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ABSTRACT
Recent advances in Next Generation Sequencing have in-
creased the availability of genomic data for more accurate
analyses, like testing for the genetic susceptibility to a dis-
ease. Current laboratories’ facilities cannot cope with this
data growth, and genomic processing needs to be outsourced,
comprising serious privacy risks. This work proposes an en-
crypted genomic susceptibility test protocol based on lattice
homomorphic cryptosystems, and introduces optimizations
like data packing and transformed processing to achieve con-
siderable gains in performance, bandwidth and storage needs.

Index Terms— Genomic Privacy, Lattice-Based Cryp-
tography, Homomorphic Encryption, Privacy Protection

1. INTRODUCTION
Genomic research has experienced a considerable growth in
the last years due to the advances in Next Generation Se-
quencing (NGS), which enable potentially better analyses,
tests, diagnostics and treatments based on genomic data. The
growing volume of genomic data available to be processed,
cannot be managed by current facilities at hospitals and labo-
ratories. The need for outsourced genomic processing is ur-
gent, but it entails severe privacy risks [1] comprising, among
others, re-identification threats (it is not possible to entirely
anonymize genomic data), phenotype inference (sharing ag-
gregate genomic data, even pseudonymized, enables kin
privacy breaches), and other threats (anonymous paternity
breaches, legal and forensic inferences), affecting not only
the individual but also his/her ancestors and descendants.

Several proposals of privacy-preserving mechanisms have
arisen to cope with these threats in two main fields: research
studies like Genome-Wide Association Studies (GWAS), and
personalized health-care. While the former has been recently
tackled through differentially-private mechanisms [2, 3],
dealing with person-level genome sequence records prevents
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the use of generalization techniques or differentially-private
mechanisms, and the solution must involve cryptographic
primitives, which are generally costlier than other approaches.

One of the most recent privacy-preserving mechanisms
for disease susceptibility outsourced processing was proposed
by Ayday et al. [4], which introduce an untrustworthy Stor-
age and Processing Unit (SPU) to deal with the outsourced
encrypted processing, and devise a protocol based on additive
homomorphic encryption and proxy decryption to enable the
calculation of simple susceptibility tests on a set of Single Nu-
cleotide Polymorphisms (SNPs) of one patient; this encrypted
test is eventually handled by the medical center due to the lim-
itations of the used homomorphism. Subsequently, Namazi
et al. [5] proposed the use of lattice-based somewhat homo-
morphic encryption (SHE) to move the computation complex-
ity to the SPU, but they did not evaluate it nor addressed the
shortcomings introduced when dealing with SHE, namely in-
creased cipher expansion, higher bandwidth requirements and
much higher storage needs for the encrypted sequences. In
this work, we propose an efficient protocol to deal with en-
crypted genomic susceptibility tests based on Ring Learning
with Errors (RLWE) cryptosystems, and introduce optimiza-
tions which lead to a considerable improvement in terms of
computation, bandwidth and storage with respect to both the
original protocol by Ayday et al. [4] and Namazi et al. [5].

Uppercase letters denote matrices and lowercase letters
denote elements from a vector space. aEP denotes the result
of the encryption of awith the key belonging to P . The rest of
the paper is organized as follows: Section 2 briefly introduces
the used cryptosystem and its primitives. Section 3 revisits
the scheme by Namazi et al. [5]. Section 4 describes our pro-
posed protocol and the introduced optimizations. Section 5
evaluates the secure protocol in terms of ciphertext size, run
times and communication, and compares it to the prior works.

2. RLWE-BASED SHE
We choose Lauter et al.’s [6] as our cryptosystem, due to its
simplicity, efficiency and security, but any other RLWE cryp-
tosystem (as FV [7] or BGV [8]) can be used as well. Table 1
summarizes its parameters and primitives.

Furthermore, by means of a relinearization matrix B it is
possible to transform three-component encryptions after a ho-



Table 1. RLWE-based Lauter Cryptosystem
Parameters
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momorphic product back into two-component fresh-like en-
cryptions. This matrix can also be used as a proxy reencryp-
tion in order to perform the key change needed at the end of
the protocol (see Section 3). In this case, the relinearization
process of a multiplied ciphertext (vector of 3 components in
Rq) cP1 = {c1, c2, c3} under P1’s key into P2’s key can be
expressed as a matrix product cP2 = {c1, c2} + c3,base−t ·
B, where c3,base−t is a dlogt qe-length row vector with the
base-t decomposition of the polynomial c3, and matrix B has
size dlogt qe × 2 (see [9] for further details).

The equivalent bit-security of this cryptosystem can be
lower-bounded by tBKZ(δ) = 1.8

log2 δ
− 110 [10], where δ

is the Root Hermite Factor of the used polynomial lattice.

3. ENCRYPTED SUSCEPTIBILITY TESTS
The genomic sequence of each individual presents variations
with respect to the reference sequence which fully identify
the individual. The most common and relevant variants are
called SNPs (Single Nucleotide Polymorphisms), which are
particularly suitable for running susceptibility tests of certain
diseases. Weighted averaging [11] is the simplest way to mea-
sure the susceptibility of a patient P to a disease x:

SP,x =
∑
i∈Ωx

cx,i{prx,i0 [1− SNPP,i] + prx,i1 [SNPP,i]}. (1)

The symbols used in Eq. (1) are defined in Table 2. As this
test involves a bounded number of additions and products, an
SHE scheme allows to execute it with all the inputs encrypted.

Table 2. Used Notation
ΓP Set of positions of real SNPs of patient P
γP Set of positions of potential SNPs of patient P
SNPP,i i-th SNP for patient P . SNPP,i equals 0 when it belongs to γP , and 1

when the patient presents a variant (it belongs to ΓP )
Ωx Set of relevant positions of SNPs which are related to disease x.
prx,ib Pr(x|SNPP,i = b), with b ∈ 0, 1. Probability of developing disease x

conditioned on the value of the i-th SNP
cx,i Normalized contribution of SNPP,i to the susceptibility to x.
SP,x Predicted susceptibility of patient P to disease x

We briefly revisit the protocol by Namazi et al. [5] to cal-
culate Eq. (1) homomorphically, with the following parties:

a patient P owns a biological sample; a medical center MC
has the knowledge of the parameters (pr, c) for calculating
the susceptibility to disease x; the certified institution CI is
a trusted party that sequences the patient’s DNA and gener-
ates all the used cryptographic keys; the Storage and Pro-
cessing Unit SPU is an untrustworthy party with computa-
tional power to execute the encrypted test. The patient does
not trust the MC to share all his/her genomic data, and both
MC and P distrust SPU with respect to the analysis param-
eters and the patient’s data. All parties are considered to be
semi-honest. The protocol works as follows (see Figure 1):

Fig. 1. Encrypted susceptibility testing protocol.

Step s1: The CI generates and distributes the needed
keys: P and MC have one SHE key-pair each, while P and
CI share a symmetric key skP,CI ; the CI also produces a
relinearization matrix B to change encryptions from P ’s key
into MC key, and sends it to the SPU .

Sequencing and generation of input encryptions
Step e1: After P sends the biological sample to CI , the

latter sequences it, builds a Bloom Filter representing the po-
sitions for which the patient presents SNPs, and sends it to P ;
CI encrypts these positions {li,EP,CI} and a “zero position”
l0,EP,CI with skP,CI , and the values of all SNPs SNPP,i with
P ’s SHE key, and sends all these encryptions to the SPU .

Encrypted susceptibility test
Step 1: The MC marks the location of SNPs in Ωx and

sends them to P . Additionally, it sends the contributions of
these SNPs to the disease x encrypted under P ’s SHE key to
SPU : {[prx,ib · c

x,i]EP }b∈{0,1},i∈Ωx .
Step 2: P runs the Bloom filter for these positions; for

those in the filter (present variants), P encrypts the corre-
sponding location li,EP,CI and sends it to SPU ; otherwise,
P sends the encryption l0,EP,CI .

Step 3: The SPU computes the susceptibility Eq. (1) on
patient’s encrypted SNPs and MC’s encrypted susceptibility
parameters for x by using the homomorphic properties of the
SHE scheme, obtaining the encryption of SP,xEP

under P ’s key.
Step 4: The SPU uses the relinearization matrix to

switch the result into MC’s key, and sends it to MC.
Step 5: The MC decrypts the clear-text test result SP,x

of patient P for the disease x using its own SHE secret key.
This protocol succeeds in moving all homomorphic com-

putation to the SPU and keeping the locations and values of
P ’s SNPs concealed from the SPU and the MC, and the test
parameters concealed from the SPU . Conversely, its high ci-
pher expansion makes it much more demanding in terms of



storage and bandwidth compared to the Paillier based scheme
by Ayday et al., as we show in Section 5.

4. PROPOSED APPROACH
As can be seen from the protocol description in Section 3,
the only elements which have to be encrypted with a homo-
morphic encryption are the patient SNPs, and the suscepti-
bility parameters; Ayday et al. [4] encrypted only the patient
SNPs, as the computation was done at theMC, which already
knows the clear-text susceptibility contributions. Blindly ap-
plying lattice encryptions to the protocol produces a huge
growth in the cipher expansion: SNPs are binary values (ei-
ther present 1 or absent 0), which get encrypted into several
thousand bits in Paillier, and several hundred thousand bits
with an RLWE cryptosystem. Hence, even when the lattice-
based operations are more efficient than their Paillier-based
counterparts, the large cipher expansion becomes a serious
drawback when coping with 4 million SNPs per patient.

Fig. 2. Diagram of the encrypted susceptibility computation.

Figure 2 presents a high-level view of our proposed ap-
proach for dealing with the encrypted calculation of the sus-
ceptibility. We present four main contributions described in
the following paragraphs: a judicious choice of the cryptosys-
tem parameters to optimize the performance and maximize
the security of the protocol; an input packing strategy to min-
imize storage and bandwidth; a pre-processing mechanism
based on transformed coefficients to enable the homomor-
phic calculation of component-wise products between vectors
of susceptibility coefficients and SNPs, and a homomorphic
blinding strategy to enable the seamless calculation of the
addition of all the components in one vector while avoiding
costly unpacking/repacking operations at the SPU .

4.1. Parameter choice
RLWE cryptosystems work with polynomials in Rq; i.e., the
ring product is a polynomial product (convolution). In order
to speed up products, it is more convenient to work in a trans-
formed domain with the convolution property, where convo-
lutions become much more efficient component-wise prod-
ucts. As these cryptosystems work in finite rings, we stick

to Number Theoretic Transforms (NTTs) instead of Discrete
Fourier Transforms (DFTs), which would introduce undesir-
able rounding errors [9]. For an n-th root of unity α in the
ring, the NTT has a similar form to the DFT:

NTT{x} =

n−1∑
i=0

x[i]·αik, INTT{X} = n−1·
n−1∑
k=0

X[k]·α−ik.

Therefore, we parameterize the cryptosystem to enable
component-wise operations in the NTT domain. We choose
n = 2k (polynomial degree in Rq) as a power of 2, and q
and t as Proth primes (c · 2k + 1) [9]; this choice guarantees
that an n-th root of unity exists in Zq (ciphertext coefficients)
and in Zt (plaintext coefficients), in such a way that NTTs of
size n exist both in Zq and Zt. All the used polynomials (ran-
dom polynomials, input plaintexts and keys) undergo an NTT
prior to encryption, all ciphertexts are always expressed in the
NTT domain, and decryptions are followed by an INTT of the
resulting polynomial.1 Hence, all the intermediate operations
are considerably faster (component-wise), and encryption and
decryption suffer from a slight overhead for calculating the
NTT/INTT with fast algorithms (O(n log(n))).

4.2. Input Packing
Due to the polynomial structure of RLWE cryptosystems, the
cipher expansion can be reduced by packing the inputs in vec-
tors of n elements (as many as the degree of the polynomials
in Rq , see Table 1) instead of encrypting one scalar value per
ciphertext. For the devised susceptibility test protocol, theCI
can encrypt the SNPs of the patient in blocks of n SNPs per
ciphertext, which divides the storage overhead by a factor of
n. This creates a two-level indexing of the SNPs (i, j), where
i indexes the block where the SNP was encrypted, and j in-
dexes the polynomial coefficient (j ∈ {0, n − 1}) where the
SNP was packed inside the block. The mapping between the
SNP location and the indices (i, j) can be freely chosen by
the CI , and must be known by the MC. This alters steps 1
and 2 of the protocol: In step 1, the MC encrypts the contri-
butions of a SNP indexed by (i, j) in the j-th coefficient of
the polynomial, and zeros in the other coefficients. If several
relevant SNPs belong to the same block, their contributions
are packed together in the same encryption. In step 2, after
running the Bloom Filter, P sends to the SPU the encrypted
location li,EP,CI indexing the chunks of SNPs where the rel-
evant positions belong, and sends no information about j.

4.3. Packed operations: pre-processing
Once the inputs are packed, the calculation of Eq. (1) requires
the homomorphic execution of component-wise products of
SNP contributions and SNP values. This is not possible if we

1In order to perform cyclic convolutions inside a negacyclic ring (mod
xn + 1), signals must be pre- and post-processed with a component-wise
product with a vector of powers of a root of −1 in Zq [9]. This operation is
already accounted for in all the measured run times.



Table 3. Evaluation runtimes, bandwidth and storage for 4M SNPs and a 10-marker test (|Ωx| = 10).
Run time [ms] / transferred size CI SPU MC

Ayday et al.[4] Encrypt per SNP Recrypt Proxy recrypt Homomorphic calc. Paillier decrypt
2048 bit modulus, 112 bit security 33,2ms / 4,1 GB 304,3ms / 10,2 kB 30,3ms / 1,02 kB 39,3ms / 1,02 kB 30,3ms / —

Encrypt per SNP Homomorphic calc. Relinearization Encrypt params RLWE Decrypt

RLWE n = 4096 Unpacked 0,45ms / 262,1 GB 2,17ms / — 2,32ms / 65,5 kB 9,1ms / 1,31 MB 0,96ms / —
364 bit security (δ = 1.002) Packed 0,00011ms / 64 MB 0,1 – 2,17ms / — 2,32ms / 65,5 kB 0,45 – 9,1ms / 0,131 – 1,31 MB 0,96ms / —

RLWE n = 2048 Unpacked 0,22ms / 131,1 GB 1,08ms / — 1,1ms / 32,8 kB 4,5ms / 655 kB 0,46ms / —
127 bit security (δ = 1.005) Packed 0,00011ms / 64 MB 0,05 – 1,08ms / — 1,1ms / 32,8 kB 0,22 – 4,5ms / 65,5 – 655 kB 0,46ms / —

encrypt the input blocks of SNPs directly, as the cryptosys-
tem only allows for homomorphic convolutions. Hence, the
CI (resp. MC) first applies an INTT to the polynomial of
SNP values (resp. contributions), and then encrypts the trans-
formed values. Then, due to the convolution property of the
NTT, the homomorphic operations become:

INTT ({SNPP,(i,j)}j) ~ INTT ({prx,(i,j)b cx,(i,j)}j) =

INTT ({SNPP,(i,j) · prx,(i,j)b cx,(i,j)}j).

These transforms are enabled by our choice of t and n,
that guarantees that the n-size INTTs exist for coefficients in
Zt. Therefore, the SPU can seamlessly obtain the encrypted
component-wise products contributing to the susceptibility.

4.4. Obtaining the test result
After the previous process, the SPU ends up with an en-
crypted vector holding the INTT coefficients of the component-
wise products, but the cryptosystem homomorphism does not
allow to add them together without decrypting and unpacking
them first. To overcome this limitation, we leverage the struc-
ture of the NTT, by realizing that the first coefficient of the
INTT is just the sum of all the signal coefficients in the time
domain, multiplied by the modular inverse of n in Zt. Hence,
the SPU generates a random vector v ∈ Zn−1

t to blind the
remaining INTT coefficients, and homomorphically adds it
to the packed susceptibility encryption (at the end of step 3).
Then, after performing the relinearization and sending back
the resulting encryption toMC (step 4), the latter can decrypt
the result and obtain a vector which holds the susceptibility
result SP,x in the first coefficient (multiplied by n−1 mod t)
and random values in the remaining coefficients. Hence, we
also avoid that the MC has to execute an NTT to revert the
INTT that was applied to the inputs.

5. IMPLEMENTATION AND EVALUATION
We implemented the full protocol in C++ with and without
packing, using the NFLlib [12] library, and Ayday’s Paillier-
based version with GMP [13]. According to Section 4.1, we
choose t = 65537, as it is enough to deal with all the input
values with a precision of 10−3 for a test of up to 65 markers;
due to efficiency reasons, we fix q to 62 bits, such that it fits in
a limb (8 bytes) and all operations on polynomial coefficients
are performed in just one machine cycle; additionally, this
choice of q and t allows for the correct computation of one

encrypted polynomial product between two fresh encryptions,
which is enough to homomorphically calculate Eq. (1).

We choose medium-term security for Paillier, with 2048-
bit modulus (112 bits of security), and two levels of security
for our lattice-based protocol: n = 2048, which produces an
equivalent security of 127 bits (δ = 1.005, see Section 2),
and n = 4096, with 364 bits of security (δ = 1.002). Ta-
ble 3 shows the run times for each party on an Intel Core
i5-2500 processor at 3.3 GHz running Linux, and the sizes
of the transferred encryptions at each step for 4 million SNPs
per patient and a test with 10 relevant SNPs (markers) in Ωx.

The RLWE-based protocols considerably outperform the
Paillier-based Ayday et al. protocol in terms of efficiency
(two orders of magnitude for SPU and CI , and one order
of magnitude for the MC), while keeping all the homomor-
phic computation at the SPU instead of the MC. As for
the bandwidth, the unpacked solution suffers from the big ci-
pher expansion of the RLWE encryptions, producing a huge
set of encrypted SNPs at the CI . The proposed strategies
greatly reduce this overhead, limiting the stream of the 4 mil-
lion encrypted SNPs to just 64 MB, notably lower than the 4
GB needed for the Paillier encryptions, improving on storage
needs. The improvement achieved on homomorphic compu-
tation depends on the number of blocks spanned by the po-
sitions of the relevant SNPs, analogously to the bandwidth
needed between SPU and CI . Both can be optimized by
configuring the (public) ordering of the SNPs (mapping of
the indices (i, j)) so that most of the SNPs relevant for the
same diseases be together in the same block.

It must be noted that the performed packing, the used SNP
indexing and the blinding of the resulting vector leak no in-
formation either to the SPU or to the MC, in such a way
that the same security properties and privacy guarantees of
the unpacked Paillier-based protocol are preserved here.

6. CONCLUSIONS
We propose a privacy-preserving genomic susceptibility pro-
tocol based on a Ring Learning with Errors SHE cryptosys-
tem which outperforms previous protocols in terms of effi-
ciency, bandwidth and storage needs. We introduce a choice
of cryptosystem parameters to optimize the performance and
the security of the protocol, and propose a transformed input
packing strategy to minimize storage and bandwidth, and en-
able the homomorphic calculation of the susceptibility func-
tion while avoiding costly unpacking/repacking operations.
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and Fernando Pérez-González, “Dynamic Privacy-
Preserving Genomic Susceptibility Testing,” in
Proceedings of the 4th ACM Workshop on Information
Hiding and Multimedia Security. 2016, IH&MMSec
’16, pp. 45–50, ACM.

[6] K. Lauter, M. Naehrig, and V. Vaikuntanathan, “Can
Homomorphic Encryption be Practical?,” Cryptology
ePrint Archive, Report 2011/405, 2011, http://
eprint.iacr.org/.

[7] J. Fan and F. Vercauteren, “Somewhat Practical Fully
Homomorphic Encryption,” Cryptology ePrint Archive,
Report 2012/144, 2012, http://eprint.iacr.
org/.

[8] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Lev-
eled) Fully Homomorphic Encryption without Boot-
strapping,” ACM Trans. Comput. Theory, vol. 6, no. 3,
pp. 13:1–13:36, July 2014.

[9] Alberto Pedrouzo-Ulloa, Juan Ramón Troncoso-
Pastoriza, and Fernando Pérez-González, “Number
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dace Guiducci, Noël P. Burtt, Charlotta Roos, Joel N.
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