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Abstract—Face recognition is one of the foremost applications performanceof the original system should not be degraded by
in computer vision, which often involves sensitive signals; privacy the template protection system. Finalggcurity and privacy
concerns have been lately raised and tackled by several recentyra crucial aspects that deal with concealing the private bi

privacy-preserving face recognition approaches. Those syste . . . .
either take advantage of information derived from the database metrics so that they are not disclosed to unauthorizedgsarti

templates or require several interaction rounds between client T.hese signals are_int_rinSica”y linked to the identity ofiadi-
and server, so they cannot address outsourced scenarios. vidual; hence, their disclosure to an attacker may not aza |

We present a private face verification system that can be exe- information like age, gender or race (harming user privacy)

cuted in the server without interaction, working with encrypted ¢ it may also be used for unauthorized impersonation df tha
feature vectors for both the templates and the probe face. We . . . . .
individual (harming system security).

achieve this by combining two significant contributions: a) a . ) )
novel feature model for Gabor coefficients’ magnitude driving ~ There are two groups of biometric template protection
a Lloyd-Max quantizer, used for reducing plaintext cardinality —techniques proposed so far [5]: those basedeature trans-
with no impact on performance; b) an extension of a quasi-fully formation (e.g., biohashing) apply a transformation function
homomorphic encryption able to compute, without interaction, o, .o meterized by a random key to the biometrics before stor-
the soft scores of an SVM operating on quantized and encrypted ! . o
parameters, features and templates. We evaluate the privateey- 1N them on the database; matching is run on the transformed
ification system in terms of time and communication complexity, domain. Converselypiometric cryptosystemsr helper data-
and in verification accuracy in widely known face databases based methodge.g., secure sketches, fuzzy commitments,
(XM2VTS, FERET and LFW). These contributions open the fyzzy vaults) extract a key from the biometric features and
door to _c_om_pletely private and non-interactive outsourcing of some auxiliary (helper) data. The latter should leak a gégjé
face verification. . : . . L
_ _ _ - amount of information about the biometric, as it is storethat
_ 'Edel"r(JefmS—P“r‘fiCé Biometrics, Fgce Ve”fff'_cat'onv ComF"eIX' recognition server or publicly available. Matching is menfied
ity, Full Homomorphic Encryption, Gabor Coefficients, General- -, packing the validity of the key extracted from the query
ized Gaussian, Gabor Magnitude, Statistical Model, Quantization - .
biometric and the helper data.
All these systems construct a high entropy random sequence
related to the biometric features through a cryptograpkic k
. INTRODUCTION or random salt. The secrecy of this key provides unlinkihili
ACE recognition is an important and active area ofhile revocability is achieved through the regeneratiornhef
research[[3] whose interest has increased in recent yeedom sequence by choosing a different salt or key. But all
because of theoretical and application-driven motivati@ue these approaches disclosenaisy (quantized) version of the
to the sensitivity of the involved biometric signals, pdya biometric features to the server that stores them. Thidorers
has shown to be a serious concern when working with ditg-not fully independent of the original features; it reesbme
ital imagery, especially for those systems that must psce#iformation about the latter, called privacy leakagk [6].
recognize or classify face imagegqual privacy[4]). An alternative formulation of privacy-preserving bionietr
There are several aspects that must be taken into agstems aims at either computational or statistical sgcrec
count when dealing with biometric signals (faces, irisespout the biometric features through the use of Signal Pro-
fingerprints,...), like revocability performance and secu- cessing in the Encrypted Domain (SPED) techniques. These
rity/privacy [5]. Revocabilitycopes with the impossibility of involve semantically secure cryptosystems, homomorpiue p
reissuing the biometric information if it gets compromistiee  cessing and multiparty computation protocols (like gatble
_ _ o ~ circuits). SPED builds secure recognition protocols foickth
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« ldentification(one-to-many): The server has to find in theet al. [13] design a novel face identification system using
template database the identity that best matches the queryptography-amenable primitives like Hamming distartoe,
features (if there is any). facilitate the design of the corresponding secure protocol

The identification scenario involves running several verifBarni et al. [14] present a secure fingerprint-based authentica-

cations and later carrying out a comparison to choose the bégn system comprising three elements: a bank of Gabordfilter

match. In this work, we address tipeivate non-interactive for clear-text feature extraction; a secure Euclideanadist

verification scenario, leaving aside the last comparison steg;omputation protocol, and al€ss thaf interactive secure

as it is not yet possible to perform that step non-interattiv protocol. Finally, Upmanyet al.[15] use RSA's multiplicative

in an efficient way. homormorphism, and tune the tradeoff between identifinatio
We assume that the database and the verification proc@gguracy versus security by increasing the communication

are outsourced to an untrusted environment (e.g., a clouegmplexity and the client-side computation load; nondine

For the sake of clarity, we can give an exemplifying uséperations are performed either as clear-text operatibtisea

case, depicted in Fidl]1: a biometric access control syst@@fver, or approximated with interactive circuits.

with high security requirements, whose sensor nodes cannot

§tore the whole database of authorized users. This databé§eOur Contributions

is outsourced to an untrusted cloud storage and processing

provider. Due to privacy concerns, the query faces must eot b Our formulation clearly differs from prior SPED-based

disclosed to the cloud. In turn, the sensor device at théitiaci Works: they assume that the server is a trusted party with

may be a tamper-proof device, and it may have access to sdiipar-text access to the biometric database, so they do not

private information before producing the verification apsw truly protect the privacy of the enrolled users in an outsedr

All the database information comes from the same facility, &/erification scenario. Cloud-based services are beingaser

all the records of the database are protected with the sald@y adopted, but, without appropriate measures, bidmetr

encryption/decryption key pair, embedded in the tampeopr privacy is a barrier for them. Thus, their need for effective

sensor devices. It must be noted that keeping per-user key$fivacy-preservation is essential [16]. This work addeess

encrypt each record is also possible in the verificationagen this problem, enabling the use of cloud-based services for

we address, but it could not be straightforwardly translatéo biometric verification. We impose the following requirernsen

the identification one, as homomorphic operations typical®) fully encrypted template database and query faces (total

work only on values encrypted with the same key (§ee [7])Privacy); b) no interaction rounds for providing the verfiion
result, and c) restrict the processing done by the client to

o Encrypted | encryption and decryption, so that lightweight client deg
1 Quantized I Untrusted Cloud . e .
Gabor Features | - can engage in the secure verification protocol.
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Y On top of a baseline Gabor-based face verification algo-
rithm [17], we make two significant contributions that must
be combined to reach a fully non-interactive solution: a)

\ J
SO

Biometric Access \___ Verification (Encrypted) an efficient extension of Gentry’'somewhathomomorphic
Control el cryptosystem[18], able to run the whole verification altjori

in the encrypted domain, and b) a non-linear quantization fo
Fig. 1. Secure Outsourced Face Verification Scenario. Gabor features that achieves a great plaintext cardiraiityc-

tion. These two elements jointly enable the implementatibn

Regarding the attack and threat model in this SCENanNg, non-interactive private system in an untrusted enviremnt.

we deal with semi-honest adversaries; i.e., the parties doThe closest related work is that of Baret al. [14]

not deviate from the protocol, but they may be curious and . : , .
try to infer some information about the transcript. CopinWh'Ch uses encrypted quantized Gabor features for fingerpri

d Iy . ' ition. Besi he diff [ j
with malicious adversaries, able to perform spoofing oray;-plgecogmtlon esides the different scenario and our gbibt

attacks, would require additional mechanisms that fall afut work with encrypted query biometricand encrypted tem-
. plates, our work presents the advantage of homomaorphically
the scope of this work.

calculating low-degree polynomial functions, not beingited
to Hamming distance or linear projections. Conversely, the
B. Related Work server in[14] needs auxiliary values to compute an Euctidea
There have been several proposals of efficient privacgistance, and it would also need interaction rounds for each
preserving solutions in biometric recognition, most ofnthe multiplication if the database were encrypted. Finallye th
in an identification scenaria. Erkin et al. [8] and Sadeghet quantization in[[14] is linear, while we are proposing a non-
al. [9] combine additive homomorphic encryption and garbleléhear Lloyd-Max quantization driven by our model for Gabor
circuits. Both works focus on private face identificatiorings magnitudes.
Eigenfaces[[10], which projects faces onto a PCA (Principal With respect tol[1],[[2], here we provide a coherent and in-
Component Analysis) subspace. Leo al. [I1] propose an tegrated vision of the two elements that comprise our pyivac
anonymous biometric access control (ABAC) system for irigreserving solution, with a more comprehensive explanatio
based biometric identification using Paillier encryptidi®] of the cryptosystem extension and a new security discussion
and an interactive Hamming distance calculation. Osadchwe employ more rigorous goodness-of-fit measures to validat



the developed Gabor magnitudes model, and we also enhaegaalization and local mean removal). Afterwards, a bank of

our verification algorithm with different pre-normalizati 40 Gabor filters[[17] (8 orientations and 5 spatial frequesici

techniques and the use of a Support Vector Machine (SVMer orientation) is applied to each node ofl@ x 10 grid

classifier together with a more extensive and homogeneaugperimposed to the image of the face. The outputs are Lloyd-

experimental validation including more databases. Max quantized and encrypted prior to their transmissioméo t
secure verification system.

D. Notation and Structure

Matrices and column vectors are respectively represente:t;ﬂ{ omat
as uppercase and lowercase boldface letters, while rando —
variables are represented as uppercase leftdisrepresents
the reduction ofx mod d; vector notationa = [ag, . .., an—1]
and polynomial notationu(z) = 37" ' a, - 2% will be used
indistinctly when appropriate. Finallyia(z)) represents the P _{ Lo >{ >_) T
ideal generated by the polynomia(z), and [z] (resp.[x]) (4000 comporens) Sysem
represents the encryption of(resp. of the elements af).

The rest of the paper is Organized as follows: Sedfidon ig. 2_. Preprocessing, feature extraction and encryptiepssperformed at

. the client for our setup.

presents our Gabor feature extraction process. SeEfivn 1l
introduces and evaluates the used statistical model anth qua e eyt section presents our feature model, fit to the
tization for Gabor coefficients magnitude. Seclion IV rewse \.onivdes of the “Extracted Features Vector’ coefficients
fully homomorphic cryptosystems and presents the proposedy m) and used for optimal data compression at the “Lioyd
extension and its homomorphic capacity. Seclion V' Shog,, 4 antization” step in order to discretize the inputs td
Fhe appllcanon of ?F’th .contnbutlo'ns to a fuIIy-prlvqte MO reduce the plaintext cardinality prior to encryption.
interactive face verification scenario, and evaluates et$op-
mance figures in widely known test face databases. Finally, Il THEORETICAL MODEL FOR THE MAGNITUDE OF
Section[V] discusses the security aspects of the extended

cryptosystem, and Sectidn VIl draws some conclusions and GABOR COEFFICIENTS
future research lines. Generalized Gaussian (GG) distributions are a good fit

for peaky and heavy-tailed random variables; examples
of GG-modeled variables can be found in coefficients of
. . . many transforms, like DCT (Discrete Cosine Transform) or
Gabor filters have received great attention for face precesyvelets [23], [24], and, especially, the marginals of Gabo

ing [19] due to biological reasons and because oftheirczﬂtimC fficients T171. A GG iable has the following densit
resolution in both frequency and spatial domalns [20]. oefficients [17]. variable has the foflowing density

One of the drawbacks of Gabor features|[17] is their huge B-c g 1 |T(3)
storage requirements. In this work, we take one step further faa(x) = 1y © e =~ i
; : : " 2I(=) o\l T(%)
in the reduction of the representation length needed for an ¢ ¢
efficient recognition, addressing the cardinality requieats whereI'(.) is the Euler Gamma functiofi(z) = [~ t* 'e ™"
that the encryption system presented in Sedfion IIV-C posés, 3 is a scale parameter, inversely proportional to the
In order to minimize the volume of data, we discard thstandard deviation of the variable, and is a shape parameter
phase information and use a novel statistical charactariza (see [1], [17], [25] for further details). To the best of our
to model magnitudes of Gabor coefficienfd [1], under theowledge, there is only a previous approach to modeling
assumption that both real and imaginary parts are genedalizzabor coefficients magnitude, proposed [in![26], through the
Gaussian distributed with circular symmetry, and we preposo called 5-Rayleigh distribution, a generalization of the
two different quantizations, using levels and indices 8d#c- Rayleigh distribution with a shape factgt. Unfortunately,
tion MII=B). Some recent approaches showed the benefits af3-Rayleigh-distributed magnitude cannot be obtained from
keeping Gabor phase for effective recognition! [2L].] [22]t b GG marginals, so this model misses a connection with current
no clear improvements over magnitudes have been obtaimaddels, which assume GG distributed real and imaginary
on difficult scenarios (e.g. see |22]). Furthermore, mamgigt parts.
based systems can work, as in our case, with sparse pointd)e derive now our model for Gabor magnitudes. Let
while phase-based approaches require a dense filtering, proc C be one of the Gabor coefficients extracted from a face,
ducing feature vectors of large dimensionality. In any case and gr;, gi; € R its real and imaginary parts, respectively.
aim at showcasing our secure system on a baseline polynoniiath real and imaginary parts follow Generalized Gaussian
verification function working with input signals of reducedmarginals with the same parameteiso [17]. We have
cardinality and dimensionality. observed that the phase @f is approximately uniform,
Fig. @ depicts our feature extraction process. It compriseganing that the distribution of eacft presents circular
a geometric normalization—so that eyes and mouth are sgmmetry. Actually, independent bidimensional geneealiz
fixed positions—, cropping the faces to a common siZ8aussian variables are not circularly symmetric (unlesy th
(120 x 100 pixels), and a photometric correction (histogramare Gaussian¢ = 2), and consequentlyr; and gi; are

10x10 Mesh
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not independent. In order to assimilate this dependency, weFor evaluating the goodness of fit, we use two measures:
propose a doubly stochastic model for Gabor coefficients tine Kullback-Leibler divergence [81] (KLD) and Pearson’s
which real and imaginary parts are marginally GG, but lgcally? statistic. The KLD provides a measure of the statistical
independent, identically distributed (i.i.d.) Gaussiaithwa distance between two discrete distributions with proligbil
non-constant deviation across locations and subjects[f§eefunctions P and @, and is given by
for further details). 1 P

For each coefficient;, we expresss; = (C;+j-D;)-S;, _ . 1
where C; and D; are two independent Gaussiavi(0, 1), KLD(P,Q) = Z P(i) log (Q(i)) '
and S;, independent of?; and D;, is a non-negative random =0
variable that models the non-constant deviation, suchdhgif Wwhere K stands for the number of possible values of the
and D;S,, which model respectively the real and imaginargliscrete distribution. The KLD is also proportional to the
marginals of a Gabor coefficient, are Generalized Gaussiafs statistic ¢ = 2N - KLD(P,Q), for N observations),
As S; does not affect the phase€};S; and D;S; preserve Wwidely used in biometrics for hypothesis testing. Additidy,
the circular symmetry. This model covers all the observddearson'sy” statistic for a sample withV; observations for
properties of Gabor coefficients, and allows us to calculag@ch possible valueM = No + N1 + ... + Ng_1) and a
an accurate distribution for their magnitudes, for which wieoretical distributior) can be calculated as

need to determine the distribution 6f: it is the Gaussian K1 o
transform [27] of a Generalized Gaussian variable (GTGG): V2= (Ni — N -Q(i))
: N - Qi)
1 ™ _ - =0
fSi(82)=*2\/2*2(]: 1(fGi(\/Jw))) L o o
s s =57 Both Pearson’s statistic and th@ statistic have ay?

distribution with K — 1 degrees of freedom, which can be
used for hypothesis testing and for calculating the confiden
interval for the event that the observations be derived fiioen

where F~! represents the inverse Fourier Transform.
Then, the modulus of7; will be given by

|Gi| = /C?+ D?-S;, distribution@. As we are working with actual data, our model
- is not intended to capture all the noise sources and unioyrtai
R in the observed signal, but to present a better fit than puslyo

being R; = /CZ + D? Rayleigh distributed. We can obtainused models. To this end, we show next that both the KLD

the density of a Gabor magnitude, represented as the proo%l%?' Pearson’s statistic for our model are significantly lowe
of a Rayleigh and an independent GTGG variable: than for previously used distributions for Gabor magnigside

- In order to calculate both the KLD and Pearsory$d
fiei(@) :/ fs, (02)%67;%(102 statistic, we discretize the theoretical pdf i intervals
Jo o (K € [512,1024]) and compare it to the empirical discrete
G © B B G 4 s g pdf given by the histogram of_ the actual data. Fih. 3 shows
—/0 Voro2 \ ) . me ' c7aW - the KLD and Pearson’s statistic calculated for XM2VTS,
i LFW and FERET databases for our model compared to two

%e*;'?da. distributions: Rayleigh, equivalent to considering Gaass
g i.i.d. real and imaginary part for the Gabor coefficientsd an
Reversing the order of the integrals, we finally get B-Rayleigh [26]. For the three databases, our model gives a
ciBi much better fit than the Rayleigh, especially for the coedfits
fic. (@) :m with a lower shape factor, which are farther apart from the
< Gaussian model. Fidll 3 also shows the pseudoperiodic effect
/°° cos(3 tan~! (&) — Bwi/? sin(“)) on ¢ when varying the orientatiod [17]. This produces that
0 (x% + oﬂ)% the calculated statistics for the Rayleigh have minima as¢h

coefficients with shape factors closestde= 2. In any case,
as shape factors are always in the raf@é, 1.5), our model

This integral can be numerically evaluated for a given paffill always yield a better fit than the Rayleigh model.

(c;, 1), obtaining a more peaky and heavy-tailed pdf than the Additionally, the improvement on the fit provided by our
Rayleigh (see[]1],[[25] for further details). model is much more noticeable for the LFW and the FERET

databases. This is due to XM2VTS’s samples be taken within
o . controlled conditions, thus presenting a limited set ofgsos
A. Parameter Estimation and Goodness of Fit and illuminations; on the other extreme, LFW yields a much
We estimate the parameterso for our model using data richer variety of poses, expressions and illuminationsoevel
from three known biometric face databases XM2VTSI [28fjuality images, producing a heavier-tailed distribution the
FERET [29], and LFWI[3D]; we employ maximum likelihoodmagnitude of the coefficients that is harder to approximate
(ML) estimation, using the numerical calculation of the pdfwith a 5-Rayleigh. These heavy tails are very well fitted by our
Eg. (). We get a perfect agreement between our model and thedel, corroborating that the original assumptions on thic
GG-marginals estimated parameters ($ée [1], [25] for gtai it is grounded are fulfilled by the three databases.

¢

e 87 cos( = )wci/z} dw. (1)
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the XM2VTS[(@), thd (B) FERET, and the LFW|(c) databases.

B. Optimal Quantization of Biometric Data

Pearson )(2 statistic (marked) Pearson xz statistic (marked)

Pearson )(2 statistic (marked)

KLD (non-marked lines) and? statistic (marked lines) for
Gabor magnitudes modeled as EQl (1), Rayleigh grayleigh [26] for

this quantizer achieves minimum mean squared error (MSE)
for a fixed numberN;, of representative levels.

A Lloyd-Max strategy was also used in[17] for indepen-
dently quantizing the real and imaginary parts of Gabor-coef
ficients. If the phase information is discarded for verifizaf
it is more appropriate to directly quantize the magnitudes
instead. Hence, our choice gets a more significant storage
reduction, so we expect to achieve similar performance with
less representative levels. Additionally, the quantorath [17]
and [1] uses a numbeN;, of centroids for each coefficient,
preserving the real values of the corresponding levels as
the output quantizations. This strategy allows for a sterag
reduction in a clear-text system: only the (integer) indioé
the corresponding quantization levels and the mapping from
the indices to the real levels have to be stored. Howeves, thi
mapping has to be applied to recover the quantizations &éefor
operating on them; an encrypted system that has to work with
integer-valued numbers cannot translate this quantizatito
an actual reduction in plaintext size. Instead, we propbse t
use of integer quantization indices, as a more suitabléegtya
for the encrypted system, i.e., all the involved variables a
mapped to integer numbers with a very low cardinality (the
number of quantization levels). Additionally, the use dfioges
involves a nonlinear scaling of all the coefficients in such a
way that, after scaling, the resulting centroids are améng
in equidistant bins, as shown in Figl 4. This also produces
an inherent normalization, reducing coefficients with high
variance and amplifying those with low variance, and fixing
the range for all the coefficient indices.

flz)

lh(c)

C

Fig. 4. Qualitative diagram showing the non-linear scafimgduced by the
use of integer quantization indices (lower graph) instefathe real values of
the quantization centroids for Lloyd-Max quantization gep graph).

SectionV-A will validate the achieved performance results
for a given cardinality reduction in the integrated system.
Before that, we will introduce the second essential block of
our secure verification scheme, which is fed by quantized
coefficient levels: our extended homomorphic cryptosystem

IV. EXTENDING GENTRY’'S FULLY HOMOMORPHIC
CRYPTOSYSTEM

We take one of the latest versions of Gentry’s bootstragpabl

fully homomorphic cryptosystem (GH11 [118]). The cryptosys
tem is GGH-type (Goldreich-Goldwasser-Halevi) based on

The presented model has interest in itself, and there adeal lattices. We firstly give a brief explanation of GGH
many applications that can benefit from its use. Our target heryptosystems in general and GH11 in particular, and then
is the minimization of the plaintext cardinality of the ifved present our extension. We refer the interested readér o [16
magnitudes; this is necessary for the encrypted privatesys [25] for a more detailed description of GGH cryptosystems.
to effectively handle the full face verification without any
interaction. Hence, we apply our model for optimal coeffitie A- GGH Cryptosystems
quantization using a Lloyd-Max quantizel [32]. When an Given a latticel with shortest nonzero vector lengih(L),

accurate distribution of the to-be-quantized variablegiven,

the rationale behind GGH cryptosystems lies in choosing two



bases with differentorrection radii The correction radiusof the crypto-text ring (errors with respect to lattice pojnts
a basis can be defined as the norm of the shortest error vettorthe clear-text ring. This homomorphism is limited, as
that, added to a lattice point, cannot be corrected using thmth operations are only correctly mapped when the error
basis (as it falls outside the parallelepiped—Voronoi regio lies within the same Voronoi region of the lattide after
defined by the reduction modulo the basis). This radius applying the operation. For reaching a full homomorphism,
upper bounded by the inner radius of the lattice, defindglentry proposes t@quashthe decryption circuit so that it
as % that is, half the shortest distance between two latti@an be homomorphically executed. Hence, it is possible to
points; this bound yields the maximum correcticapacitya bootstrag a fresh encryption from a degraded one, effectively
lattice can achieve, depending on the baGisod baseyield achieving a full homomorphism, at the cost of additional
almost spherical Voronoi regions, with a correction radiusecurity assumptions.
approaching the inner radius of the lattice; bad bases have dnstead of bootstrapping the decryption circuit, we pr@pos
very small correction radius and poor correction capaddit to trade this full homomorphic capacity for the ability toeex
This fact is used in GGH cryptosystems to choose the keysute low to medium-degree polynomials before the ciphes get
« B, constitutes the secret key; it is good basis it corrupted enough to lose data. Hence, we use the cryptosyste

allows to efficiently solve certain instances of the closesés a quasi-fully homomorphic scheme, while we improve

vector problem in the lattice, and its correction radius i8n the allowed cardinality of the plaintext as shown in the

large enough. The basis vectors are short and almodext section. These two contributions together producera ve

orthogonal. versatile cryptosystem for non-interactive secure praiogs

o B, (B from now on) constitutes the public key; it is a
bad basis solving the closest vector problem Inusing C. Proposed Extension to GH11 Cryptosystem

B is _algorlthmlcally hard.B is usually_chosen_ as the GH11 cryptosystem can only deal with binary numbers in
He_rr_mte Normal Form (HNF) of the Iattlc_e, as It can b?Zg,Jr, -); i.e., the homomorphic ring operations aed and
efficiently Comp“te‘i' from any other basis, |t.has a V.er%orgates. This means that a simple arithmetic circuit with non-
ST“a” cc_)rrectlon radius (asymptot!cally zero with grqw'n%inary numbers needs a high amount of binary homomorphic
Elmen5||ont§), an((jj thfe LLII alg(r)]nthrg (Te TOSt Ij'\”detlyoperations; each of them increases the noise within thendro
nzwLn attice re ue |ont_ag|;01|t T y 4efns iﬁ HeISIS:’ rrF'egion of the lattice, until they wrap up producing a decgdin
and Lovasz[[3B]) is particularly slovi [84] for the " error. This sets a limit to the depth of a homomorphically

Encryption and decryption are analogous to channel noiggecutable polynomial, which has been empirically catedla
addition and error correction in a digital communicatiortby Gentry and Halevi [18].

system, with the peculiarity that the information resideshe In this section we provide an extension to the plaintext-

induced channel errors. Encryptierof a message: cgniists size, allowing for homomorphic additions and multiplicats

in the addition of a correctable error vecto(|le|], < 25£), iy (Zyx,+,-) (powers of two are chosen for convenience).

that encodem, toa po_int in the lattice. Decryption stands fo%dditionally, we give a theoretical lower bound on the maxi-

error correction, and it can only be done with a good basigym number of executable multiplications, that also sufspor

like By, by recovering the error vecterasé = c mod B.r.  Gentry's empirical study forZ,. Our extension seeks to
enhance the efficiency of arithmetic non-interactive opena

B. GH11 Cryptosystem and decrease the cipher expansion rate. Furthermore, the ke

The somewhat homomorphischeme presented by Gentrygeneration process does not need to be changedhe same

and Halevi [18] uses a principal-ideal lattice generated by keys can be used for the binary cryptosystem and for the

a polynomialv(z) (v in vector notation) witht-bit signed proposed extension. A sketch of the proposed encryption and

random integer coefficients, in the ring of polynomials miodu decryption operations is shown in Algorithim 1.

fn(x) = 2™ + 1. The HNF must have the following structure: 1) Encryption: In Gentry’s original cryptosystem, the en-

cryption operation of a bib € Z, uses a random noise vector

_d (1) 8 8 u € {0,+1}". Each element; is chosen a8 with probability
i r g] 01 0 q and +1 with probability (1 — ¢)/2 each ¢ is a security
BT = HNF(J) = rla ) parameter). We extend encryption for dealing withe Zx
=1, 0 0 .. 1 a=2u+m-e;; c=amodB =a(r)s- e,

wheree; is the first vector of the canonical basis. The vector
¢, as in the original construction, has only one non-zero
gfomponent, representative of the encryption:

whered can be defined as the resultant of the polynomiéls
and f,,(z), andr is a root of f,,(x) mod d. B is the public-
key encryption matrix, completely determined by the pair
integers (d, r), while the private key is given by(z) and n-1
its scaled (modulgf,, (z))-inversew(z) (i.e., v(z) x w(z) = c=la(r)]a = [m+ 2" wira.
d mod f,(x)); only one of the coefficients ofv, denoted by i=0

Wi, 1S reqwred f(.)r the decryptlonl progedure. . 1For more details on squashing and bootstrappable fully homamior
As defined, this cryptosystem ggiasthomomorphic under cryptosystems we refer the reader ol [18].][35].

addition and multiplication, that are directly mapped from 2See[[18] for details on the key generation process.



Algorithm 1 Proposed Encryption and Decryption triangular part), we can bound

Parameters:
q: probability of a zero in the random salt vector & W || <|alloo|[W]|oo
k: maximum bit size of the plaintext space elements ne1 ne1 n1
(e iy deatyption ey = max(lail) - Y fwil < 3 wi] 3 lail < d/2
n: lattice dimensionality ] i=0 i=0 i=0
:Er:;)%rty p;:ginntextm € Lok :?lf)zrt):l?:tilgrr:ertextc € Zgq :>||O’TW| |°O < d/ 2.
Output: ciphertext: € Zq gg;p‘:ﬁep'aigﬁ’t‘gt € Lot .. The number of non-zero elementd' ;) of a chosenu,
1) Generate random vector y,],u ! fwd ok - follows a Binomial distributionNz; ~ Bi(n,1—g). In a fresh
grobaebmty{ﬂaié?;ribnvt'itgn encryption, each of these elements1 has magnifdewhile
(1= q)/2,4,(1 — q)/2} the message ign| < 2*. Hence Y7 (|a;|) < 2¥(14 Nz;).
for the values{—1,0,1}. Conversely, after a multiplication between two cipherext
2) Calculate the ciphertex c1 and ¢, (in the polynomial quotient rindZq(z]/(f.(x))),
[Cm+;2@[f$23jfi]d. - the resulting point must also be within the Voronoi region.
=0 The product of two polynomials moduld,(x) is equivalent

to a cyclic convolution of their coefficient vectors (with a
sign change for the overlapped subvector). tetbe a fresh

The complexity of encrypting &-bit number is the same encryption; thus, '_t _has the same absolute vakfg for al
as for encrypting a bit in the original system. Furthermor&€ non-zero coefficients of the used randanConsequently,
the security in terms of Birthday-type attacks is not atierdN® {1-norm of the resulting coefficient vector of the prod-
either, as the noise vector has the same entropy: hence, gt ©f a given ciphertexic; and ¢, is upper-bounded by
a security level\, ¢ may still be chosen such that lleifli - 2%(1 + Nzo). In general, we have that, after,,
successive products of a cipher by fresh encryptions,

o(l=g)n ( n > S 92X o1 o,
qn lak Wlleo < (D lwnl | [T 21 + Nz).
=0 =0

teg S:ﬁ lésesgtr?db?: tstggi(%\t;[fty of the extended cryptosys Hence, we can bound the probability of decryption error
2) Decryption: For the decryption, the original scheme P[dec errof = P[|la” W || > d/2] <

uses an optimized procedure that only needs one of the

odd coefficients ofw mod d, denoted byw,;. Adapting that

procedure, our decryption for &bit messagen becomes P Zlog(l 4 Nz) > log < d | |> 7
wy

2k (nm+1)+1 27:01

m = [c-w;]qw; ! mod 2", -
N

nm

The difference with respect to the original decryption is thwhere N,, is a random variable with bounded support
product byw; ! mod 2¥. GH11 requiresw; to be odd; due (Ny,. € [0, (1, + 1) log(n + 1)]). Thus, it may happen that
to our choice of powers of two for extended plaintexts,"  for a low number of dimensions and few multiplications the
exists if w; is odd, so we impose no additional requiremergrobability of decryption error be zero. Neverthelegsjs
for the key generation process, and the added decryptigiiosen such thatl — ¢) < 1, for high enoughn (like the
complexity is negligible compared to modufooperations.  commonly usedh even for short-term security), so the error
probability will not get to be identically zero in any case.
Furthermore, the pdf ofV,, , will present a narrower bell as
n Or n,, increase, so by virtue of the Central Limit Theorem

After presenting our extended cryptosystem, it is essent(&LT), N,, can be accurately approximated by a Gaussian
to measure its homomorphic capacity, in order to predict YRriable with parameters
it can execute the face verification function. With this &trg n
we derive now a theoretical upper bound on the maximum,,, =(nm, + 1) = (1, + 1) Zlog2(1 +1i) ( T; ) (1—q)iq" ",

D. Homomorphically Achievable Polynomial Degree

achievable polynomial degree that the cryptosystem cah eva i=0

uate with an arbitrarily bounded probability of incurring o Uf»m =N + 1)0?

decryption errors. We will first bound the probability of are n n S

rect decryption for successive homomorphic multiplicasio =nm +1) Z(logz(l ) — p)? ( ; > (1—q)q" ",
Incorrect decryption may only happen when the error vector i=0

added to a lattice point lies outside the Voronoi region @f ththat will provide a very accurate approximation near thd bel
used lattice. This condition boils down tm” W||., < d/2, and an overestimation of the decryption error probability i
where W is the rotation basis that generates(z)), having the tails, due to the bounded support/éf .

in each row the coefficients ab(z) - 2 mod f,(x). Due to ~ We may then bound the maximum number of bits to which
the structure of W (a circulant matrix with negated lowerwe can extend the ciphertext for allowing a given numbgr



TABLE | o . .
LOWER BOUND ON THE MAXIMUM NUMBER OF PRODUCTS AND bound is fairly conservative for small plaintexts that afltor

GENTRY'S EMPIRICALLY OBTAINED MAXIMUM DEGREE POLYNOMIAL AS @ high amount of products, as it is a worst-case bound, but it
A FUNCTION OF £, WITH n = 128. becomes tight for medium-to-high even when the Gaussian
| 7 [ 64 [ 128 [ 256 [ 384 | approximat?on in those cases pr_ovides an _ov_erestimation of
Tomerbound T 10 T 22 T 26 T 69 the decryptlon error. We also obtained very _S|m|Iar resulth
Empirical [18] || 13 | 33 | 76 | 128 bigger lattices, due to two facts: a) the quotign, (d/||w]|1)
is almost constant for random lattices (see Eid. 5b), antid) t
binomial distribution barely changes with highfor a fixed
of successive multiplications with a given probability ofax rate (1 — ¢)n.
pe using theQ functior?

log, (d/[Jwl[1) — 1 Q™' (pe)o ‘ ‘ ‘
km_{ Nl =1, - THJ. @ ]

As expected, the maximum number of bits decreases when
increasingn,,,, and it is heavily influenced by the quotient
d/||wl||1, representing the effective radius of the Voronoi re-
gion. It can be shown that the choicetdqbit-size of the coeffi-
cients ofv(z)) determines the maximum value of this quotient;
the proof is obtained by expressingr)w(z) = d mod f,(z)
in vector notation and using theditler inequality:

Allowed multiplications
S»—\

d=v"wy, —wy_1,..., —wi]" <||v]|oo|w] 1 < 2[Jw]]x !
t 0 Sb 160 1‘;)0 200
= m <20 bit-size of the plaintext
Hence, for a good lattice, the maximum correctable noise @
norm (decryption radius) will be close tobits (cf. Fig.[5b). 381
Substitutinglog, (d/||wl|1) by ¢ in Eq. {2), we get an estima- b=spor - 7
tion of the maximum plaintext bit-size for correct decrgpti 379r 1
after a given number of multiplications for a generic good 378y . _
lattice. Reciprocally, the inverse of this expression dgel =y % SR ===
the maximum number of affordable multiplications with a %376’ * Jf ? % g
bounded decryption error. It must be noted thatonsecutive \3 ssp L ¥ ’
homomorphic additions can increase at mostlig,(ns) S araf . ’
bits the size of thexo-norm of the noise vector; in fact, 3r3p
Eg. (@) can take this into account by subtractilng,(n) sr2f
from ¢t. Hence, when determining the maximum degree of a sy
polynomial run on freshly encrypted variables, the maximum 0 1024 2048 4096 8192
number of multiplications is the limiting factor. Gentry din Lattice dimension
Halevi provide an approximation of the maximum degree (b)

deg of an elementary symmetric polynomial evaluatedon Fig. 5. [@ Minimum number of multiplications (E4X](2)) withodéecoding

encrypted binary variables, bounding the decryption mdiy ©ror after 1000 trials as a function éfand[(b) quotientog, (d/||w]|1) for
rtamdom lattices of several dimensions with fixee: 380.

the approximated Euclidean norm of the polynomial output:

2t > cdeg ( dm > However, for largem this expression
€9 V. FULLY PRIVATE NON-INTERACTIVE FACE

overestimates the effect of additions: as the combindtoria VERIEICATION

number of summed monomials grows above the lattice di- N o

mensionality, they cannot be considered independent argyma The combination of the quantization strategy of Secfioh |l

Table[] shows the validity of our bound compared to thg)gether with the extended cryptosystem presented in Sec-
tion [IV] provides an efficient and accurate solution for ayfull

experimental results by Gentry. vt ¢ dqf ificat ; S
Fig. represents the number of sequential products wﬁﬁva e outsourced face verification scenario (see Sefiga

new fresh ciphers before a decryption error occurs ffot goriFhmIZ shows a sketch of the proposed protocol..
512, t — 380 and g — 1 — 20/512, picking the minimum Unlike previous works [1], our system uses the integer

of 1000 trials), and our lower bound fgr, — 10~*. The indices of quantized coefficients instead of the actual tizeah
' © ' values. This allows for a hugely reduced plaintext size atith

3The Q function can be defined as much degradation in system performance (cf. Sedtionl V-A),
L[ e and benefits from an inherent normalization of the jets, as th
Q(z) = E/l e du Lloyd-Max quantization already performs a nonlinear ndrma

ization (cf. Sectior IlI-B). The verification algorithm cdre



based either on average correlation (cosine distance) av-onAlgorithm 2 Proposed Secure Outsourced Verification Proto-
erage Euclidean distance; both can be efficiently calcdilate CO! _
the encrypted domain, and there are no statistically sigmifi Datl"’;bacsel prler:artitlon Q“)ht tat and threshold) for the desired ;
differences in verification performance between both dista. 2 ciate e welght veciar and fresholdy for e desired operation

' point.
Actually, the proposed cryptosystem could work with other 2) Encrypt existing database vectors amdand .

I-norms, whenevel fits within the homomorphic capacity 3) Send encryptionga] and [r] to 5.

for a given bit size of the quantized inputs. This enables tfglIment 5
use of the homomorphic cryptosystem for many verification _ .... _ '
functions without any intermediate decryption, i.e., inudyf 1) Obtain a new identifieid | 5) If an entry associated toi
. . for the user. does not exist, create a new

non-interactive way. 2) Extract the feature vecto entry. _

In the enrollment phasethe presented feature vectors are gt for tfg_edﬂ]ew user. 6) Store the encryptefig (‘)]

; 3) Encrypt[g\*®']. as a new template foid at

encrypted and stored in a central database for later usenas te 4) Sen d[[gJIid)]] andid to B. the database.

plates; each user may have upN\g, templates. The verifica-
tion threshold; is a system parameter also kept encrypted. We
employ a linear-kernel Support Vector Machine (SVIM1[36]),

7) Return the identifierid to

. . : . the user.
previously trained on local distances, that produces a hteig
vector , resulting from the linear combination of the suppor‘t’%[t'f'cat'oni B
vectors{s; }}1 "
1) Obtain the identifierid for 5) Retrieve the stored
M-1 M—1 the user. encrypted Ny, templates
, _ T e T e 2) Extract the feature vecto for id: {[gl D Ver—1,
scorgyy  (x) Z fisj - m—n== Z Biss—n; (3) gli?) for the presented usef  g) Calcula{t[[egl th]]e}l_gncl’ypted
Jj=0 J=0 face. score homomorphically
e 3) EncrythIg“d)]]. asj\’[[score(g(m,id)]] =
4) Send[g(*9)] andid to B. SN M1 g
the score is classified @sle if it is non-negative, and aflse T‘L) J:OA (i d)’ 2
otherwise. For each pair of compared feature vectornd 1<v[[gi[[j]]ﬂ = l; ﬂ)
. . . o o 2 tp M1
b, if the input to the. SVM is chpsen as;, = (a, I?J) . 7) Retum  the  encrypted
The effect of the weight vecton is to produce a weighted [score(g(iDid)] to A.

Euclidean distance digi, b) = Zf;‘ol a; - (a; — b;)? as the
verification score. In the/enﬂcat_lon phasga user presgnts. 8 Decrypt scordg(i®), id).
an ID to be matched together with the encrypted quantization o) check whether
indicesg of his/her Gabor features vector. The database holder  score(g(‘¥, id) > 0.

homomorphically calculates the encryption of st score 10) tﬁgplj’s”er"e”f'cat'o” result tq

Nip—1
soft scordg"®,id) = Y dist(g{"”, V) — Ny,
1=0

. e than the input coefficients and results; hence, for normakeg
that is returned as the output of the verification procesaukt : . . )
of the security parameter (x ~ 70 bits) and typical working

be nqted that more .|nvoIved kernels like RBF (Radial BaSIns1agnitudes (around0 bits for this application, thanks to the
Functions) or sigmoid have not shown a net improvement in

the performance of this kind of verification systems, and th foposed quantization), the extended cryptosystem wédne

. ; . .~ To cope with~ 90 bits clear-text sizes. With this capacity,
would add too much complexity to a non-interactive prlvat? . ;
It will be able to support at least two correct consecutive

solution. Using the proposed linear SVM adds little compy- X o .
tation complexity to the non-weighted original approadhe(tLgovrye?&?;%hgug%deiﬁsaisEtgize)’ this is enough for calctat

number of products is doubled), while considerably enfrnci We will now evaluate the presented secure verification

the verification accuracy (cf. Sectign\-A). . s%stem in terms of verification performance and efficiency.
As a last remark, a hard score may be required for som

applications. We will not consider that case explicitly in -

this work, as we are testing the raw performance of tfe Face Verification Performance

extended cryptosystem in a fully non-interactive outsedrc In order to evaluate the impact of data quantization
scenario. In any case, the private implementation of tlwm system performance, we conducted experiments on the
last comparison step needed for providing a hard sco®2VTS [28], the FERETI[[2B], and the LFW [30] databases.
([soft_scordg¥) id) > 0]) could be easily produced, byWe are not aiming at improving the verification rate of state-
adapting one of the many interactive comparison protocaiéthe-art classifiers, but showing instead that the presen
available for an additive homomorphic cryptosystem(e.gptimal quantization driven by our accurate feature model
see|[[8, Section 5]). This adaptation must take into accdait t does not hinder the verification performance of the system.
for performing a statistically blinding decryption—necass Hence, we have used baseline verification methods (similar
for the intermediate steps of the protocol—the cipher must the ones in[]1],[[17]) to better show the actual effects of
support the encryption of numbers with a lengtlbits higher quantization. We also compare our proposal of a weighted
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Euclidean distance (Eq[](3)) as verification function witinto two views we usedview 1to estimate model parameters
the results obtained without any additional weighting oe thand quantization centroids; it comprises two subsets, one f
quantized coefficient§ [2]. The SVM provides improved resultraining, and one for testing. The training set consists of
with a very little complexity overhead, also in a suitabld100 pairs of matched images and 1100 pairs of mismatched
configuration for the privacy-preserving implementation.  images. The test set consists of 500 pairs of matched and
For the three databases, we plot the obtained ROC (Recei®80 pairs of mismatched imagegiew 2 is organized in 10
Operating Characteristic) curve and report the verificatiaisjoint folds; the experiments on this dataset were cdrrie
accuracyy = 1 — (FAR + FRR)/2 at the EER (Equal out following theimage restrictechbaradigm, and performance
Error Rate), where FAR and FRR stand fealse Acceptance was reported oriew 2using the 10-fold, leave-one-out cross-
Rate and False Rejection Rateespectively. We present thevalidation scheme described in_[30].
comparison for three quantization strategies with a set of1) Verification Performance Resultsig. [@ and Tabld ]l
N ={2,4,8} levels, with and without weighting: present the ROC and the verification accuracfor verifica-
« Independently quantizing the real and imaginary parts tbn on the three databases, comparing the different cquaanti
the complex coefficient$ [17]. We u9é,, for the number tion strategies foiV;, = {2, 4, 8} levels.
of levels for quantizing the absolute value of the real and Our model with the indices-based quantization strategy sig
imaginary parts, in such a way tha¢l +log,(Ny)) bits nificantly outperforms the independent real-imaginary rgua
are actually needed for each quantized coefficient (sigi@ation [17] and the level-based magnitude quantizatifjn [
bit plus two quantizations per coefficient). in all the configurations and databases. The proposed model
« Quantizing the magnitudes of coefficients [1]. produces a much better fit, and the indices-based quantizati
« Using integer quantization indices instead of actual quawith its non-linear scaling eliminates some non-inforweti
tized values for our model (proposed in this work).  noise and preserves much more useful information for verifi-
The two first strategies also comprise an additional prend@tion in less bits. Taking XM2VTS results as a reference, ou
malization step such that each 40-coefficient jet for eaéifategy gets a cardinality reduction factor ofwvith respect
localization has unit norm. to [17] for the same performance. Moreover, the use of the
a) XM2VTS databaseExperiments on XM2VTS were SVM weights with our strategy not only recovers the original
performed following configuration | of the Lausanne protoperformance, but surpasses it, with a considerable pesfiocen
col [28]. The XM2VTS database contains mainly frontal facBoost in both XM2VTS and FERET, while the unweighted
images recorded on 295 subjects (200 clients, 25 evaluat®ystems[2] show an absolute gap of 1% and 0.5% respectively.
impostors, and 70 test impostors) during four sessionsitake ~ For the more challenging LFW database, there is a gap
one-month intervals. The database is divided into thres: sedf 2.6% from original performance for our system, slowly
training, evaluation and test. The training set (3 images p&covered with increasing/,; in any case, it again performs
user) was used to estimate model parameteran(l o), and better than prior quantization strategies. Finally, forREE
calculate the quantization centroids. The evaluation sat wand LFW, the results for Eigenfaces (used in prior privacy-
used to estimate EER thresholds, and train the linear Sveserving face identification works) are publicly avaltatso
classifier for providing the weight vector. Finally, the R@C we have also shown them in Talilé Il for comparison. The
obtained from the separate test set. performance achieved with Eigenfaces in LFW is worse than
b) The Facial Recognition Technology (FERETpaseline V1-like models 37k 64%), while our system with
Database: The Facial Expressionf@fb) subset of the SVM performs better than other baseline Gabor-based scheme
FERET database [29] contains a gallery of 1196 frontéd 68% for V1-like+ models in LFW), and &% and ~ 5%
images, with one image per person, and a probe set with 1¥8&r Eigenfaces in LFW and FERET respectively.
images of the same people, obtained a few seconds after th2) Quantization of SVM weighting coefficientSor any of
gallery ones with a different expression. The standard FEREhe studied databases, it is worth noting that the weighting
verification test[[20] checks every possible pair of facesnfr coefficients must be also quantized before being used inthe e
gallery and probe set together, reporting the resulting RO@ypted private system. We have checked that these coetficie
For quantization in our tests, we took the model parametefs;};,' approximately follow a Gaussian distribution with a
¢ and o and the centroids estimated from the LFW databaseean close to zero; their histogram for XM2VTS is shown
view 1 As FERET does not provide a standardized divisiom Fig.[d. Actually, these coefficients come from the sum of
between evaluation and test set, for testing the proposedrli the signed—almost independent—coefficients of the support
SVM we performed a 5-fold cross validation with equal-sizegectors, hence converging to a Gaussian due to the CLT. The
disjoint subsets taken from gallery and probe. number of obtained weight samples (4000 per database) is not
c) Labeled Faces in the Wild (LFW) databas&he enough for a reliable hypothesis testing for Gaussianity, b
LFW database[[30] (we used tlienneled versiohis a more their quantization is not so critical as for the Gabor feasuin
challenging dataset that contains 13,233 face images whfelt, applying a Lloyd-Max quantizer based on this Gaussian
have several compound problems (imperfect localizatiorfé, we found that using two levels (i.e., preserving just the
in-plane rotations, non-frontal poses, low resolutionn-osign of eachy;) the impact on the verification performance is
frontal illumination, varying expressions...). The imageere negligible (around).1 — 0.2% in the three databases).
obtained by running an automatic face detector on imagesrThis system, in which all the involved values are integers
collected from the Internet. The LFW database is organizedth a very low cardinality is the one that we use in this
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TABLE I
VERIFICATION ACCURACY 1 (%) FOR THE QUANTIZED AND UNQUANTIZED VERIFICATION SYSTEM ON THE THREE STUDIED DATABASES EIGENFACES
RESULTS ARE SHOWN FOR COMPARISON ORERETAND LFW.

Database XM2VTS

FERET LFW

NL 7 8 Orig.

8 Orig. Eigenf. Orig. Eigenf.

89.04 92.30 92.59 94.27 95.62

95.87 61.40 62.77 63.77

No SVM (levels) 91.06 92.28 92.55 95.45 95.29 95.36

95.70 97.06 61.63 62.83 63.73 65.93

Proposed 94.39 94.80 94.60 96.63 96.63

96.54 65.73 65.90 65.73

93.00

96.38 97.67 97.58 95.15 95.59

60.00

96.41 64.93 67.67 68.23

SVM [AI (levels) 96.83 97.66 97.96 96.64 96.14 96.39

96.35 97.64 63.53 67.13 67.57 72.10

Proposed 96.47 98.07 98.37 97.68 97.77

97.62 67.90 69.03 69.53

XM2VTS ROC with SVMs

FERET ROC with SVMs

LFW ROC with SVMs
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Fig. 7. SVM weights distribution for quantized XM2VTS.

work as the basis for our non-interactive privacy-presegvi
face recognition protocol.

B. Complexity Analysis

In order to test the efficiency of our work, we implementeﬁ
the extended cryptosystem and applied it for privately cal

culating the weighted Euclidean distance between a pair
quantized Gabor feature vectors. We choose Me = 8
indices quantization for its good compromise between €le
text cardinality and verification performance. The latStze is
fixed ton = 2048 dimensions, witht = 380 andg = 1—20/n,
for a security parameter ok ~ 70. We work with 4000-
dimensional Gabor vectors for each faté % 10 localizations,
8 orientations and@ scales) with3-bit coefficients. Calculating

and4-level weights, the resulting score is correctly represegnt
using [log,(4000 - 2 - 82 - 4)] = 21 bits (19 bits without
weights), so we usk = 22 bits for the extended cryptosystem.
Accounting for thelog,(4000) = 11.97 bits of decrease for
the effective decryption radius, Ed.(2) yields 13 suppbrte
consecutive multiplications, so the extended cryptosystan
perfectly cope with the distance calculation, with an asbity
bounded probability of incurring on decryption errors.

Our C++ implementation uses GMRnd NTL® libraries.
We tested the time efficiency without any kind of paralleliza
tion in one core of an Intel i5 at 3.30GHz with 8GB of RAM.
Table[ shows the efficiency figures for the proposed algo-
rithm compared to the expected running times ofaalitional
implementation based on an additive homomorphism (2048-
bit modulus Paillier [[12]), with either clear-text tempat
and weights (PaillierCT, partial privacy) and with encieght
templates and weights (PaillierE, total privacy usingrattive
multiplication protocols). In both Paillier-based systeine
client provides the encryptions of both his/her face coieffits
nd their squared value, in the most favorable case foriétall
omomorphism. The original GH11 using binary circuits for
addition and multiplication needs one bootstrapping dircu
after each multiplication gate to provide valid outputstheiut
them, the verification circuit exceeds the homomaorphic capa
[ A
ity and produces erroneous outputs. Taking into accourt tha
the verification circuit involves aroungi2 - 10° products, and
each bootstrapping circuit takes around 8 seconds in otir tes
machine, GH11 would takalmost one montlior executing
one verification. Hence, we report the execution times of GH1
without the needed bootstrapping circujtst as a reference.

the weighted Euclidean distance between two vectors thus
needs two multiplications per pair of values, 3999 add#ion 4gnu MultiPrecision Arithmetic Library; http://gmplib.org

and one subtraction. Hence, starting frérevel coefficients

SNumber Theory Library, http://www.shoup.net/htl/
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TABLE Il
CLIENT AND SERVER (HP) TIMES AND NEEDED COMMUNICATION FOR THE PRIVATE VERIFICATION WITH AND WITHOUT SVMs.

Execution times No SVMs SVMs
Client Server Communication Client Server Communication
Cipher [ Decrypt [ (HP) H Cipher [ Decrypt [ (HP) H
Proposed 1.4s 1.5-100°s | 5.9-10T s 393 MB 1.4s 1.5-100°s | 1.2-10% s 393 MB
GH11 (binary) 45s 29.-107Ts | 5.5-10°s 1.18 GB 45s 29.107Ts | 6.0-10°s 1.18 GB
PaillierCT [[ 1.2-10Ts [ 4.4-107°s | 9.9-10T s 4.1 MB 1.2-10's [ 44-107°s | 1.8-10%s 4.1 MB
PaillierE [[ 1.7-10"s [ 3.3-10's | 4.2.10%s 10.2 MB 2.3-10"s | 6.7-10s 7.5-10% s 16.4 MB

Our extension makes the system feasible in terms of barmbundaries of the Voronoi cell of the lattice. Hence, as we
width and processing time: the use of homomorphic operatioare not changing the structure of the lattice generatedBby
in Zs. instead ofZ, reduces the server computation timeve are essentially keeping constanfor the v-BDDP in our
in almost two orders of magnitude (furthermore, GH11 doextended cryptosystem, just trading homomorphic capawgity
not provide a correct output without the needed decipheriiag increased space for plaintets
circuits), while the bandwidth is divided by a factor of tare  Additionally, the performance of the presented system is
In terms of computational efficiency, the extended crypeally promising, as the execution times are comparable to
tosystem clearly improves on Paillier-based ones, even tthe@se obtained with a Paillier-based system. The main draw-
system working with clear-text templates. The load for thigack for even higher-dimensional lattices is the increase i
client decreases in one order of magnitude with respectttee size of the keys, that imposes a very high bandwidth
Paillier, while the server’s load is almost halved. This iged for transferring the encryptions. In this sense, there ae t
to the lighter homomorphic operations compared to Pdslierresearch directions targeted at alleviating this probland
even when working with larger ciphertexts. Conversely, thtey are related to reducing either the size of the Keys [®9],
transferred encryptions for the proposed system are rgugkthe cipher expansion; our work falls under the second cayego
one order of magnitude higher than for encrypted Paillier Regarding the security of the private face verification pro-
templates, due to the larger expansion factor that lattitecol, the semantical security of the underlying cryptésys
cryptosystems like GH11 present. This is the main fact thatakes the whole protocol secure for semi-honest advessarie
constrains the performance of the homomorphism; our extén-the random oracle model. The only information that a semi-
sion advances in this path, reducing the expansion factr dmnest attacker may learn from the execution of the protiscol
greatly increasing the efficiency of the operations perfmm the verification soft score. This is indeed a piece of infdrama
non-interactively at the server. Furthermore, in an outsedi that can be used (by a malicious attacker) in an oracle attack
system that processes private data the initial bandwidtiois for extracting the information of a template for a given user
critical: the more operations that can be perfornoeattend- or the information for the used weight vector. If we want to
edly, the more versatile and powerful the system becomes.restrict this kind of attacks limiting the given informatido
just one bit (a binary verification result), we can resort t@ o
VI. SECURITY CONSIDERATIONS of the many interactive comparison protocols present in the

In this section we briefly make some considerations abolé}{arature (cf. SectiolLV), like those used by Eridnal. [g] or

the security of the proposed extension to Gentry’s cryrﬁosytha??gh'ei 3" [E" Jh's WOUI? involve a f|r;al mtergctlvet StepTh
tem and the privacy-preserving face verification system. at1s not desired in an autonomous outsourced system. 1he

We have already pointed out that the same Birthday att velopment of _non-intera_ctive_ comparison protocols gisin
security as the original GH11 cryptosystem is kept (s gly—homomorphlc engryptlons is one of the open research
SectionIV-C1). Regarding the dimensionalityof the lattice ines that will follow this work.

L and the hardness of finding the closest lattice vector withou
a good basis, it directly involves the BDDP [38] (Bounded VII. ConcLusions

Distance Decoding Problem): given a vectora lattice point  In this paper we propose a fully private non-interactivesfac
must be found, knowing that there is at least one lattiarification system that involves two novel contributiomg:
point p € L at a distance digp,c) < det(L)'/"/~, with an extension of Gentry’s fully homomorphic cryptosysteatth
~ > 1. The best known algorithms for solving theBDDP  allows for non-interactively computing low to medium-degr
have exponential time-complexity im/ log .5 Our extension Polynomials with inputs of small plaintext cardinality; )
increases the radius of the noise in fresh encryptions wigitimal quantization strategy for Gabor-based face featur
respect to the original [18]: approximateBF/(1 —¢)-n based on a novel statistical model for Gabor magnitudesy Onl
for our extension, against,/(1 — ¢) - n for the encryptions When combined, these two contributions enable the exetutio
in [I8]. Consequently, we increase the gap between tpk the whole verification algorithm with non-interactive -ho
message vectors and the noise vectors by the same amdd@fnorphic operations.

that we reduce the gap between the noise vectors and th¥Ve show that the developed model for Gabor magnitudes
presents a better fit than previous models, and test therperfo
6We refer the interested reader to the discussiorlin [38] byn&and
Nguyen, about the feasibility of the-BDDP in n dimensional lattices with ~ “We thank Prof. Carlos Aguilar Melchor for insightful dissisns on the
n € [100, 400]. security of our extended cryptosystem.



mance of the Lloyd-Max quantized system in XM2VTS][28]j11]
FERET [29] and LFW!/[[3D] databases, obtaining much better
results than those achieved with other previously usedidist; 5,
butions and quantization strategies, and considerabliagsav

in storage. Our model opens a wide range of applications of
independent interest, besides the presented data corimnnesén]

Additionally, the proposed extended cryptosystem trades
homomorphic decryption capacity for high gains in efficigncl4]
when executing low to medium degree polynomials; this is
only possible when working with compressed input features.
The developed extension is the core of the proposed n N
interactive fully-private outsourced face verificationsm,
that is able to calculate a weightednorm distance be-
tween high-dimensional quantized and encrypted Gabor fjtf‘gjf
features. Hence, our contribution enables the secure use 0
untrusted Cloud verification services.

Several future research lines can be highlighted: a) gpeci[m
ing the homomorphic decryption circuit for our extendedpery
tosystem; b) achieving other ways of reducing the cryptosys
tem cipher expansion while keeping the good homomorpHi]
properties; this can be tackled by either increasing thietebet
size or decreasing the public key size for bigger latticego]
finally, ¢) providing a non-interactive solution for comjzam
and other nonlinear operations that cannot be directly @appg,o;
by the nonbinary homomorphism is also challenging.
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