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Abstract—Most Signal-to-noise ratio (SNR) estimators use the
receiver matched filter output sampled at the symbol rate, an
approach which does not preserve all information in the analog
waveform due to aliasing. Thus, it is relevant to ask whether
avoiding aliasing could improve SNR estimation. To this end, we
compute the corresponding data-aided (DA) and non-data-aided
(NDA) Cramér-Rao bounds (CRBs). We adopt a novel dual filter
framework, which is shown to be information-preserving under
suitable conditions and considerably simplifies the analysis. It is
shown that the CRB can be substantially reduced by exploiting
any available excess bandwidth, depending on the modulation
scheme, the SNR range, and the estimator (DA or NDA) type.

Index Terms—Signal to noise ratio, Cramer-Rao bounds,
oversampling.

I. INTRODUCTION

Communication receivers incorporate a variety of parameter
estimators required for reliable data detection [1], [2]. With
linear modulation schemes it is common to find estimators of
phase and frequency offsets, channel gain, signal-to-noise ratio
(SNR), etc., based on the output of the receiver Matched Filter
(MF), sampled at the symbol rate. Although this introduces
aliasing (unless the excess bandwidth is zero), the rationale for
such approach is that in additive white Gaussian noise channels
these samples provide sufficient statistics for data detection
purposes. An exception to this rule is symbol timing estima-
tion, which requires alias-free samples. Even assuming known
symbol timing, it is not clear whether oversampling (with
respect to the symbol rate) the received signal could improve
estimation performance for any of the remaining parameters
of interest, and if so, how to quantify such improvement.

Answering the above question for the problem of SNR
estimation is the focus of this paper. Many techniques for
managing communication resources, e.g., power control, adap-
tive modulation, turbo decoding, etc., are based on SNR
knowledge [3]–[8]. A number of data-aided (DA) and non-
data-aided (NDA) SNR estimators exist, most of them based
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on the symbol-rate sampled MF output; they can be generally
grouped as either Maximum Likelihood (ML) [3], [9]–[13]
or moments-based [9], [14]–[18]. Extensions to single- and
multiple-input multiple-output channels also exist [19]–[21].

A few authors have considered SNR estimation with over-
sampling. Seeking robustness to symbol timing uncertainty,
moments-type NDA SNR estimators based on the oversampled
MF output were proposed in [22]. The DA ML SNR estimator
and corresponding Cramér-Rao Bound (CRB) based on the
oversampled signal at the MF input, with arbitrary oversam-
pling factor, were given in [9]. In this model, the signal-free
bandwidth available for estimation of the noise variance be-
comes arbitrarily large as the oversampling factor is increased.
In contrast, the NDA estimator in [23] is based on second-
order statistics of the oversampled MF input, but assuming an
antialiasing filter removing spectral content outside the signal
bandwidth. This seems reasonable, as in practice such content
is subject to interference from adjacent channels. Whereas
the CRB for symbol-rate SNR estimation has been developed
under a variety of settings [24]–[28], to our knowledge no
results other than [9] are available for the oversampled case.

We develop the CRB for the oversampled case, under
the practical constraint that only the useful signal band be
processed. The CRB is obtained for (i) the DA case, (ii) the
general NDA case, and (iii) the NDA case for second-order
based estimators. Comparison with the corresponding symbol-
rate CRB is provided whenever possible. Since directly dealing
with the oversampled MF output is cumbersome, we introduce
a Spectrum-Derivative Matched Filter (SDMF) such that the
MF and SDMF outputs, both sampled at the symbol rate,
preserve all information about the original analog signal. It is
found that this additional information (SDMF output samples)
does reduce the CRB for SNR estimation, more so as the
amount of excess bandwidth increases, and depending on the
class of estimator considered (e.g., DA vs. NDA).

The paper is structured as follows. The system model is
given in Sec. II. Sec. III presents the dual filter framework.
The DA and NDA CRB are developed in Secs. IV and V.
Numerical examples are given in Sec. VI, and Sec.VII draws
some conclusions. All proofs are relegated to the Appendices.

Notation: vectors and matrices are represented by bold
lowercase and bold uppercase symbols, respectively. X(f)
denotes the Fourier transform (FT) of x(t), and ’?’ denotes
convolution. By x ∼ CN (µ,Σ) we mean that x is circular
complex Gaussian distributed with mean µ and covariance Σ.
diag{x} denotes a diagonal matrix with the elements of x
on its diagonal. For A ∈ Cm×n, vec(A) denotes the mn× 1
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vector obtained by stacking the columns of A. The k × k
identity matrix is denoted by Ik, and tr{B} is the trace of B.

II. SYSTEM MODEL

We consider single-input single-output communication sys-
tems employing linear modulation. Assuming a frequency-flat
channel, the complex envelope of the available signal is

r(t) =
√
Se(2πFt+ψ)

∑
l

algT (t− lT − εT ) +
√
Nn(t), (1)

where {al} are the unit-power transmitted symbols, and gT (t)
is a square-root raised cosine (SRRC) pulse [1] with roll-
off α ∈ [0, 1] and symbol rate 1/T , normalized so that∫∞
−∞ g2

T (t)dt = 1. The frequency, phase, and timing offsets are
denoted by F , ψ, ε respectively. It is assumed that F and ε are
known; hence we will make in the sequel F = ε = 0 w.l.o.g.
As in [23], it is assumed that the received signal has been
processed by an ideal lowpass filter with cutoff frequency 1+α

2T
to produce r(t). In this way, estimation is constrained to using
only the information available within the useful signal band.
Hence, the noise process n(t) is assumed zero-mean, circularly
symmetric Gaussian with a bandlimited power spectral density
(psd) Sn(f) = 1 for |f | ≤ 1+α

2T and zero elsewhere.
The signal-to-noise ratio is defined1 as ρ , S/N . Since the

main focus is on SNR estimation, it is useful to rewrite (1) in
terms of ρ (and after making ε = F = 0) as

r(t) =
√
ρNeψ

∑
l

algT (t− lT ) +
√
Nn(t). (2)

Our goal is to find the CRB for the estimation of { ρ, ψ, N }
based on our observation (2). In particular, the main focus is
on the estimation of ρ when ψ, N are unknown. Previous
works have addressed a related problem but based on the MF
output sampled at the symbol rate [12], [25], [28].

The receive filter gR(t) is matched to the transmit pulse,
i.e., gR(t) = g∗T (−t). The MF output is denoted by y(t) =
r(t)?gR(t). Then, within an observation interval of length KT ,
we can obtain K of these symbol-rate MF output samples:

yk , y(kT ) =
√
ρNeψ

∑
l

alh((k − l)T ) +
√
Nwk

=
√
ρNeψak +

√
Nwk, k∈{k0, . . . , k0 +K − 1}, (3)

where the Nyquist property of h(t) , gT (t) ? gR(t) has been
used (h(nT ) = 1 for n = 0 and 0 otherwise); the noise sam-
ples are given by wk , w(kT ) with w(t) = n(t)?gR(t). Note
that {wk} is zero-mean white Gaussian with unit variance.

III. THE DUAL FILTER FRAMEWORK

Since (3) is obtained by sampling y(t) below its Nyquist rate
1+α
T , some useful information (for estimation purposes) may

have been lost in the process. To avoid such loss, r(t) could
be oversampled, but this results in a sequence whose signal
component is correlated; if y(t) is oversampled instead, then
the noise component becomes correlated as well. These cor-
relations make the derivation of the CRB quite cumbersome.
We adopt an alternative approach, described next.

1This is equivalent to the SNR per symbol, commonly denoted by Es/N0.

A. Development
We choose to retain the symbol-rate MF output samples yk

from (3), as well as the symbol-rate samples of the output
of an auxiliary filter with impulse response g̃R(t). As it turns
out, by appropriate selection of the auxiliary filter, these two
symbol-rate sequences preserve all information about r(t). The
impulse response g̃R(t) is selected so that its convolution with
the transmit pulse has zero crossings every T seconds:

h̃(t) = gT (t) ? g̃R(t) ⇒ h̃(nT ) = 0 ∀n ∈ Z. (4)

Let us now define

ỹ(t) , r(t) ? g̃R(t), w̃(t) , n(t) ? g̃R(t). (5)

From (4), the auxiliary symbol-rate samples are given by

ỹk , ỹ(kT ) =
√
ρNeψ

∑
l

alh̃((k − l)T ) +
√
Nw̃(kT )

=
√
Nw̃k, k ∈ {k0, . . . , k0 +K − 1}, (6)

and thus contain only noise samples w̃k , w̃(kT ). These
are zero-mean Gaussian with autocorrelation E{w̃kw̃∗k−m} =
Rw̃(mT ), with Rw̃(τ) the autocorrelation of w̃(t). Since r(t)
has no spectral content in |f | > 1+α

2T , it can be assumed
w.l.o.g. that g̃R(τ) is bandlimited to ± 1+α

2T , so that Rw̃(τ) =
g̃R(τ)?g̃∗R(−τ). The following result will be key in the sequel.

Lemma 1. If g̃R(t) satisfies the zero-crossing property (4),
then {wk} and {w̃k} are uncorrelated: E{wkw̃∗n} = 0 ∀k, n.

It follows from Lemma 1 that yk, ỹn are statistically inde-
pendent ∀k, n (since the noise is Gaussian and independent
of data). This will greatly simplify the derivation of the CRB.

Characterizing all h̃(t) satisfying (4) was first addressed in
[23], where the design of g̃R(t) was undertaken in order to
exploit the spectral coherence of the cyclostationary signal.
An alternative description, valid for standard Nyquist pulses
h(t) such as the RC pulses considered here, is given next.

Lemma 2. Let h̃0(t) , t · h(t) have FT H̃0(f). Then all
filters h̃(t) satisfying the zero-crossing condition (4) are given
in terms of their FT H̃(f) by

H̃(f) = P (f)H̃0(f), |f | ≤ 1+α
2T , (7)

where P (f) is any transfer function satisfying

P
(
f + 1

2T

)
= P

(
f − 1

2T

)
, |f | ≤ α

2T . (8)

Note that if the inverse FT p(t) of P (f) is real-valued, then
(8) amounts to P ( 1

2T +f) = P ( 1
2T −f) for |f | ≤ α

2T , so that
P (f) has Hermitian symmetry in the roll-off band.

Clearly, P (f) = 1 meets (8), and thus H̃(f) = H̃0(f)
satisfies2 (4). Since H(f) = G2

T (f), one has

H̃0(f) = − 1

2π

dH(f)

df
= −2GT (f)

2π

dGT (f)

df
. (9)

Hence, since H̃(f) = GT (f)G̃R(f), it follows from (7) and
(9) that the g̃R(t) resulting in the desired zero-crossing pattern
(4) can be parameterized in the frequency domain by

G̃R(f) = P (f)D(f), with D(f) , − 1

π

dGT (f)

df
, (10)

2This is also evident by examining h̃0(t) = t ·h(t), since h(t) is Nyquist.
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for any P (f) satisfying (8). We will refer to G̃R(f) as
Spectrum-Derivative Matched Filter (SDMF). Outside the roll-
off band, GT (f) is flat and thus D(f) = G̃R(f) = 0.

Non-differentiability of GT (f) at f = ± 1+α
2T results in a

sharp cutoff of D(f) at these frequencies. Thus, in practice,
an appropriate choice of P (f) may ease SDMF design. When
computing the CRB, however, implementation issues are not
relevant; it suffices to ensure that {yk}, {ỹk} preserve all
information about the analog input, as addressed next.

Lemma 3. Let r(t) be bandlimited to ± 1+α
2T . Let G̃R(f) be as

in (10), with P (f) satisfying (8). Then r(t) can be recovered
from {yk}, {ỹk} iff P (f) 6= 0 for all f in the roll-off band.

This is intuitively satisfying. By sampling the MF output at
the symbol rate, aliasing occurs in the roll-off band only; to be
able to compensate for this, the SDMF must not eliminate any
content in this region. Thus, we will assume that G̃R(f) 6= 0
in the roll-off band, imposing w.l.o.g. the normalization∫ ∞

−∞
g̃2
R(t)dt = 1. (11)

B. Implications for CRB computation

Let us focus now on the spectral characteristics of the
SDMF output ỹk = w̃k, which is colored with autocorrelation
Rw̃(mT ). In particular, (11) implies E{|w̃k|2} = Rw̃(0) = 1.
The following result states an important asymptotic property.

Lemma 4. Let C̃ ∈ CK×K be the autocorrelation matrix of
{w̃k}. As K →∞, one has L , rank C̃ → αK.

The fact that C̃ becomes (asymptotically) singular for α < 1
introduces a slight difficulty when computing the CRB, since
the probability density function (pdf) of a Gaussian vector with
a singular covariance matrix does not exist [29]. Consider,
however, the following result [30, Lemma 1]:

Lemma 5. Let w̃ = [ w̃1 · · · w̃K ]T and C̃ = E{w̃w̃H}.
Let L , rank C̃ ≤ K, and let C̃ = ŨΛ̃ŨH , where Λ̃ is
L × L diagonal with the L nonzero eigenvalues, and Ũ is
K × L with ŨHŨ = IL. Consider the random L× 1 vector
v̄ , Λ̃−1/2ŨHw̃. Then it holds that w̃ = ŨΛ̃1/2v̄.

Thus, w̃ ∈ CK is statistically equivalent to ṽ ∈ CL (since
there exists a one-to-one mapping between them, indepen-
dent of unknown parameters). Hence, the CRB based on the
symbol-rate sampled MF and SDMF outputs, collected in

y =
[
yk0 yk0+1 · · · yk0+K−1

]T
, (12)

ỹ =
[
ỹk0 ỹk0+1 · · · ỹk0+K−1

]T
, (13)

is the same (for large K) as that based on y and on the vector

ȳ , Λ̃−1/2ŨH ỹ =
√
N v̄, (14)

since ỹ = ŨΛ̃1/2ȳ by Lemma 5. Conditioned on N , ȳ ∈ CL
is Gaussian distributed with full-rank covariance E{ȳȳH} =
N · E{v̄v̄H} = NIL. In addition, L = αK by Lemma 4.

Using (12)-(14), one has y =
√
ρNeψa +

√
Nw,

ȳ =
√
N v̄, with a the vector of data symbols, and w ∼

CN (0, IK), v̄ ∼ CN (0, IL), with E{wv̄H} = 0K×L. Letting
z , [yH ȳH ]H , the observation model can be written as

z =
√
ρNeψ

[
a
0

]
+
√
N

[
w
v̄

]
. (15)

We are now ready to use model (15) in order to derive
estimation bounds. We will use the results from Lemmas 4
and 5, so that the results in the sequel are valid for large K.

IV. CRAMÉR-RAO BOUND FOR THE DA CASE

Assume that the vector of symbols a is known (DA case),
and normalized to 1

Ka
Ha = 1. Then z ∼ CN (µz,Cz) with

µz =
√
ρNeψ

[
a
0

]
, Cz = NIK+L. (16)

Let θ = [ψ ρ N ]T be the unknown parameter vector. The
elements Jθiθj of the Fisher Information Matrix (FIM) J in
the Gaussian case are given by the Slepian-Bangs formula [31,
Eq. (B.3.25)], yielding Jψρ = JψN = 0 when applied to (16).
Hence, the parameter sets {ψ} and {ρ,N} are decoupled: the
CRB for any of these sets is the same independently of whether
the other is regarded as known or unknown. Thus, the CRB for
phase offset, given by J−1

ψψ = 1
2ρK [32], is not improved by

the availability of SDMF output samples. On the other hand,
for large K, the (ρ,N) subblock of the FIM is given by[

Jρρ JρN
JNρ JNN

]
=
K

2

[
1
ρ

1
N

1
N

ρ+2(1+α)
N2

]
. (17)

From (17), the CRB for DA SNR estimation is given by

CRB(ρ) =
1

K
ρ

(
ρ

1 + α
+ 2

)
. (18)

The corresponding bound when only the K samples of the
symbol-rate MF output are exploited is (see [9])

CRBMF(ρ) =
1

K
ρ(ρ+ 2). (19)

The bounds (18)-(19) coincide for α = 0, since the symbol-
rate MF output is alias-free in that case, conveying all infor-
mation about r(t). As ρ → 0, both bounds approach 2ρ

K : in
low SNR, the information contributed by the SDMF output
becomes less significant. On the other hand, one has

lim
ρ→∞

CRB(ρ)

CRBMF(ρ)
=

1

1 + α
∈
[

1

2
, 1

]
, (20)

i.e., for high SNR the availability of the SDMF output reduces
the DA bound up to 3 dB, depending on excess bandwidth.

The DA CRB (18) can also be compared with that from [9,
eq. (64)] based on the oversampled MF input with oversam-
pling factor Nss (in this way, the noise psd becomes Sn(f) = 1

for |f | ≤ Nss

2T and zero elsewhere), which is 1
K ρ
(

ρ
Nss

+ 2
)

.
Both bounds coincide for Nss = 1+α, since in that case both
models process the same bandwidth and become equivalent.

For completeness, the DA ML SNR estimator is derived
next. The DA ML estimates of ψ, S = ρN , and N are

ψ̂ = arg{aHy}, Ŝ =
1

K2

∣∣aHy∣∣2 , (21)
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N̂ =
1

1 + α

(
‖y‖2

K
− Ŝ

)
+

α

1 + α

(
‖ȳ‖2

αK

)
. (22)

Then ρ̂ = Ŝ

N̂
by the invariance property [33, Th. 7.2]. From

(21), availability of the SDMF output is irrelevant when
estimating ψ and S. On the other hand, such availability does
improve the noise power estimate N̂ , obtained as the convex
combination of the estimates individually obtained from the
MF (by subtracting the estimated signal power Ŝ from the
estimated total power) and SDMF outputs. The weights of this
convex combination are determined by the excess bandwidth.

V. CRAMÉR-RAO BOUND FOR THE NDA CASE

In the NDA case, (15) is still valid, but now a is zero-mean
random with covariance IK , statistically independent ofw and
v̄. Thus, y and ȳ are statistically independent, so that the FIM
based on z is the sum of the corresponding FIMs: J = JMF +
J SDMF, where JMF is the FIM for the estimation problem based
on y only, which was derived in [12], whereas J SDMF denotes
the FIM based on ȳ. Since ȳ does not depend on {ψ, ρ}, one
has J SDMF = diag{[ 0 0 J SDMF

NN ]}. Since ȳ is Gaussian, J SDMF
NN

can be obtained from the Slepian-Bangs formula. Thus,

J SDMF
NN =

Kα

N2
for large K. (23)

In the NDA setting one has JMF
ψρ = JMF

ψN = 0 [12]. Hence, as in
the DA case, availability of the SDMF output does not affect
the CRB for ψ, given by J−1

ψψ = FM (ρ)
2ρK , with the specific form

of FM (ρ) ≥ 1 depending on the constellation [12], [32]. On
the other hand, the CRB for NDA SNR estimation is

CRB(ρ) =
J SDMF
NN + JMF

NN

JMF
ρρ (J SDMF

NN + JMF
NN )−

(
JMF
ρN

)2 , (24)

to be compared against the corresponding CRB when only the
K symbol-rate samples at the MF output are available:

CRBMF(ρ) =
JMF
NN

JMF
ρρJ

MF
NN −

(
JMF
ρN

)2 . (25)

In view of (23), the bounds (24)-(25) coincide if α = 0, as
for the DA case. As noted in [26], JMF

ρρ is independent of N ,
whereas JMF

ρN ∝ 1
N and JMF

NN ∝ 1
N2 . Thus, the noise power N

cancels out in (25) so that CRBMF emerges as a function of
ρ only. In view of (23), the same is true of the CRB in (24).

In general, the bounds (24)-(25) must be evaluated numer-
ically [26]-[28]. Next we consider several illustrative cases in
which closed-form expressions can be obtained.

A. Quadrature Phase-Shift Keying (QPSK) symbols

For i.i.d. symbols drawn from a QPSK constellation, the
CRB (25) has been derived in [24]. The {ρ,N} subblock of
the MF-based FIM can be written as[
JMF
ρρ JMF

ρN

JMF
Nρ JMF

NN

]
=

K

N2

[
N2

2ρ (1− g(ρ)) N
2 (1 + g(ρ))

N
2 (1 + g(ρ)) 1 + ρ

2 (1− g(ρ))

]
,

where

g(ρ) ,
e−ρ/2√

2π

∫ ∞
−∞

u2e−u
2/2

cosh(u
√
ρ)

du. (26)

From these and (24)-(25), one finds that

CRB(ρ) =
1

K

2(1 + α)ρ+ ρ2(1− g(ρ))

(1 + α)(1− g(ρ))− 2ρg(ρ)
, (27)

CRBMF(ρ) =
1

K

2ρ+ ρ2(1− g(ρ))

1− g(ρ)− 2ρg(ρ)
. (28)

Since limρ→∞ g(ρ) = 0, the NDA bounds (27) and (28) tend
to the corresponding DA bounds (18) and (19) respectively.
Thus, for QPSK in the NDA case, (20) also holds. On the other
hand, the third-order Taylor series approximation of g(ρ) about
ρ = 0 is g(ρ) ≈ 1 − 2ρ + 4ρ2 − 10ρ3. Using this, the CRBs
(27) and (28) are found to behave respectively as 1

K

(
1 + 1

α

)
and 1

Kρ2 for small ρ. Thus, in the low SNR regime, if excess
bandwidth is not exploited, then the bound deteriorates much
faster as ρ → 0. In contrast, in the DA case both bounds
behave as 2ρ

K for small ρ regardless of α, as seen in Sec. IV.

B. Gaussian symbols
Although symbols are always drawn from a discrete, finite

constellation in practice, the Gaussian distribution results in
the largest CRB [34], so it is of interest to derive such bound.
Thus, assume that a ∼ CN (0, IK). The carrier phase ψ cannot
be estimated with Gaussian symbols but, in any case, the CRB
for the estimation of {ρ,N} is not sensitive to the unknown ψ,
since these parameter sets are decoupled as observed earlier.

With Gaussian symbols, one has y ∼ CN (0, N(ρ+ 1)IK).
From the Slepian-Bangs formula, the MF-based FIM becomes[

JMF
ρρ JMF

ρN

JMF
Nρ JMF

NN

]
= K

[
1

(ρ+1)2
1

N(ρ+1)
1

N(ρ+1)
1
N2

]
, (29)

which is singular, due to the pdf of y depending on ρ, N
exclusively through (ρ+ 1)N : the pair {ρ,N} is not identifi-
able from the symbol-rate MF output, and thus CRBMF(ρ) =
∞. However, once we substitute JMF

NN = K
N2 in (29) by

JMF
NN + J SDMF

NN = K
N2 + Kα

N2 = (1+α)K
N2 , the FIM becomes

nonsingular and the CRB is readily obtained:

CRB(ρ) =
1

K

(
1 +

1

α

)
(ρ+ 1)2. (30)

For high SNR, (30) behaves as ρ2

K

(
1 + 1

α

)
, whereas the

corresponding bound (18) for the DA case behaves as ρ2

K
1

1+α .
Thus, in the high SNR region, the NDA-CRB for Gaussian
symbols is larger than the DA-CRB by a factor

(
2 + α+ 1

α

)
,

which is always larger than 4 (i.e., 6 dB). On the other
hand, for ρ � 1, the bound (30) goes to 1

K

(
1 + 1

α

)
, which

is the same value as for QPSK symbols (Sec. V-A). This
suggests that, in the low SNR region, knowledge about the
symbol constellation is not relevant as far as the NDA-CRB is
concerned. This issue will be further developed in Sec. V-C.

Maximizing the log-likelihood f(z|S,N) and using L =
αK, the ML estimates of N , S and ρ under the Gaussian
symbol assumption are readily found:

N̂ =
‖ȳ‖2

αK
, Ŝ =

‖y‖2

K
−N̂ , ρ̂ =

Ŝ

N̂
= α
‖y‖2

‖ȳ‖2
−1. (31)

Note that N̂ is obtained as the sample variance of the SDMF
output, without using y. The signal power is estimated by
subtracting N̂ from the sample variance of the MF output.
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C. CRB for Quadratically Constrained Estimators

The FIM for the general NDA estimation problem under the
constraint that estimators use only second-order statistics of the
data (i.e., quadratic functions of z) was developed in [35]. We
apply now those results to the SNR estimation problem.

Let a in (15) be a random vector of independent symbols
drawn from an arbitrary zero-mean, unit-variance distribution
with kurtosis k4 , E{|ak|4} − 2. The problem is that
of estimating {ρ,N} from quadratic transformations of the
observations, collected in vec

(
yyH

)
and vec

(
ȳȳH

)
. The

cross-terms vec
(
ȳyH

)
, vec

(
yȳH

)
are not considered since

they are zero-mean, due to statistical independence of y, ȳ.
Furthermore, the terms vec

(
yyT

)
, vec

(
ȳȳT

)
are zero-mean

as well in general3, and will not be taken into account either.
It turns out that the carrier phase is not identifiable by

quadratic schemes [35]. Nevertheless, the bounds for the
estimation of {ρ,N} are not affected by lack of knowledge
about ψ, analogously to the Gaussian case in Sec. V-B.

The global FIM is the sum of those based on vec
(
yyH

)
and

vec
(
ȳȳH

)
, since these terms are statistically independent. Let

us focus first on the FIM based on vec
(
yyH

)
alone, which

can be derived using [35, eq. (53)]:[
JMF
ρρ JMF

ρN

JMF
Nρ JMF

NN

]
=

[
∂mH

∂ρ Q
−1 ∂m

∂ρ
∂mH

∂ρ Q
−1 ∂m

∂N

∂mH

∂N Q−1 ∂m
∂ρ

∂mH

∂N Q−1 ∂m
∂N

]
, (32)

where m and Q are respectively the mean and covariance of
vec
(
yyH

)
, which can be computed using [35, eq. (34)]:

m , E
{

vec
(
yyH

)}
= (ρ+ 1)N vec (IK) , (33)

Q , E
{

vec
(
yyH

)
vecH

(
yyH

)}
−mmH

= (ρ+ 1)2N2IK2 + k4ρ
2N2 diag{vec(IK)}. (34)

After some algebra, (32) is found to be[
JMF
ρρ JMF

ρN

JMF
Nρ JMF

NN

]
=

K

(ρ+ 1)2 + ρ2k4

[
1 ρ+1

N
ρ+1
N

(ρ+1)2

N2

]
, (35)

which is singular, meaning that the SNR cannot be estimated
quadratically from the symbol-rate MF output samples, re-
gardless of the constellation; the SDMF output must be also
processed. The FIM based on vec

(
ȳȳH

)
is [35, eq. (53)]:[

J SDMF
ρρ J SDMF

ρN

J SDMF
Nρ J SDMF

NN

]
=

[
∂m̄H

∂ρ Q̄
−1 ∂m̄

∂ρ
∂m̄H

∂ρ Q̄
−1 ∂m̄

∂N

∂m̄H

∂N Q̄−1 ∂m̄
∂ρ

∂m̄H

∂N Q̄−1 ∂m̄
∂N

]
(36)

where now m̄ and Q̄ stand for the mean and covariance of
vec
(
ȳȳH

)
, which, using [35, eq. (34)], are found to be

m̄ , E
{

vec
(
ȳȳH

)}
= N vec(IL), (37)

Q̄ , E
{

vec
(
ȳȳH

)
vecH

(
ȳȳH

)}
− m̄m̄H = N2IL2 . (38)

Using (37)-(38), the only nonzero entry in (36) turns out to
be J SDMF

NN = αK
N2 . Hence, from the global FIM JMF + J SDMF the

CRB for quadratic SNR estimators is found:

CRB(ρ) =
1

K

(
1 +

1

α

)
(ρ+ 1)2 +

1

K
k4ρ

2, (39)

3Exceptions to this general rule can be found when using certain modulation
formats such as Binary Phase-Shift Keying (BPSK), offset QPSK (O-QPSK),
or Minimum Shift Keying (MSK), which will not be considered in this paper.
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Fig. 1. CRBs for SNR estimation under different models.

which reduces to (30) for Gaussian symbols (k4 = 0), since
second-order statistics convey all information under Gaussian
observations. In practice, constellations are sub-Gaussian (or
platykurtic), i.e., k4 < 0: the Gaussian symbols assumption
constitutes a "worst case" for quadratic estimators. Constant-
modulus (CM) constellations have the smallest possible kur-
tosis k4 = −1, yielding the lowest quadratic CRB (39). Note
that, as ρ→ 0, (39) approaches 1

K

(
1 + 1

α

)
, the same value as

for the unconstrained bounds for QPSK and Gaussian symbols.
The CRB (39) is achievable by practical quadratic esti-

mators. The following result applies to the Noise Subspace
Estimator (NSE) from [23], which was derived based on a
dual filter framework similar to the one presented in Sec. III:

ρ̂ =
‖y‖2

‖ỹ‖2
− 1. (40)

Lemma 6. Let G̃R(f) = P (f)D(f) with P (f) chosen as

P (f) =

 c
GT (f− 1

T )

D(f) , 1−α
2T < f < 1+α

2T ,

−cGT (f+ 1
T )

D(f) , − 1+α
2T < f < − 1−α

2T ,
(41)

and zero otherwise, with D(f) as in (10) and c a normalization
constant to ensure (11). Then, as K → ∞, the NSE (40)
approaches the ML estimator for Gaussian symbols (31), and
its asymptotic variance approaches the quadratic CRB (39).

Thus, with a suitable choice of the SDMF G̃R(f), the NSE
asymptotically becomes optimal among the class of quadratic
estimators, regardless of the symbol constellation. We remark
that under (41), the psd of the symbol-rate SDMF output
becomes flat within the rolloff band, which is the key for NSE
optimality (see Appendix E). Another feature of (40) is that
the colored SDMF output samples are directly incorporated in
the estimator, thus avoiding whitening steps such as (14).

VI. NUMERICAL EXAMPLES

Focusing on QPSK, Fig. 1 shows the normalized bound
NCRB(ρ) , CRB(ρ)/ρ2 for the two extreme cases α = 0
and α = 1. The following observations can be made:
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Fig. 2. CRBs for SNR estimation under different models with non-CM constellations: (a) 16-QAM, (b) 64-QAM

• For α = 0 (no excess bandwidth) the DA and NDA CRBs
coincide with the known MF-based bounds from [26]. Note
that for α = 0, the NDA CRBs corresponding to Gaussian
symbols (30) or to quadratic estimators (39) go to infinity,
and thus they are not depicted in Fig. 1.

• The DA bounds for α = 0 and α = 1 converge for low
SNR, so that in this regime the information contributed by
the SDMF output become less relevant. On the other hand,
in high SNR the availability of such samples results in a
sizable improvement of the CRB (of up to 3 dB for α = 1).

• The QPSK NDA bounds converge to their DA counterparts
in high SNR. This was observed in [26] for the MF-based
bounds (α = 0), and is as expected, since in this region
decision-directed operation becomes feasible.

• In low SNR, the NDA bounds for QPSK and Gaussian
symbols exploiting MF and SDMF output samples converge.
Hence, as the SNR goes to zero, knowledge about the con-
stellation becomes irrelevant for SNR estimation purposes.

• In high SNR, the NDA CRB for Gaussian symbols is larger
than that for QPSK (6 dB for α = 1). For multilevel
constellations (QAM, APSK) the NDA CRB will lie be-
tween those for QPSK and Gaussian symbols. As long as
the constellation is discrete, the NDA CRB will eventually
converge to the DA CRB if the SNR is sufficiently high.

• The quadratic constraint on NDA estimators degrades the
CRB in high SNR. With α = 1, this loss is up to 3 dB
for CM constellations, and will approach 6 dB for very
dense multilevel constellations. In low SNR, the quadratic
and unconstrained NDA bounds coincide.
Fig. 2 shows the bounds for 16- and 64-QAM. For these

non-CM constellations (with kurtoses k4 = −0.68 and −0.619
respectively), the gap in high SNR between the quadratic and
unconstrained NDA CRBs is larger than for QPSK (Fig. 1).
For low SNR these bounds still converge, indicating that in this
regime second-order statistics convey all relevant information
(as long as α > 0), regardless of the underlying constellation.

With denser constellations, the point at which the uncon-
strained NDA bounds touch their DA counterparts is progres-
sively shifted to higher SNR values. As a result, a "medium-
SNR" region opens up, over which the benefit of exploiting
the excess bandwidth becomes larger; for example, with 64-
QAM at 10 dB SNR the corresponding CRB is 6.6 and 10 dB
lower, for α = 0.3 and α = 1 respectively, than for α = 0.

VII. CONCLUSIONS

With the aid of the dual filter framework, it has been shown
that exploiting available excess bandwidth improves the CRB
for SNR estimation, in an amount that depends on the roll-off
factor in different ways for different bound types, and which
can be significant with non-CM constellations. The developed
bounds are independent of the auxiliary filter, as long as it
fullfils certain perfect reconstruction property ensuring that no
information about the analog signal is lost due to sampling.
The ML DA and optimal quadratic NDA estimators have also
been given. Although irrelevant for the derivation of bounds,
the fact that D(f) is not continuous at the band edges raises
implementation issues, which may be alleviated by appropriate
choice of P (f). Obtaining efficient estimators with practical
choices of P (f) is an open issue and the object of further
work; similar tradeoffs have been observed in [23].

APPENDIX

A. Proof of Lemma 1

Let Rww̃(τ) , E{w(t)w̃∗(t − τ)} and Rn(τ) ,
E{n(t)n∗(t−τ)}. Then Rww̃(τ) = Rn(τ)?g̃∗R(−τ)?gR(τ) =

Rn(τ) ? h̃∗(−τ) = h̃∗(−τ), where the last step follows
from the fact that gT (t), and therefore h̃∗(−t) as well, is
bandlimited to ± 1+α

2T , whereas the FT of Rn(τ) is Sn(f) = 1
for |f | ≤ 1+α

2T and 0 otherwise. Using the zero-crossing
property (4), it follows that E{wkw̃∗n} = Rww̃((k − n)T ) =
h̃∗((n− k)T ) = 0 for all k, n.
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B. Proof of Lemma 2
The requirements in (4) can be rewritten as

h̃(t)·
∑
n

δ(t−nT ) = 0 ⇔ 1

T

∑
n

H̃
(
f − n

T

)
= 0, (42)

where H̃(f) = GT (f)G̃R(f) is the FT of h̃(t), which
is bandlimited to ± 1+α

2T . By (42), H̃(f) must be zero for
|f | < 1−α

2T . In the roll-off band only two replicas overlap,
so that H̃(f) + H̃

(
f − 1

T

)
= 0 for 1−α

2T ≤ f ≤
1+α
2T , i.e.,

H̃
(
f − 1

2T

)
+ H̃

(
f + 1

2T

)
= 0, |f | ≤ α

2T . (43)

Let P (f) satisfy (8). Then it is readily seen that P (f)H̃(f) is
also a solution to (43). On the other hand, let H̃1(f), H̃2(f)
satisfy (43), with H̃2(f) 6= 0 for 1−α

2T ≤ f ≤
1+α
2T . Then let

P (f) =
H̃1(f)

H̃2(f)
, 1−α

2T ≤ f ≤
1+α
2T , (44)

so that H̃1(f) = P (f)H̃2(f) in the roll-off band. In addition,

0 = H̃1

(
f − 1

2T

)
+ H̃1

(
f + 1

2T

)
= P

(
f − 1

2T

)
H̃2

(
f − 1

2T

)
+ P

(
f + 1

2T

)
H̃2

(
f + 1

2T

)
=

[
P
(
f − 1

2T

)
− P

(
f + 1

2T

)]
H̃2

(
f − 1

2T

)
, (45)

for |f | ≤ α
2T , yielding P (f− 1

2T )−P (f+ 1
2T ) = 0, |f | ≤ α

2T .
Hence, all solutions to (43) can be written as H̃(f) =

P (f)H̃0(f) with P (f) satisfying (8) and H̃0(f) a particular
solution not vanishing in the roll-off band. Clearly, h̃0(t) ,
t·h(t) has zero crossings at the specified time instants t = nT ,
n ∈ Z, and it is readily checked that its FT

H̃0(f) = − 1

2π

dH(f)

df
= − 1

2π

d|GT (f)|2

df
(46)

is nonzero in 1−α
2T ≤ |f | ≤

1+α
2T for the considered pulses.

C. Proof of Lemma 3
Consider the reconstruction of r(t) by means of a pair of

synthesis filters c(t)↔ C(f), c̃(t)↔ C̃(f):

r̂(t) =
∑
k

y(kT )c(t− kT ) +
∑
k

ỹ(kT )c̃(t− kT ). (47)

Taking Fourier transforms,

R̂(f) =
1

T

[∑
n

GR
(
f − n

T

)
R
(
f − n

T

)]
C(f)

+
1

T

[∑
n

G̃R
(
f − n

T

)
R
(
f − n

T

)]
C̃(f). (48)

Since R(f) = 0 for |f | > 1+α
2T , we can rewrite (48) as

R̂(f) =
1

T

[
GR(f)C(f) + G̃R(f)C̃(f)

]
R(f)

+
1

T

[
GR

(
f − 1

T

)
C(f) + G̃R

(
f − 1

T

)
C̃(f)

]
×R

(
f − 1

T

)
, 0 < f ≤ 1+α

2T , (49)

R̂(f) =
1

T

[
GR(f)C(f) + G̃R(f)C̃(f)

]
R(f)

+
1

T

[
GR

(
f + 1

T

)
C(f) + G̃R

(
f + 1

T

)
C̃(f)

]
×R

(
f + 1

T

)
, − 1+α

2T ≤ f ≤ 0. (50)

Hence, it suffices to find synthesis filters satisfying[
GR(f) G̃R(f)

GR(f − 1
T ) G̃R(f − 1

T )

][
C(f)

C̃(f)

]
=

[
T
0

]
, f ∈ I+, (51)[

GR(f) G̃R(f)

GR(f + 1
T ) G̃R(f + 1

T )

][
C(f)

C̃(f)

]
=

[
T
0

]
, f ∈ I−, (52)

where I+ , [0, 1+α
2T ], I− , [− 1+α

2T , 0]. Assume that P (f) 6= 0
for all f in the roll-off band, and consider the filters

C(f) = GR(f), C̃(f) =

{
T−|GR(f)|2

G̃R(f)
, 1−α

2T ≤ |f | ≤
1+α
2T ,

0, otherwise.
(53)

Note that C̃(f) is well defined, since P (f) 6= 0 ⇒ G̃R(f) 6=
0 in the roll-off band. It can be readily shown that if P (f)
satisfies (8), then (53) constitutes a valid solution to (51)-(52);
the proof is straightforward and thus it is omitted for brevity.

Finally, if P (f1) = 0 for some f1 in the roll-off band, then
P (f1− 1

T ) = 0 from (8). Hence G̃R(f1) = G̃R(f1− 1
T ) = 0,

and the conditions (51) at f = f1 read as GR(f1)C(f1) = T ,
GR(f1 − 1

T )C(f1) = 0. But there exists no C(f1) satisfying
these, since GR(f1) 6= 0 and GR(f1 − 1

T ) 6= 0.

D. Proof of Lemma 4

One has E{w̃kw̃∗n} = Rw̃((k − n)T ), with Rw̃(τ) =
[g̃R(τ) ? g̃∗R(−τ)]↔ |G̃R(f)|2. Thus, the psd of {w̃k} is

Sw̃(e2πfT ) =
1

T

∑
n

∣∣∣G̃R (f − n

T

)∣∣∣2 . (54)

Note that |G̃R(f)|2 = 0 outside the roll-off band. Hence,

Sw̃(e2πfT ) = 0 for |f | < 1−α
2T . (55)

Let λ0, λ1,. . . , λK−1 be the eigenvalues of the K × K
autocorrelation matrix C̃ of the process {w̃k}. It is well
known [36], [37] that, since C̃ is Hermitian Toeplitz, these
eigenvalues can be approximated as K →∞ as follows:

λk → Sw̃(e
2πk
K ), 0 ≤ k ≤ K − 1. (56)

From (55) and (56) it follows that C̃ becomes rank deficient
for large K. Moreover, if we let L = rank C̃, i.e., the number
of nonzero eigenvalues, it is seen from (55) and the 2π-
periodicity of Sw̃(eω) that L

K →
α/T
1/T = α for K →∞.

E. Proof of Lemma 6

First we show that P (f) in (41) is a valid filter, i.e., it
satisfies (8). Note that for P (f) as in (41), one has

P
(
f ± 1

2T

)
= ±c

GT
(
f ∓ 1

2T

)
D
(
f ± 1

2T

) , |f | ≤ α
2T . (57)

To proceed, note that since GT (f) is bandlimited to ± 1+α
2T

and |GT (f)|2 is the spectrum of a Nyquist pulse, it holds that∣∣GT (f − 1
2T

)∣∣2+
∣∣GT (f + 1

2T

)∣∣2 = T, |f | ≤ α
2T . (58)

Recalling the definition of D(f) from (10), and since GT (f)
is real and nonnegative, taking derivatives in (58) one obtains
GT
(
f − 1

2T

)
D
(
f − 1

2T

)
+ GT

(
f + 1

2T

)
D
(
f + 1

2T

)
= 0
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for |f | ≤ α
2T , yielding (8) in view of (57); thus, the symbol-

rate sampled SDMF output blocks the signal component.
The next step is to find the psd Sw̃(e2πfT ) of w̃k, given

by (54). Note that for the chosen P (f) in (41),

G̃R(f) =


cGT (f − 1

T ), 1−α
2T < f < 1+α

2T ,

−cGT (f + 1
T ), − 1+α

2T < f < − 1−α
2T ,

0, otherwise.
(59)

Thus, only two replicas of |G̃R(f)|2 overlap in the rolloff
band, so that for 1−α

2T < f < 1+α
2T ,

Sw̃(e2πfT ) =
1

T

[
|G̃R(f)|2 +

∣∣∣G̃R (f − 1
T

)∣∣∣2]
=

c2

T

[∣∣GT (f − 1
T

)∣∣2 + |GT (f)|2
]

= c2, (60)

where the last step is due to the Nyquist property (58). On
the other hand, Sw̃(e2πfT ) is zero outside the roll-off band,
and since (11) amounts to 1

2π

∫ 2π

0
Sw̃(eω)dω = 1, it follows

that c2 = 1
α . Hence, the L = αK nonzero eigenvalues of C̃

are all equal (asymptotically) to 1
α , see (56), i.e., Λ̃ → 1

αIL
in the eigendecomposition C̃ = ŨΛ̃ŨH . From Lemma 5
and (14), ỹ = ŨΛ̃1/2ȳ = 1√

α
Ũ ȳ as K → ∞, and thus

‖ỹ‖2 = 1
α ȳ

HŨHŨ ȳ = 1
α‖ȳ‖

2. Substituting this in the NSE
(40), one obtains the ML estimator for Gaussian symbols (31).
The asymptotic variance of (40), given in [23, eq. (57)] (and
noting that the choice of P (f) in (41) yields γ = 1 in that
expression), is seen to coincide with the quadratic CRB (39).
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