications. We will not consider that case explicitly in
this work, as we are testing the raw performance of the
extended cryptosystem in a fully non-interactive outsourced
scenario. In any case, the private implementation of the
last comparison step needed for providing a hard score
([soft score(ĝ(id), id) ≥ 0]) could be easily produced, by
adapting one of the many interactive comparison protocols
available for an additive homomorphic cryptosystem(e.g.,
see [8, Section 5]). This adaptation must take into account that
for performing a statistically blinding decryption—necessary
for the intermediate steps of the protocol—the cipher must
support the encryption of numbers with a lengthκ bits higher

Algorithm 2 Proposed Secure Outsourced Verification Proto-
col
Database preparation (A):

1) Calculate the weight vectorα and thresholdη for the desired operation
point.

2) Encrypt existing database vectors andα andη.
3) Send encryptionsJαK andJηK to B.

Enrollment:
A B

1) Obtain a new identifierid
for the user.

2) Extract the feature vector
g
(id) for the new user.

3) EncryptJg(id)K.
4) SendJg(id)K and id to B.

5) If an entry associated toid
does not exist, create a new
entry.

6) Store the encryptedJg(id)K
as a new template forid at
the database.

7) Return the identifierid to
the user.

Verification:
A B

1) Obtain the identifierid for
the user.

2) Extract the feature vector
ĝ
(id) for the presented user

face.
3) EncryptJĝ(id)K.
4) SendJĝ(id)K and id to B.

5) Retrieve the stored
encrypted Ntp templates
for id: {Jg(id)

i K}Ntp−1
i=0 .

6) Calculate the encrypted
score homomorphically
as

q
score

(

ĝ
(id), id

)y
=

∑Ntp

i=0

∑M−1
j=0 JαjK ·

(

Jg(id)i,j K − Jĝ(id)j K
)2

−
NtpJηK;

7) Return the encryptedq
score

(

ĝ
(id), id

)y
to A.

8) Decrypt score
(

ĝ
(id), id

)

.
9) Check whether

score
(

ĝ
(id), id

)

> 0.
10) Report verification result to

the user.

than the input coefficients and results; hence, for normal values
of the security parameterκ (κ ≈ 70 bits) and typical working
magnitudes (around20 bits for this application, thanks to the
proposed quantization), the extended cryptosystem will need
to cope with∼ 90 bits clear-text sizes. With this capacity,
it will be able to support at least two correct consecutive
homomorphic products, Eq. (2); this is enough for calculating
a weighted Euclidean distance.

We will now evaluate the presented secure verification
system in terms of verification performance and efficiency.

A. Face Verification Performance

In order to evaluate the impact of data quantization
on system performance, we conducted experiments on the
XM2VTS [28], the FERET [29], and the LFW [30] databases.
We are not aiming at improving the verification rate of state-
of-the-art classifiers, but showing instead that the presented
optimal quantization driven by our accurate feature model
does not hinder the verification performance of the system.
Hence, we have used baseline verification methods (similar
to the ones in [1], [17]) to better show the actual effects of
quantization. We also compare our proposal of a weighted
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Euclidean distance (Eq. (3)) as verification function with
the results obtained without any additional weighting on the
quantized coefficients [2]. The SVM provides improved results
with a very little complexity overhead, also in a suitable
configuration for the privacy-preserving implementation.

For the three databases, we plot the obtained ROC (Receiver
Operating Characteristic) curve and report the verification
accuracyµ = 1 − (FAR + FRR)/2 at the EER (Equal
Error Rate), where FAR and FRR stand forFalse Acceptance
Rate and False Rejection Raterespectively. We present the
comparison for three quantization strategies with a set of
NL = {2, 4, 8} levels, with and without weighting:

• Independently quantizing the real and imaginary parts of
the complex coefficients [17]. We useNL for the number
of levels for quantizing the absolute value of the real and
imaginary parts, in such a way that2(1+ log2(NL)) bits
are actually needed for each quantized coefficient (sign
bit plus two quantizations per coefficient).

• Quantizing the magnitudes of coefficients [1].
• Using integer quantization indices instead of actual quan-

tized values for our model (proposed in this work).
The two first strategies also comprise an additional prenor-

malization step such that each 40-coefficient jet for each
localization has unit norm.

a) XM2VTS database:Experiments on XM2VTS were
performed following configuration I of the Lausanne proto-
col [28]. The XM2VTS database contains mainly frontal face
images recorded on 295 subjects (200 clients, 25 evaluation
impostors, and 70 test impostors) during four sessions taken at
one-month intervals. The database is divided into three sets:
training, evaluation and test. The training set (3 images per
user) was used to estimate model parameters (c and σ), and
calculate the quantization centroids. The evaluation set was
used to estimate EER thresholds, and train the linear SVM
classifier for providing the weight vector. Finally, the ROCis
obtained from the separate test set.

b) The Facial Recognition Technology (FERET)
Database: The Facial Expression (fafb) subset of the
FERET database [29] contains a gallery of 1196 frontal
images, with one image per person, and a probe set with 1195
images of the same people, obtained a few seconds after the
gallery ones with a different expression. The standard FERET
verification test [29] checks every possible pair of faces from
gallery and probe set together, reporting the resulting ROC.
For quantization in our tests, we took the model parameters
c andσ and the centroids estimated from the LFW database
view 1. As FERET does not provide a standardized division
between evaluation and test set, for testing the proposed linear
SVM we performed a 5-fold cross validation with equal-size
disjoint subsets taken from gallery and probe.

c) Labeled Faces in the Wild (LFW) database:The
LFW database [30] (we used thefunneled version) is a more
challenging dataset that contains 13,233 face images which
have several compound problems (imperfect localizations,
in-plane rotations, non-frontal poses, low resolution, non-
frontal illumination, varying expressions...). The images were
obtained by running an automatic face detector on images
collected from the Internet. The LFW database is organized

into two views: we usedview 1 to estimate model parameters
and quantization centroids; it comprises two subsets, one for
training, and one for testing. The training set consists of
1100 pairs of matched images and 1100 pairs of mismatched
images. The test set consists of 500 pairs of matched and
500 pairs of mismatched images.View 2 is organized in 10
disjoint folds; the experiments on this dataset were carried
out following theimage restrictedparadigm, and performance
was reported onview 2using the 10-fold, leave-one-out cross-
validation scheme described in [30].

1) Verification Performance Results:Fig. 6 and Table II
present the ROC and the verification accuracyµ for verifica-
tion on the three databases, comparing the different quantiza-
tion strategies forNL = {2, 4, 8} levels.

Our model with the indices-based quantization strategy sig-
nificantly outperforms the independent real-imaginary quan-
tization [17] and the level-based magnitude quantization [1]
in all the configurations and databases. The proposed model
produces a much better fit, and the indices-based quantization,
with its non-linear scaling eliminates some non-informative
noise and preserves much more useful information for verifi-
cation in less bits. Taking XM2VTS results as a reference, our
strategy gets a cardinality reduction factor of4 with respect
to [17] for the same performance. Moreover, the use of the
SVM weights with our strategy not only recovers the original
performance, but surpasses it, with a considerable performance
boost in both XM2VTS and FERET, while the unweighted
systems [2] show an absolute gap of 1% and 0.5% respectively.

For the more challenging LFW database, there is a gap
of 2.6% from original performance for our system, slowly
recovered with increasingNL; in any case, it again performs
better than prior quantization strategies. Finally, for FERET
and LFW, the results for Eigenfaces (used in prior privacy-
preserving face identification works) are publicly available, so
we have also shown them in Table II for comparison. The
performance achieved with Eigenfaces in LFW is worse than
baseline V1-like models [37] (≈ 64%), while our system with
SVM performs better than other baseline Gabor-based schemes
(≈ 68% for V1-like+ models in LFW), and a9% and∼ 5%
over Eigenfaces in LFW and FERET respectively.

2) Quantization of SVM weighting coefficients:For any of
the studied databases, it is worth noting that the weighting
coefficients must be also quantized before being used in the en-
crypted private system. We have checked that these coefficients
{αi}N−1

i=0 approximately follow a Gaussian distribution with a
mean close to zero; their histogram for XM2VTS is shown
in Fig. 7. Actually, these coefficients come from the sum of
the signed—almost independent—coefficients of the support
vectors, hence converging to a Gaussian due to the CLT. The
number of obtained weight samples (4000 per database) is not
enough for a reliable hypothesis testing for Gaussianity, but
their quantization is not so critical as for the Gabor features. In
fact, applying a Lloyd-Max quantizer based on this Gaussian
fit, we found that using two levels (i.e., preserving just the
sign of eachαi) the impact on the verification performance is
negligible (around0.1− 0.2% in the three databases).

This system, in which all the involved values are integers
with a very low cardinality is the one that we use in this
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TABLE II
VERIFICATION ACCURACYµ (%) FOR THE QUANTIZED AND UNQUANTIZED VERIFICATION SYSTEM ON THE THREE STUDIED DATABASES. EIGENFACES

RESULTS ARE SHOWN FOR COMPARISON ONFERETAND LFW.

Database XM2VTS FERET LFW
NL 2 4 8 Orig. 2 4 8 Orig. Eigenf. 2 4 8 Orig. Eigenf.

No SVM
[17] 89.04 92.30 92.59

95.45
94.27 95.62 95.87

97.06

93.00

61.40 62.77 63.77
65.93

60.00

[1] (levels) 91.06 92.28 92.55 95.29 95.36 95.70 61.63 62.83 63.73
Proposed 94.39 94.80 94.60 96.63 96.63 96.54 65.73 65.90 65.73

SVM
[17] 96.38 97.67 97.58

96.64
95.15 95.59 96.41

97.64
64.93 67.67 68.23

72.10[1] (levels) 96.83 97.66 97.96 96.14 96.39 96.35 63.53 67.13 67.57
Proposed 96.47 98.07 98.37 97.68 97.77 97.62 67.90 69.03 69.53

0 0.02 0.04 0.06 0.08 0.1
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

XM2VTS ROC with SVMs

 

 

Unquantized
Indices N=8
Indices N=4
Indices N=2
Levels N=8
Levels N=4
Levels N=2

(a)

0 0.02 0.04 0.06 0.08 0.1
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

FERET ROC with SVMs

 

 

Unquantized
Indices N=8
Indices N=4
Indices N=2
Levels N=8
Levels N=4
Levels N=2

(b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

LFW ROC with SVMs

 

 

Unquantized
Indices N=8
Indices N=4
Indices N=2
Levels N=8
Levels N=4
Levels N=2
Eigenfaces

(c)

Fig. 6. ROC curves for the proposed verification system on thestudied databases: XM2VTS (a), FERET (b), and LFW (c), with the use of a linear kernel
SVM. Due to the good performance, for XM2VTS and FERET, the shown probability range is reduced to ease visibility.
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Fig. 7. SVM weights distribution for quantized XM2VTS.

work as the basis for our non-interactive privacy-preserving
face recognition protocol.

B. Complexity Analysis

In order to test the efficiency of our work, we implemented
the extended cryptosystem and applied it for privately cal-
culating the weighted Euclidean distance between a pair of
quantized Gabor feature vectors. We choose theNL = 8
indices quantization for its good compromise between clear-
text cardinality and verification performance. The latticesize is
fixed ton = 2048 dimensions, witht = 380 andq = 1−20/n,
for a security parameter ofλ ≈ 70. We work with 4000-
dimensional Gabor vectors for each face (10×10 localizations,
8 orientations and5 scales) with3-bit coefficients. Calculating
the weighted Euclidean distance between two vectors thus
needs two multiplications per pair of values, 3999 additions
and one subtraction. Hence, starting from8-level coefficients

and4-level weights, the resulting score is correctly represented
using ⌈log2(4000 · 2 · 82 · 4)⌉ = 21 bits (19 bits without
weights), so we usek = 22 bits for the extended cryptosystem.
Accounting for thelog2(4000) = 11.97 bits of decrease for
the effective decryption radius, Eq. (2) yields 13 supported
consecutive multiplications, so the extended cryptosystem can
perfectly cope with the distance calculation, with an arbitrarily
bounded probability of incurring on decryption errors.

Our C++ implementation uses GMP4 and NTL5 libraries.
We tested the time efficiency without any kind of paralleliza-
tion in one core of an Intel i5 at 3.30GHz with 8GB of RAM.
Table III shows the efficiency figures for the proposed algo-
rithm compared to the expected running times of atraditional
implementation based on an additive homomorphism (2048-
bit modulus Paillier [12]), with either clear-text templates
and weights (PaillierCT, partial privacy) and with encrypted
templates and weights (PaillierE, total privacy using interactive
multiplication protocols). In both Paillier-based systems the
client provides the encryptions of both his/her face coefficients
and their squared value, in the most favorable case for Paillier’s
homomorphism. The original GH11 using binary circuits for
addition and multiplication needs one bootstrapping circuit
after each multiplication gate to provide valid outputs; without
them, the verification circuit exceeds the homomorphic capac-
ity and produces erroneous outputs. Taking into account that
the verification circuit involves around3.2 · 105 products, and
each bootstrapping circuit takes around 8 seconds in our test
machine, GH11 would takealmost one monthfor executing
one verification. Hence, we report the execution times of GH11
without the needed bootstrapping circuitsjust as a reference.

4GNU MultiPrecision Arithmetic Library, http://gmplib.org
5Number Theory Library, http://www.shoup.net/ntl/

http://gmplib.org
http://www.shoup.net/ntl/
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TABLE III
CLIENT AND SERVER (HP) TIMES AND NEEDED COMMUNICATION FOR THE PRIVATE VERIFICATION WITH AND WITHOUT SVMS.

Execution times No SVMs SVMs
Client Server Communication Client Server Communication

Cipher Decrypt (HP) Cipher Decrypt (HP)

Proposed 1.4 s 1.5 · 10−3 s 5.9 · 101 s 393 MB 1.4 s 1.5 · 10−3 s 1.2 · 102 s 393 MB
GH11 (binary) 4.5 s 2.9 · 10−1 s 5.5 · 103 s 1.18 GB 4.5 s 2.9 · 10−1 s 6.0 · 103 s 1.18 GB

PaillierCT 1.2 · 101 s 4.4 · 10−3 s 9.9 · 101 s 4.1 MB 1.2 · 101 s 4.4 · 10−3 s 1.8 · 102 s 4.1 MB
PaillierE 1.7 · 101 s 3.3 · 101 s 4.2 · 102 s 10.2 MB 2.3 · 101 s 6.7 · 101 s 7.5 · 102 s 16.4 MB

Our extension makes the system feasible in terms of band-
width and processing time: the use of homomorphic operations
in Z2k instead ofZ2 reduces the server computation time
in almost two orders of magnitude (furthermore, GH11 does
not provide a correct output without the needed deciphering
circuits), while the bandwidth is divided by a factor of three.

In terms of computational efficiency, the extended cryp-
tosystem clearly improves on Paillier-based ones, even the
system working with clear-text templates. The load for the
client decreases in one order of magnitude with respect to
Paillier, while the server’s load is almost halved. This is due
to the lighter homomorphic operations compared to Paillier’s,
even when working with larger ciphertexts. Conversely, the
transferred encryptions for the proposed system are roughly
one order of magnitude higher than for encrypted Paillier
templates, due to the larger expansion factor that lattice
cryptosystems like GH11 present. This is the main fact that
constrains the performance of the homomorphism; our exten-
sion advances in this path, reducing the expansion factor and
greatly increasing the efficiency of the operations performed
non-interactively at the server. Furthermore, in an outsourced
system that processes private data the initial bandwidth isnot
critical: the more operations that can be performedunattend-
edly, the more versatile and powerful the system becomes.

VI. SECURITY CONSIDERATIONS

In this section we briefly make some considerations about
the security of the proposed extension to Gentry’s cryptosys-
tem and the privacy-preserving face verification system.

We have already pointed out that the same Birthday attack
security as the original GH11 cryptosystem is kept (see
Section IV-C1). Regarding the dimensionalityn of the lattice
L and the hardness of finding the closest lattice vector without
a good basis, it directly involves theγ-BDDP [38] (Bounded
Distance Decoding Problem): given a vectorc, a lattice point
must be found, knowing that there is at least one lattice
point p ∈ L at a distance dist(p, c) ≤ det(L)1/n/γ, with
γ > 1. The best known algorithms for solving theγ-BDDP
have exponential time-complexity inn/ log γ.6 Our extension
increases the radius of the noise in fresh encryptions with
respect to the original [18]: approximately2k

√

(1− q) · n
for our extension, against2

√

(1− q) · n for the encryptions
in [18]. Consequently, we increase the gap between the
message vectors and the noise vectors by the same amount
that we reduce the gap between the noise vectors and the

6We refer the interested reader to the discussion in [38] by Gama and
Nguyen, about the feasibility of theγ-BDDP in n dimensional lattices with
n ∈ [100, 400].

boundaries of the Voronoi cell of the lattice. Hence, as we
are not changing the structure of the lattice generated byB,
we are essentially keeping constantγ for the γ-BDDP in our
extended cryptosystem, just trading homomorphic capacityby
an increased space for plaintexts7.

Additionally, the performance of the presented system is
really promising, as the execution times are comparable to
those obtained with a Paillier-based system. The main draw-
back for even higher-dimensional lattices is the increase in
the size of the keys, that imposes a very high bandwidth
for transferring the encryptions. In this sense, there are two
research directions targeted at alleviating this problem,and
they are related to reducing either the size of the keys [39],or
the cipher expansion; our work falls under the second category.

Regarding the security of the private face verification pro-
tocol, the semantical security of the underlying cryptosystem
makes the whole protocol secure for semi-honest adversaries
in the random oracle model. The only information that a semi-
honest attacker may learn from the execution of the protocolis
the verification soft score. This is indeed a piece of information
that can be used (by a malicious attacker) in an oracle attack
for extracting the information of a template for a given user,
or the information for the used weight vector. If we want to
restrict this kind of attacks limiting the given information to
just one bit (a binary verification result), we can resort to one
of the many interactive comparison protocols present in the
literature (cf. Section V), like those used by Erkinet al. [8] or
Sadeghiet al. [9]. This would involve a final interactive step
that is not desired in an autonomous outsourced system. The
development of non-interactive comparison protocols using
fully-homomorphic encryptions is one of the open research
lines that will follow this work.

VII. C ONCLUSIONS

In this paper we propose a fully private non-interactive face
verification system that involves two novel contributions:a)
an extension of Gentry’s fully homomorphic cryptosystem that
allows for non-interactively computing low to medium-degree
polynomials with inputs of small plaintext cardinality; b)an
optimal quantization strategy for Gabor-based face features,
based on a novel statistical model for Gabor magnitudes. Only
when combined, these two contributions enable the execution
of the whole verification algorithm with non-interactive ho-
momorphic operations.

We show that the developed model for Gabor magnitudes
presents a better fit than previous models, and test the perfor-

7We thank Prof. Carlos Aguilar Melchor for insightful discussions on the
security of our extended cryptosystem.
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mance of the Lloyd-Max quantized system in XM2VTS [28],
FERET [29] and LFW [30] databases, obtaining much better
results than those achieved with other previously used distri-
butions and quantization strategies, and considerable savings
in storage. Our model opens a wide range of applications of
independent interest, besides the presented data compression.

Additionally, the proposed extended cryptosystem trades
homomorphic decryption capacity for high gains in efficiency
when executing low to medium degree polynomials; this is
only possible when working with compressed input features.
The developed extension is the core of the proposed non-
interactive fully-private outsourced face verification system,
that is able to calculate a weightedl-norm distance be-
tween high-dimensional quantized and encrypted Gabor face
features. Hence, our contribution enables the secure use of
untrusted Cloud verification services.

Several future research lines can be highlighted: a) specify-
ing the homomorphic decryption circuit for our extended cryp-
tosystem; b) achieving other ways of reducing the cryptosys-
tem cipher expansion while keeping the good homomorphic
properties; this can be tackled by either increasing the plaintext
size or decreasing the public key size for bigger lattices;
finally, c) providing a non-interactive solution for comparison
and other nonlinear operations that cannot be directly mapped
by the nonbinary homomorphism is also challenging.
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[7] A. L ópez-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-Fly Multiparty
Computation on the Cloud via Multikey Fully Homomorphic Encryp-
tion,” in STOC’12, 2012.

[8] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and
T. Toft, “Privacy-Preserving Face Recognition,” inPETS’09, ser. Lecture
Notes in Computer Science, no. 5672, 2009, pp. 235–253.

[9] A.-R. Sadeghi, T. Schneider, and I. Wehrenberg, “Efficient Privacy-
Preserving Face Recognition,” inICISC 2009, ser. Lecture Notes in
Computer Science, vol. 5984. Springer, 2010, pp. 229–244.

[10] M. Turk and A. Pentland, “Eigenfaces for Recognition,”J. Cognitive
Neuroscience, vol. 3, pp. 71–86, January 1991.

[11] Y. Luo, S. c. S. Cheung, and S. Ye, “Anonymous Biometric Access
Control Based on Homomorphic Encryption,” inIEEE International
Conference on Multimedia and Expo, ICME 2009, 2009, pp. 1046–1049.

[12] P. Paillier, “Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes,” inEUROCRYPT’99, ser. Lecture Notes in Com-
puter Science, vol. 1592. Springer, 1999, pp. 223–238.

[13] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich, “SCiFI - A
System for Secure Face Identification,” inIEEE Symposium on Security
& Privacy, May 2010, pp. 239–254.

[14] M. Barni, T. Bianchi, D. Catalano, M. D. Raimondo, R. D. Labati,
P. Failla, D. Fiore, R. Lazzeeretti, V. Piuri, A. Piva, and F.Scotti, “A
Privacy-Compliant Fingerprint Recognition System Based onHomomor-
phic Encryption and Fingercode Templates,” inIEEE Intl. Conference
on Biometrics: Theory Applications and Systems, 2010, pp. 1–7.

[15] M. Upmanyu, A. M. Namboodiri, K. Srinathan, and C. V. Jawahar,
“Blind Authentication: A Secure Crypto-Biometric Verification Proto-
col,” IEEE Trans. on Information Forensics and Security, vol. 5, no. 2,
pp. 255–268, June 2010.

[16] J. R. Troncoso-Pastoriza and F. Pérez-Gonźalez, “Secure Signal Process-
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[17] D. Gonźalez-Jiḿenez, F. Ṕerez-Gonźalez, P. Comesaña-Alfaro, L. Ṕerez-
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systems. Prof. Ṕerez-Gonźalez has co-authored over 50 papers in leading
international journals and more than 140 conference papers.He has been the
principal investigator of the University of Vigo group which participated in
several European projects, including CERTIMARK, ECRYPT and REWIND.
From 2007-2010 he was Manager of the Spanish National R&D Plan
on Electronic and Communication Technologies, Ministry of Science and
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