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Abstract—We establish the generalized likelihood ratio (GLR)
test for a Gaussian signal of known power spectral shape and
unknown rank-one spatial signature in additive white Gaussian
noise with an unknown diagonal spatial correlation matrix. This
is motivated by spectrum sensing problems in dynamic spectrum
access (DSA), in which the temporal correlation of the primary
signal can be assumed known up to a scaling, and where the noise
is due to an uncalibrated receive array. For spatially independent
identically distributed (i.i.d.) noise, the corresponding GLR test
reduces to a scalar optimization problem, whereas the GLR
detector in the general non-i.i.d. case yields a more involved
expression, which can be computed via alternating optimization
methods. Low signal-to-noise ratio (SNR) approximations to the
detectors are given, together with an asymptotic analysis showing
the influence on detection performance of the signal power
spectrum and SNR distribution across antennas. Under spatial
rank-P conditions, we show that the rank-one GLR detectors are
consistent with a statistical criterion that maximizes the output
energy of a beamformer operating on filtered data. Simulation
results support our theoretical findings in that exploiting prior
knowledge on the signal power spectrum can result in significant
performance improvement.

Index Terms—GLRT, detection, spectrum sensing, cognitive
radio, multiple antenna, uncalibrated array.

I. INTRODUCTION

Array processing for signal detection and parameter esti-
mation has drawn great research interest, and a rich corpus of
techniques has been developed so far for scenarios in additive
Gaussian noise, e.g. [1]–[6]. Apart from some approaches
based on correlation matching for single-antenna receivers,
e.g. [7]–[10], most works do not assume prior knowledge on
the shape of the power spectral density (PSD) of the signal
of interest. In fact, the exploitation of an additional temporal
dimension on a sound statistical basis leads to substantial
difficulties if exact expressions are sought. For instance, [11]
relied on a low signal-to-noise ratio (SNR) approximation to
the Neyman-Pearson detector to obtain practical detectors for
spatially rank-one signals under spatially white noise of known
variance, whereas [12] derived the exact generalized likelihood
ratio test (GLRT) under spatially unstructured noise with an
unknown spatial correlation matrix. In this work, we obtain
the exact GLRT for the detection of signals with a known
PSD shape and spatial rank one in spatially structured noise.
Specifically, we assume an unknown diagonal form for the
noise spatial correlation matrix, either with equal diagonal el-
ements (calibrated receiver) or possibly different (uncalibrated
receiver). The mathematical approach proves substantially
different from that in [11] when aiming at unknown instead
of known per-antenna noise variances, together with exact
all-SNR rather than approximate low-SNR detectors. With
respect to [12], considering an unknown diagonal form for
the noise spatial correlations leads to fundamental differences

in terms of approach, structure of the detector and improved
performance.

The model under study emerges in the context of dynamic
spectrum access (DSA) in licensed bands [13], [14]. DSA
seeks a more efficient usage of the available spectrum by
allowing access of unlicensed (secondary) users while limiting
interference to licensed (primary) users. This requires sec-
ondary users to have spectrum sensing capabilities [1] as well
as access policies [15] for exploiting spectrum holes. Important
effects such as large/small-scale fading, the hidden node
problem, noise uncertainty, low SNR operation, etc., appear
in the design and analysis of suitable detection schemes, and
may be tackled, albeit with different effectivity, via cooperative
detection (with limited data exchanges between sensors) and
multiantenna detection (with centralized access to all data
samples).

Focusing on the latter, multiantenna detection research has
exploited different aspects: (i) low-rank spatial correlation
matrix of the primary signal; (ii) noise spatial correlation
structure; (iii) other signal features, which may be regarded
as random, unknown deterministic, or known. The abundance
of scenarios subject to parameter uncertainties has resulted in
widespread application of the GLRT to avoid detector degra-
dation. Detection of spatially rank-one unknown deterministic
signals is addressed in [16] and [17] under spatially i.i.d. noise
of unknown variance, and in [2] for uncalibrated receivers. For
random signals the rank-one case is examined in [4], [18] for
signals with a white spectrum, and in [11], [12] for known
temporal correlation. Wideband rank-one signal detection is
treated in [19] under spatially uncorrelated noise.

Our scenario of interest is the co-existence of secondary
users equipped with multiantenna transceivers and a primary
network using frequency-division multiple access, i.e., split-
ting its allocated bandwidth into a number of low-bandwidth
frequency channels. The secondary users perform frequency
scanning by tuning into each possible primary channel to
detect idle frequency slots for transmission. Over each specific
frequency slot, the delay spread is much lower than the symbol
period, so that the channel from the primary transmitter to
each secondary user antenna can be regarded as flat-fading.
The primary transmitter is equipped with a single antenna,
and a spatial rank-one signal model naturally emerges at the
secondary multiantenna receiver. As we shall see, detectors
derived under this model correspond to beamformers steered
to collect the maximum energy from the spatial components of
the received signal, and hence they are robust to signals with
spatial rank larger than one. In fact, the information on the
power spectral shape is employed for spectral weighting of the
received data at the input to the beamformer when computing
the corresponding sample spatial correlation matrix. It is worth
noting that several GLR detectors have also been derived in
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[20] for signals with spatial rank P ≥ 1 in spatially white noise
of known and unknown variance. These detectors, though, do
not exploit prior knowledge on the power spectral shape.

We intend to derive detectors applicable to a broad class
of signals, which: (i) capture essential features of the signal
model, rather than rely on detailed specificities of the mod-
ulation used; (ii) nonetheless attain good performance over
this class; and (iii) are computationally feasible. Additionally,
we seek to exploit a fundamental feature of communication
signals, the power spectral density (PSD). In the described
scenario, the normalized PSD or emission mask of primary
signals is publicly known and it can be assumed available to
the spectral monitor. The primary signal PSD is in fact related
to the temporal correlation matrix of the signal, while it does
not depend on the complementary non-zero correlations exhib-
ited by improper (non-circularly-symmetric) signals. Hence,
and without precluding other approaches, both signal and
noise are assumed zero-mean complex circularly-symmetric
Gaussian. Altogether, the detectors derived under this model
achieve the conditions (i)-(iii) even if the signal is non-
Gaussian and/or improper, as will be shown via simulations.

At reception, tolerances in the components of the different
radio-frequency (RF) chains originate different per-antenna
noise power levels. In fact, several reported detectors are sensi-
tive to these calibration errors [6]. Here, we consider scenarios
in which the noise is spatially white (calibrated receiver), or
possibly has distinct noise levels at each antenna (uncalibrated
receiver). When the noise is independent identically distributed
(i.i.d.), the GLRT boils down to a scalar optimization problem,
whereas for spatially non-i.i.d. noise, a more involved process
is required. In the low-SNR regime the GLRT is expressed in
closed-form under both models, and it is shown to yield the
exact all-SNR GLRT under certain conditions.

Although our main motivation is rooted in DSA scenarios,
the detectors discussed in this paper may find application in
other areas as well. For example, in passive radar systems,
target detection exploits readily available, non-cooperative
illuminators of opportunity such as broadcast radio or televi-
sion transmissions [21]–[23]. In such systems, the transmitted
signal is out of control and generally unknown to a passive re-
ceiver, and a noisy reference may or may not be available [24],
[25]. However, the normalized PSD of the transmitted signal
may be known, and it would make sense to exploit this feature
to improve detection. At the same time, noise calibration issues
become important as well in passive radar systems.

Organization: Sec. II introduces the signal model and the
problem formulation. In Sec. III we derive the GLR detectors
under both noise models and we address their asymptotic
performance analysis in Sec. IV. The GLR detectors are
particularized under certain signal models in Sec. V. Sec. VI
presents comparative simulation results and Sec. VII concludes
the paper.

Notation: Bold lower-/upper-case denote vectors/matrices.
A∗, AT , AH and A−1 stand for the conjugate, transpose,
conjugate transpose and inverse of matrix A. In and 0n×m

are the n× n identity and n×m zero matrices. The reduced
Singular Value Decomposition (SVD) of rank-r A ∈ Cn×m

is A = USV H , with U ∈ Cn×r,V ∈ Cm×r semi-unitary

and S ∈ Cr×r diagonal positive-definite. ⊗ is Kronecker’s
product and tr(·), det(·) the trace and determinant. For vec-
tor x, diag(x) is its associated diagonal matrix; for matrix
X, diag(X) is a diagonal matrix with diagonal that of X.
λmax[A] and emax[A] (resp. λmin[A] and emin[A]) denote the
maximum (resp. minimum) eigenvalue of A and its associated
eigenvector. E[·] is the statistical expectation, log is base-e
logarithm, o(·) Landau’s small-o, and [x]+

.
= max{0, x}.

II. PROBLEM FORMULATION

The sensor has M antennas with their respective RF
chains. The same primary channel is selected at all anten-
nas, downconverted to baseband and its I&Q channels are
sampled at rate fs = 1/Ts. The M complex samples at
time kTs are arranged into the vector yk = skh + nk,
with h

.
= [h1, · · · , hM ]T the vector of complex channel gain

coefficients, sk
.
= s(kTs) the transmitted baseband signal

sample, and nk
.
= [n1(kTs), · · · , nM (kTs)]

T the received
complex noise vector. Using Kronecker’s product, we stack N
consecutive array snapshots yk to express the received signal,

y = s⊗ h+ n, (1)

with s
.
= [s1, · · · , sN ]T the temporal transmitted signal vector

and y
.
= [yT

1 , · · · ,yT
N ]T and n

.
= [nT

1 , · · · ,nT
N ]T the received

signal and noise stacked vectors, respectively. This model
assumes that over the RF channel bandwidth the channel from
the primary transmitter to the spectrum monitor is frequency-
flat and static during a sensing interval of duration NTs.
Following [26], it is also assumed that no secondary users
transmit during the sensing period.

Both s and n are assumed zero-mean complex circularly-
symmetric and Gaussian. The Gaussianity assumption is
a common one [27]–[29] and usually leads to estima-
tors/detectors that operate on sufficient statistics which happen
to be sample moments of the data y [30], [31] (more precisely,
proper sample moments under the circular symmetry assump-
tion). For specific signal types such as Orthogonal Frequency
Division Multiplexing (OFDM), the Gaussianity assumption
constitutes a good approximation if the number of subcarriers
is large. Moreover, it has been shown that, at low SNR, a
Gaussian distribution with second-order moments matching
those of the true distribution is a valid approach for exploiting
correlation features in certain estimation problems [31].

We let C .
= E

[
ssH

]
denote the N×N temporal correlation

matrix of the primary signal with normalized trace 1
N trC =

1. This matrix is directly related to the primary signal PSD
Ps(f), which is assumed known to the spectral monitor as
motivated in Section I. In fact, if we let C = UΛUH be an
eigendecomposition of C with Λ = diag

(
[λ0 λ1 · · · λN−1]

T
)

and U N ×N unitary, then it is well known [32], [33] that as
N →∞ the matrix of eigenvectors U approaches the N ×N
orthonormal inverse discrete Fourier transform (IDFT) matrix,
whereas the eigenvalues satisfy

λk → Ps(k/N), 0 ≤ k ≤ N − 1. (2)

The normalization 1
N tr(C) = 1 implies that

∫ 1

0
Ps(f)df = 1.
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The noise n is modeled as temporally white Gaussian,
statistically independent of s. The M ×M spatial correlation
matrix of the noise process is denoted as Σ2 .

= E
[
nkn

H
k

]
.

Then, the MN ×MN data covariance matrix becomes

Ry
.
= E

[
yyH

]
= IN ⊗Σ2 +C⊗ hhH . (3)

Although estimating noise power at each antenna in an initial
calibration stage is feasible in the absence of interference,
noise uncertainty is unavoidable due to calibration errors,
temperature drifts or component aging. This effect is manifest
in terms of an SNR wall [34], below which detection degrades,
regardless of the duration of the sensing interval. In this
respect, it is of interest to develop detectors that do not require
precise knowledge of the noise spatial correlation matrix Σ2.

We will conduct a comparative analysis under the following
models for Σ2:

• Model 1: Calibrated system with equal noise powers at
each of the antennas. This system corresponds to spatially
i.i.d. (or spatially white) noise, i.e.,

Σ2 = σ2IM . (4)

This model was considered in [11] under the assumption
of a known noise variance σ2, and in [4] for C = IN
(temporally white signal) and σ2 unknown.

• Model 2: System with uncalibrated RF front-ends or
when receiver antennas are not co-located. This system
corresponds to spatially uncorrelated noise and it is
modeled by Σ2 being a diagonal matrix, i.e.,

Σ2 = diag
(
[σ2

1 , . . . , σ
2
M ]T

)
. (5)

This model was considered in [3], [6] for C = IN .
• Model 3: Spatially correlated noise or broadband in-

terference (Σ2 an arbitrary full-rank positive definite
matrix). This model has been treated in [12] and will be
used here only in comparison with the previous models.

From the Gaussian assumption, the parametrized probability
density function (p.d.f.) of the data in terms of the covariance
matrix Ry is expressed as follows, with the dependence on
the unknown parameters h and Σ2 implicit in Ry as in (3),

f(y |Ry) =
exp

(
−yHR−1

y y
)

πMN detRy
, (6)

Our problem is to determine the presence or absence of the
signal from an observation y. The corresponding hypothesis
test can be written in terms of the covariance matrix Ry as

H0 : Ry = IN ⊗Σ2 .
= R0, (7)

H1 : Ry = IN ⊗Σ2 +C⊗ hhH .
= R1. (8)

Since h and Σ2 are unknown, a sensible approach is the
GLRT. In the GLRT, the unknown parameters in the likelihood
ratio are substituted by their Maximum Likelihood (ML)
estimates under each hypothesis, yielding

T
.
=

maxR1 f(y |R1)

maxR0 f(y |R0)

H1

≷
H0

γ, (9)

for a suitable threshold γ > 1. This test will be established
under Models 1, 2 and 3 for Σ2. Note that Σ2 under model m

subsumes Σ2 under models m′ < m. Hence, its corresponding
detector will be capable to operate under the previous noise
models (although with possibly different performance).

III. GLR DETECTORS

To derive the ML estimates under both hypotheses, we will
first find an alternative expression for the log-likelihood,

log f(y |Ry) = −yHR−1
y y −MN log π − log detRy.

(10)

We will operate only with Ry = R1 under H1, as, setting
h = 0M , yields the corresponding expressions under H0.

Using a generalization of Sylvester’s determinant identity
to Kronecker products [35], in view of (3), we can rewrite the
determinant term in (10) as

log detRy = N log det
(
Σ2
)
+ log det(IN + ρC), (11)

where the parameter ρ .
= hHΣ−2h corresponds to the SNR at

the output of the Capon beamformer w .
= Σ−2h when signal

s is unit-power. The inverse of the received signal covariance
matrix can also be written as [12],

R−1
y = IN ⊗Σ−2 −C(ρ)⊗

(
Σ−2hhHΣ−2

)
, (12)

C(ρ)
.
= C(IN + ρC)−1. (13)

Then, using tr(ATBHCD) = vec(B)H(A ⊗ C) vec(D),
straightforward algebra yields,

yHR−1
1 y

= tr
(
Σ−2YYH

)
− tr

(
Σ−2hhHΣ−2YC∗(ρ)YH

)
, (14)

with Y
.
=
[
y1 · · · yN

]
the M × N received data matrix.

Substituting (11) and (14), the log-likelihood (10) becomes,

log f(Y |h,Σ2)

= −MN log π −N log detΣ2 − log det(IN + ρC)

− tr
(
Σ−2YYH

)
+ tr

(
Σ−2hhHΣ−2YC∗(ρ)YH

)
, (15)

where ρ depends on h and Σ2 as ρ = hHΣ−2h. We next
optimize this expression under H0 and H1 to obtain the GLRT
for each of the three models described in Section II.

A. Spatially white noise (Model 1)

First, assume that the noise is i.i.d., that is, Σ2 is a scaled
version of the identity matrix (Section II, Model 1). The next
result shows that the normalized data matrix,

Ȳ
.
=
(
tr
(
YYH

))−1/2
Y, (16)

is a sufficient statistic for GLR detection under this model.
Theorem 1 (GLRT under Model 1): The GLR test statistic

under spatially white (sw) noise, i.e., when Σ2 = σ2IM , is

Tsw = max
ρ≥0

tsw(ρ), (17)

tsw(ρ)
.
=

(
1− ρλmax

(
ȲC∗(ρ)ȲH

))−MN

det(IN + ρC)
. (18)

Proof: See Appendix A-1.
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The value of ρ maximizing tsw(ρ) cannot be expressed in
closed form, except in certain cases. For white primary signals
(those with uniform power spectrum Ps(f) = 1), we may
set C = IN , so that (17) is equivalent to the test statistic
λmax(ȲȲH) = λmax(YYH)

tr(YYH)
, and we recover the result in [4].

In the low-SNR regime, we may derive a GLR detector
equivalent to (17) by considering the first coefficient of the
Taylor series expansion of log tsw(ρ) as ρ → 0+. In Ap-
pendix A-2 it is shown that Tsw yields the following equivalent
low-SNR closed-form test statistic,

Λlow
sw

.
= max

{
0, lim

ρ→0+

1

ρ
log tsw(ρ)

}
(19)

=
[
NMλmax

(
ȲC∗ȲH

)
− trC∗ ]+ . (20)

Note that Λlow
sw does not depend on ρ, as desired.

Let us now assume that the secondary user receives P > 1
distinct signal components si with spatial signature hi each.
We may therefore express the data matrix Y as follows,

Y =
P∑
i=1

his
T
i +N = HST +N, (21)

with H
.
= [h1, · · · ,hP ], S

.
= [s1, · · · , sP ] and noise matrix

N
.
= [n1, · · · ,nL]. We will refer to (21) as a signal model

with spatial rank P if the M ×N matrix HST has row rank
P (or simply rank P , as, typically, we have that N >> M ).

The low-SNR detector Λlow
sw in (20) may be expressed as an

optimization over a beamforming vector w,

Λlow
sw =

[
NM max

w

wHȲC∗ȲHw

wHw
− trC∗

]+
. (22)

Thus, even under spatial rank P > 1 for the primary signal,
Λlow

sw operates as a robust optimization criterion (i.e., without
knowledge of P ) by which the beamformer w is steered to
collect the maximum energy from the spatial components of
the normalized, time-filtered data matrix ȲC∗1/2.

The low-SNR GRLT for P = 1, Λlow
sw , appears as a

correlation-matching multiantenna detector based on a statis-
tical optimization criterion different from those in [7] (single-
antenna non-GLR detectors for multiband signals) and [8]
(single-antenna sub-Nyquist-sampling non-GLR detectors for
sparse multiband signals). Both [7] and [8] explore alternative
Frobenius and geodetic distance measures between correla-
tion matrices. Max-eigenvalue-type detectors based on energy
combination as in (22) have also been derived in [36] for rank
P ≥ 1 signals in spatially i.i.d. noise. In particular, for C = IN
and setting L = 1 in [36], the BCED test in [36] and Λlow

sw
coincide, which attests to the applicability of Λlow

sw even under
spatial rank P > 1. Simulations in Section VI-E will confirm
this.

B. Spatially uncorrelated noise (Model 2)

When the noise is assumed independent across antennas,
but not identically distributed, Σ2 is modeled as an arbitrary
positive-definite diagonal matrix (Section II, Model 2). In this
case, the derivation of the GLRT is more involved and cannot
be reduced to a simple scalar optimization problem.

Let D2 denote the diagonal component of the sample
correlation matrix 1

NYYH , i.e.,

D2 .
= 1

N diag
(
YYH

)
. (23)

Under H0, h = 0 and the ML estimate of the noise covariance
Σ2 is just D2. Substituting h = 0 and Σ2 = D2 in (15), we
obtain the compressed log-likelihood

ℓ0
.
= −MN log π −N log detD2 −MN. (24)

To find the ML estimates underH1, instead of the parameter
space Ω = {Σ,h}, we find it useful to define a new one
Ω′ = {T,v, ρ}, with ρ = hHΣ−2h as before, and

T
.
= DΣ−1, (25)

v
.
= v/∥v∥, v

.
= DΣ−2h. (26)

We easily check that ∥v∥2 = ρ
vHT−2v

. The mapping ω : Ω→
Ω′ is bijective. Its inverse mapping ω−1 : Ω′ → Ω is given by

Σ = DT−1 , h =

√
ρ

vHT−2v
T−2Dv. (27)

Hence, it is equivalent to optimize the log-likelihood either
over Ω or over Ω′. This fact will allow us to derive explicit
expressions for the ML estimates under hypothesis H1.

Let us define the normalized data matrix,

Ỹ
.
= D−1Y. (28)

Using (27) and (28) we express (15) in the new space Ω′,

log f
(
Ỹ |T,v, ρ

)
= −MN log π

+N log det
(
D−2T2

)
− log det(IN + ρC)

−N tr
(
T2
)
+

ρ

vHT−2v
tr
(
vHỸC∗(ρ)ỸHv

)
. (29)

Using (24) and (29), we write the log-likelihood ratio as

Λ
(
Ỹ |T,v, ρ

) .
= log f

(
Ỹ |T,v, ρ

)
− ℓ0 (30)

= − log det(IN + ρC)

+N

(
log det

(
T2
)
− tr

(
T2
)
+M +

β(v, ρ)

vHT−2v

)
, (31)

where we defined

β(v, ρ)
.
=

ρ

N
vHỸC∗(ρ)ỸHv. (32)

The next result provides the expression for the matrix T
maximizing (31) in terms of v and ρ.

Proposition 1: Let T(v, ρ) = diag [t1, . . . , tM ] maximize
(31) for v and ρ given. Then,

t2i = 1
2

(
1 +

√
1 + |vi|2q2

(√
β(v, ρ)

))
, (33)

where q(τ) is the inverse of the function

τ(q)
.
=

M∑
i=1

√
1 + q2|vi|2 − 1

q
=

M∑
i=1

q|vi|2

1 +
√
1 + q2|vi|2

,

(34)

for a given v. Moreover, for T = T(v, ρ) it holds that

β(v, ρ)

vHT−2v
= tr

(
T2
)
−M. (35)
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Algorithm 1 Alternating optimization algorithm to approxi-
mate Tsu in (36). Parameter δ indicates stop criterion.

1) Initialize k ← 0, T0 ← IM , T (0)
su ← 1.

2) For T = Tk maximize (31) with respect to {v, ρ}.
We obtain

ρk+1 = argmax
ρ≥0

{
ρλmax

(
TkỸC∗(ρ)ỸHTk

)
− log det(IN + ρC)

}
. (⋆)

and, for emax the eigenvector associated to λmax in (⋆)

vk+1 = Tkemax

/
∥Tkemax∥.

3) Set k ← k + 1; compute Tk = T(ρk,vk) (Propos. 1).
4) Update objective: T (k)

su = detN
(
T2

k

)
/det (IN + ρkC). If

T (k)
su −T (k−1)

su

T
(k)
su

≤ δ, set Tsu ← T
(k)
su and finish.

Otherwise, go back to step 2).

Proof: See Appendix B-1.
Using (35) in (31) yields Theorem 2, which expresses the

GLRT in terms of the compressed space Ω′
− = {v, ρ}.

Theorem 2 (GLRT under Model 2): The GLR test statistic
under spatially uncorrelated (su) noise, is given by the fol-
lowing optimization problem over the parameters {v, ρ},

Tsu = max
ρ≥0,∥v∥=1

tsu(v, ρ), (36)

tsu(v, ρ)
.
=

detN [T2(v, ρ)]

det (IN + ρC)
. (37)

where T(v, ρ) depends on v, ρ as stated in Proposition 1.
To compute Tsu in (36), one must solve a joint optimization

problem over v and ρ. Since tsu(v, ρ) is non-convex, the
optimization in (36) cannot be solved in closed form in
general. Instead, Algorithm 1 proposes an iterative procedure
to approximate (36), whereby we sequentially maximize (31)
over {v, ρ} with T fixed, and then over T with {v, ρ}
fixed. Since at each step the objective (31) cannot decrease,
this alternating optimization scheme converges to a stationary
point. While it is not guaranteed that the global maximum in
(36) is attained, Algorithm 1 performs well in practice under
several system models as will be shown in Section VI.

Analogously to the derivation of (20), Theorem 2 yields the
following equivalent low-SNR test (see Appendix B-2),

Λlow
su

.
=
[
λmax

(
ỸC∗ỸH

)
− trC∗

]+
. (38)

Setting C = IN in (38) and discarding irrelevant terms, the
low-SNR detector λmax

(
ỸỸH

)
= λmax

(
D−1YYHD−1

)
derived in [6] for temporally white primary signals is recov-
ered. Other particular scenarios in which the detector Tsu can
be simplified will be discussed in Section V. Under spatial
rank P > 1, analogous considerations to those after (22) apply.

C. Spatially correlated noise (Model 3)

When Σ2 is an arbitrary full-rank positive definite matrix
(Section II, Model 3), the corresponding GLRT is given in
[12] and is included next for comparison purposes.

Theorem 3 (GLRT under Model 3): Let Y = USVH be
the reduced SVD of the data matrix Y. The GLR test statistic
under spatially correlated (sc) noise, i.e., when Σ2 is assumed
arbitrary full-rank positive definite, is

Tsc = max
ρ≥0

tsc(ρ), (39)

tsc(ρ)
.
=

(
1− ρλmax

(
VHC∗(ρ)V

))−N

det(IN + ρC)
. (40)

In the low-SNR regime, Theorem 3 yields the following
equivalent closed-form test statistic

Λlow
sc =

[
Nλmax

(
VHC∗V

)
− tr(C∗)

]+
. (41)

Note that, as was observed in [12], when C = IN the test
statistic Λlow

sc evaluates to a constant, independently of the
semi-unitary data matrix V. This is due to the unknown full-
rank (unstructured) spatial correlation matrix assumed for the
additive white noise. Hence, if the signal is also assumed
white (i.e. C = IN ), it becomes indistinguishable from noise.
Nevertheless, the detectors under Models 1 and 2, assume a
spatial structure for the noise correlations and can operate even
when a white spectrum for the primary signal is considered.

D. Frequency domain interpretation

Note that in the computation of the test statistics Tsw, Tsu
and Tsc, the data enters in the form ZC∗(ρ)ZH , where Z is
an appropriately normalized M × N data matrix (either Ȳ,
Ỹ or VH ). Using the eigendecomposition C = UΛUH , it is
seen that C(ρ) = UΛ(ρ)UH , with Λ(ρ)

.
= Λ(IN + ρΛ)−1.

Writing Z row-wise as Z = [ z1 · · · zM ]T , the (i, j) el-
ement of ZC∗(ρ)ZH is zHj C(ρ)zi = (UHzj)

HΛ(ρ)(UHzi).
Asymptotically as N → ∞, this can be seen as a spectrally
weighted frequency-domain crosscorrelation between the out-
puts of the i-th and j-th normalized data streams, since UHzi
approaches the N -point DFT of zi. From (2), the spectral
weights in Λ(ρ) approach the values of Ps(f)

1+ρPs(f)
at f = k

N .
In the low SNR regime, these spectral weights are given by
the sampled values of the PSD Ps(f), as evidenced in the
corresponding statistics Λsw, Λsu and Λsc.

With this view, it is clear that ZC∗(ρ)ZH can be efficiently
computed for large N by fast Fourier transform (FFT) tech-
niques. As discussed in [20], even for moderate values of N
the performance loss of this approach is negligible.

IV. PERFORMANCE ANALYSIS

For a test statistic T and threshold γ in (9), the detection
and false-alarm probabilities are respectively given by

PD = Pr
{
T > γ

∣∣ H1

}
, PFA = Pr

{
T > γ

∣∣ H0

}
. (42)

For the tests in Section III, PD and PFA in (42) can be
approximated for sufficiently large N , using the asymptotic
distribution of a GLR statistic TGLR which, under suitable
conditions [27], is given by

2 log TGLR
under H0∼ χ2

r, 2 log TGLR
under H1∼ χ′2

r (α), (43)
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with χ2
r and χ′2

r (α) respectively the central and noncentral
chi-square distributions with r degrees of freedom, and non-
centrality parameter α. The number of degrees of freedom r is
given by the number of real parameters known under H0 and
unknown underH1. In the three models presented, r = 2M−1
as the p.d.f. under H1 differs from that under H0 only in hhH ,
i.e., 2M real components of h minus one degree of freedom
to account for the invariance to a complex rotation ejθh.

The noncentrality parameter α under each noise model can
be computed as α = E

[
2 log TGLR

∣∣H1

]
. Let “→” denote

convergence as N → ∞. The asymptotic values of α are
derived in Appendix A-3 (Model 1), in Appendix B-3 (Model
2) and in [12, Eq. 74] (Model 3), and yield, respectively,

αsw → 2N log

(
1 + ρ

M

)M
det(IN + ρC)

1
N

, (44)

αsu → 2N log

∏M
i=1 (1 + ρi)

det(IN + ρC)
1
N

, (45)

αsc → 2N log
1 + ρ

det(IN + ρC)
1
N

, (46)

where ρ = hHΣ−2h denotes the (true) overall SNR and ρi
.
=

|hi|2
σ2
i

the SNR at the i-th antenna, i = 1, . . . ,M .
If the spectrum of the signal of interest s(t) does not contain

spectral lines, an equivalent expression can be found in terms
of its PSD Ps(f). We define the spectral uniformity and spatial
selectivity coefficients, respectively, as,

ξt
.
=

(∫ 1

0

P 2
s (f)df

)−1

, ξs
.
=

M∑
i=1

(
ρi
ρ

)2

(47)

with 0 < ξt ≤ 1 (maximum achieved for a white spectrum
Ps(f) = 1) and 1

M ≤ ξs ≤ 1 (minimum achieved for
a uniform SNR profile ρ1≤i≤M = ρ

M , and maximum for
ρm = ρ, ρi̸=m = 0).

We denote convergence as ρ→ 0+ by “ 0−→ ”. For small x
it follows that log(1+x) = x− 1

2x
2+o(x2). Then, using (2),

from (44)-(46) we obtain

αsw → 2N

∫ 1

0

log

(
1 + 1

M ρ
)M

1 + ρPs(f)
df

0−→ ρ2N

ξt

(
1− ξt

M

)
,

(48)

αsu → 2N

∫ 1

0

log

∏M
i=1(1 + ρi)

1 + ρPs(f)
df

0−→ ρ2N

ξt
(1− ξtξs) ,

(49)

αsc → 2N

∫ 1

0

log
1 + ρ

1 + ρPs(f)
df

0−→ ρ2N

ξt
(1− ξt) ,

(50)

where we note the trade-off between ρ and N in terms of the
common factor ρ2N . Then, from the convexity of log(·) and
Jensen’s inequality,

αsw ≥ αsu ≥ αsc (M > 1) , αsw = αsu = αsc (M = 1).
(51)

This ordering appeals to intuition as, for the same Ps(f) and
ρ, tests under Models 1 to 3 progressively need to estimate
more parameters from the same amount of data. For M = 1,
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Fig. 1. Asymptotic (solid) and empirical (dashed) probabilities of false-alarm
PFA and misdetection PMD = 1 − PD vs. threshold for (a) Tsw, (b) Tsu
and (c) Tsc. Gaussian primary signal with binary PSD, spatially i.i.d. noise,
M = 2, N = 256, ρ = −4.5 dB. The distribution of 2 log Tsu under H1

has been averaged over channel realizations.

the spatial correlation structure under all three noise models is
identical, and the performance of the three detectors coincide.

For a white spectrum Ps(f) = 1, i.e. ξt = 1, the detector
Tsc under spatially correlated noise (Model 3) collapses, and
αsc = 0. However, for M > 1, detectors Tsw and Tsu do not.
This is due to the spatial correlation structure of the noise,
which is distinguishable from that of the signal of interest
under Models 1 and 2.

While (43) is an asymptotic result, it approximates well
the true statistics of the tests even for moderate sample sizes.
Fig. 1 compares the analytical and empirical distributions of
the three detectors1 for a Gaussian primary signal with binary
PSD occupying half of the bandwidth. We observe a good
match between the analytical and empirical distributions for a
sample size as small as N = 128.

V. SOME PARTICULAR CASES

In some scenarios, the GLR tests derived in Section III adopt
a simpler form. In this section we particularize these tests (i)
for the single antenna case, (ii) under different per-antenna
SNR profiles, and (iii) for specific covariance matrices of the
primary signal. Table I lists the GLR detectors under the three
noise models, both for the all-SNR and low-SNR regimes. The
parameters of the detectors obtained under a white or binary
PSD (henceforth binary PSD) are summarized in Table II.

A. Single Antenna

The performance of the GLR detectors under Models 1, 2
and 3, as shown in Section IV, coincide for M = 1. Particular-
izing these detectors using Ȳ = Ỹ/N = VH = yT /

√
yHy

1For implementation details, see Section VI.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSP.2016.2601290

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



7

shows that they are indeed the same. In particular, defining
ȳ

.
= y/

√
yHy, the single antenna GLRT becomes,

T1
.
= max

ρ≥0
t1(ρ), (52)

t1(ρ)
.
=

(
1− ρȳTC∗(ρ)ȳ∗)−N

det(IN + ρC)
=

(
ȳH(IN + ρC)−1ȳ

)−N

det(IN + ρC)
.

(53)

In the low SNR regime (52)-(53) yields

Λlow
1 =

[
N

yHCy

yHy
− tr(C)

]+
. (54)

B. Particular per-antenna SNR profiles

Consider the spatially uncorrelated noise model (Section II,
Model 2). We shall particularize the detectors Tsu and its
low-SNR equivalent form Λlow

su for different per-antenna SNR
profiles. We proceed first with an auxiliary result.

Consider the per-antenna SNR vector ρ .
= [ρ1, . . . , ρM ]T ,

with ρi =
|hi|2
σ2
i

. Using (27), it follows that

ρi =
|hi|2

σ2
i

= ρ
t−2
i |vi|2∑M

i=1 t
−2
i |vi|2

. (55)

We seek to relate ρi to |vi|2 in terms of β(v, ρ) only. The
denominator in (55) can be obtained2 from (95) in Appendix
B-1 as

∑M
i=1 t

−2
i |vi|2 = 2

√
β(v, ρ)/q

(√
β(v, ρ)

)
. Addition-

ally, from Proposition 1, we substitute t2i in (33) into (55),
which allows to relate ρi to |vi|2 as follows,

ρi =
q
(√

β(v, ρ)
)√

β(v, ρ)

ρ|vi|2

1 +
√
1 + |vi|2q2

(√
β(v, ρ)

) . (56)

We next study three particular scenarios in which Tsu and
Λlow

su adopt a simple expression.
1) Single active antenna: Assume that the per-antenna SNR

profile follows a delta distribution in which all but the i-th
antenna have zero SNR, with i unknown, i.e., ρ = ρδi with
δi the i-th pinning vector. Our purpose herein is to show that
this particular SNR distribution model, although unlikely in a
scenario of co-located antennas, is naturally associated with
a GLR detector based on selection combining, a well-known
strategy in multiantenna signal processing.

Substituting ρ = ρδi in (56), the search over v can be
constrained to vectors of the form v = ejθδi where θ is an
arbitrary phase term. Setting v = ejθδi in (34) we obtain
q(τ) = 2τ

1−τ2 . Then, after some algebra, Proposition 1 yields,

t2k =

{(
1− ρ

N ỹT
i C

∗(ρ)ỹ∗
i

)−1
, k = i,

1, k ̸= i,
(57)

for k = 1, . . . ,M , and with ỹT
i

.
= δTi Ỹ the i-th row of Ỹ.

2We use the fact that the term ϕ in (95) is precisely the implicit function
q
(√

β(v, ρ)
)
, as established by (100) and Proposition 1.

Substituting (57) in (36)-(37), optimizing over vectors of
the form v = ejθδi, we obtain the detector

Tsu-sc
.
= max

1≤i≤M
max
ρ≥0

t(i)su (ρ), (58)

t(i)su (ρ)
.
=

(
1− ρ

N ỹT
i C

∗(ρ)ỹ∗
i

)−N

det(IN + ρC)
(59)

=

(
1
N ỹH

i (IN + ρC)−1ỹi

)−N

det(IN + ρC)
. (60)

That is, the detector simply operates as a selection combining
(sc) scheme. At low-SNR, i.e., for ρ→ 0+, Tsu-sc yields

Λlow
su-sc =

[
max

1≤i≤M
ỹH
i Cỹi − trC

]+
. (61)

We compare Λlow
su-sc against the selection combining detec-

tor in [11, Sec. IV-B, Eq. (24)], which was derived in
the low SNR regime for i.i.d. noise with known variance,
max1≤i≤M ȳH

i Cȳi, where ȳT
i = δTi Y denotes the i-th row

of Y. Since ỹi = N ȳi/∥ȳi∥, we can see that, compared with
the detector from [11], Λlow

su-sc includes a normalization term
due to the lack of knowledge about the noise variances.

2) Uniform per-antenna SNR profile: Assume now the
same SNR for all antennas: ρi = ρ

M . We will show that
this particular SNR distribution model is naturally associated
with a GLR detector based on equal gain combining, another
well-known strategy in multiantenna signal processing. This
may approximately occur, for instance, when receiving distant
sources or under Rice fading, with similar per-antenna signal
(and noise) powers. Another approach to this scenario is also
pursued in the following subsection.

Let us define the equal gain combining (egc) vectors ψ .
=

1√
M
[ejθ1 , · · · , ejθM ]T , 0 ≤ θi ≤ 2π for arbitrary phases θi,

i = 1, . . . ,M . From (56) we have that the constraint ρi = ρ
M

implies |vi|2 = 1
M , i = 1, . . . ,M . Hence, the optimization

over v can be replaced by an optimization over the set of
egc vectors ψ. For v = ψ, after some algebra, (34) yields
q(τ) = 2τ

1−τ2/M and (33) becomes

t2i =
(
1− 1

M β(ρ,ψ)
)−1

. (62)

Substituting (62) in (36)-(37), and using (32), we obtain the
GLRT for a uniform per-antenna SNR profile,

Tsu-egc = max
ρ≥0,ψ

tsu-egc(ρ,ψ), (63)

tsu-egc(ρ,ψ)
.
=

(
1− ρ

NMψ
HỸC∗(ρ)ỸHψ

)−NM

det(IN + ρC)
. (64)

In the low SNR regime as ρ→ 0+, Tsu-egc yields

Λlow
su-egc

.
=

[
max
ψ

(
ψHỸC∗ỸHψ

)
− trC

]+
. (65)

We compare this detector against the EGC detector in [11, Sec.
IV-C], maxψ ψ

HYC∗YHψ, derived in the low SNR regime
for i.i.d. noise with known variance. Again, noise uncertainty
translates into a normalization term via Ỹ = D−1Y in (65).
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Spatial Noise Model Data all-SNR GLRT (T ) low-SNR GLRT (a1)

(1) spatially white Ȳ = Y√
tr
(
YYH

) max
ρ≥0

(1−ρλmax(ȲC∗(ρ)ȲH))−NM

det(IN+ρC)
NMλmax

(
ȲC∗ȲH

)
− trC

(2) spatially uncorrelated Ỹ = D−1Y max
ρ≥0,v

(ΠM
k=1t

2
i (v,ρ))

N

det(IN+ρC)
λmax

(
ỸC∗ỸH

)
− trC

• Selection Combiner, ξs = 1 ỹT
i = rowi

(
Ỹ
)

max
1≤i≤M,ρ≥0

(1− ρ
N

ỹT
i C∗(ρ)ỹi)

−N

det(IN+ρC)
max

1≤i≤M

(
ỹT
i C∗ỹ∗

i

)
− trC

• Eq. Gain Combiner, ξs = 1
M

max
ρ≥0,ψ

(1− ρ
NM

ψHỸC∗(ρ)ỸHψ)−NM

det(IN+ρC)
max
ψ

(
ψHỸC∗ỸHψ

)
− trC

• Sim. Gain Combiner, ξs ' 1
M

max
ρ≥0

(
1− ρ

NM
λmax

(
ỸC∗(ρ)ỸH

))−NM

det(IN+ρC)
λmax

(
ỸC∗ỸH

)
− trC

(3) spatially correlated, C ̸= I Y = USVH max
ρ≥0

(
1−ρλmax

(
VHC∗(ρ)V

))−N

det(IN+ρC)
Nλmax

(
VHC∗V

)
− trC

TABLE I
SUMMARY OF GLR DETECTORS UNDER THE THREE NOISE MODELS, WITH Λ = [a1]+ THE LOW-SNR DETECTOR.

Spatial Noise Model Data All-SNR and low-SNR detectors (72) and (73) with parameters:

(1) spatially white Ȳc = ȲUc b = λmax
(
ȲcȲH

c

)
, L = NM

(2) spatially uncorrelated Ỹc = ỸUc [no explicit form available]

• Selection Combiner, ξs = 1 ỹT
c,i = rowi

(
Ỹc

)
b = max

1≤i≤M

(
1
N
ỹH
c,iỹc,i

)
, L = N

• Eq. Gain Combiner, ξs = 1
M

b = 1
NM

max
ψ

(
ψHỸcỸH

c ψ
)
, L = NM

• Sim. Gain Combiner, ξs ' 1
M

b = 1
NM

λmax
(
ỸcỸH

c

)
, L = NM

(3) spatially correlated Vc = UH
c V b = λmax(VcVH

c ), L = N

TABLE II
SUMMARY OF GLR DETECTORS IN TABLE I IN EXPLICIT FORM FOR A BINARY PSD.

3) Similar SNR profile: In order to improve the SNR model
for the scenario contemplated in the previous subsection, we
consider now a small perturbation of the uniform SNR profile
ρi = ρ

M . In particular, set |vi|2 = 1
M + νi, with νi small

perturbations such that
∑M

i=1 νi = 0.

From (34), and using that for small |x| it holds that√
1 + x ≃ 1 + x

2 , we obtain the following approximation

τ =
1

q

M∑
i=1

(√
1 + q2

(
1
M + νi

)
− 1

)
(66)

≃ 1

q

M∑
i=1

(√
1 + 1

M q2 − 1

)
+

1

2

M∑
i=1

νiq√
1 + q2/M

. (67)

Thus, as
∑M

i=1 νi = 0, the second term in (67) is zero and the
value of q(τ) derived for a uniform per-antenna SNR profile
approximates the true q(τ) up to second-order. This makes the
test Tsu-egc in (63) robust to small deviations from a uniform
SNR profile. Then, alternatively to the optimization in (63), we
take ψ = v, with v unconstrained, and we obtain the similar

gain combiner (sgc) detector

Tsu-sgc = max
ρ≥0

tsu-sgc(ρ), (68)

tsu-sgc(ρ)
.
=

(
1− ρ

NM λmax

(
ỸC∗(ρ)ỸH

))−NM

det(IN + ρC)
. (69)

This detector has the same form as that in Theorem 1, derived
for spatially white noise (Model 1). Note however the different
normalization terms, Ȳ = Y/

√
tr(YYH) under Model 1

and Ỹ = D−1Y under Model 2. The low-SNR detector
corresponding to (69) is precisely Λlow

su-sgc = Λlow
su in (38).

C. Binary power spectrum

Consider a primary signal with binary power spectrum (bs),
i.e., with power spectrum Ps(f) ∈ {0, S} where S > 0 does
not depend on f . This is a model of interest for detectors that
only exploit bandwidth occupancy information, as the template
spectrum Ps(f) evaluates to S in those frequencies containing
signal components and to 0 in those where only noise is to
be expected. Although such detectors do not fully exploit the
power spectral shape, they can be easily derived under the
current framework. Moreover, we will show that when the
primary signal fits this model, the corresponding low-SNR
detector is equivalent to the all-SNR detector.
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Fig. 2. Gaussian primary signal with binary PSD and spatially i.i.d. noise
(Model 1), M = 2, N = 128, PFA = 0.01.

Now, using (2), it follows for large N that the correlation
matrix C can be modeled as C = µUcU

H
c , where µ = N/r

is a normalization constant and Uc ∈ CN×r is semi-unitary,
i.e, UH

c Uc = Ir, with r the rank of C. Then,

ρC(ρ) = ρµ
1+ρµUcU

H
c , det (IN + ρC) = (1 + ρµ)r. (70)

Using (70), except for the general detector under spatially
uncorrelated noise model (Model 2), the detectors in Table
I can be written in the following form,

Tbs = max
ρ≥0

{
(1 + ρµ)−r

(
1− ρµ

1+ρµb
)−L

}
, (71)

where the parameters b and L are specified in Table II for
the different noise models. As shown in Appendix C, this
optimization can be solved in closed form, yielding

Tbs = max

{
1,

(r/L)r(1− r/L)L−r

br(1− b)L−r

}
, (72)

where ρ⋆ = 1
µr max

{
0, Lb−r

1−b

}
attains the maximum in (71).

In the low SNR regime, for the detectors in Table II, we get

Λlow
bs = max {0, Lb− r} . (73)

As (72) is non-decreasing in b ∈
[
r
L , 1

)
, the tests (72) and

(73) are both equivalent. Thus, for the cases in Table II, the
detectors developed under a low-SNR approximation are in
fact equivalent to the all-SNR tests for binary power spectrum.
This is not the case though for detector Tsu and its low-SNR
approximation Λlow

su , or for a general PSD (see Section VI).

VI. SIMULATION RESULTS

We evaluate the performance of the proposed detectors
under noise Models 1 and 2. The detector Tsu is implemented
with Algorithm 1. For all the detectors, the optimization over ρ
employs Newton-Raphson’s method, with starting point ρ = 0.
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Fig. 3. Gaussian primary signal with binary PSD and spatially uncorrelated
noise (Model 2), M = 2, N = 128, PFA = 0.01.

A. Calibrated vs. uncalibrated receivers

First, we evaluate the performance of detectors Tsw, Tsu and
Tsc, and their low-SNR approximations Λlow

sw , Λlow
su and Λlow

sc
with respect to the SNR. We also compare these results with
those predicted by the approximate statistical distributions of
the tests presented in Section IV. Consider a Gaussian primary
signal with binary PSD occupying half of the bandwidth. For
this particular signal, the spectral uniformity coefficient in (47)
is ξt = 0.5. We fix M = 2 antennas and N = 128 samples.

We perform Monte Carlo simulation with 105 runs per
point. In order to establish a fair comparison between the
performance of the three detectors, and in accordance with
the performance results in section IV, at each run the channel
coefficients are drawn from a Rayleigh distribution and nor-
malized to have a constant SNR ρ = hHΣ−2h. Thresholds
are chosen to yield PFA = 0.01.

Fig. 2 shows the misdetection probability 1 − PD versus
the SNR ρ when we fix Σ2 = I2 (noise Model 1). The
detector Tsw, derived precisely for Σ2 = σ2I2, performs best.
On the other hand, detectors Tsu and Tsc, derived under more
general models, incur a performance loss. This agrees with the
asymptotic performance of the three detectors in Section IV.

Fig. 3 shows the results for the same scenario as in Fig. 2,
except for the underlying noise model, which now is Model
2. The diagonal elements of Σ2 are drawn in each run from
a χ2

1 distribution. Note that while the performance of Tsu and
Tsc is similar to that in Fig. 2, Tsw degrades considerably due
to the noise model mismatch. The analytical curve of Tsw is
not shown in Fig. 3, as it does not apply under a mismatched
model. This shows the sensitivity of this detector to calibration
errors, a phenomenon also observed in previous detectors [6].

B. All-SNR vs. low-SNR detectors

It is worth noting that in Figs. 2 and 3, the performance
of the all-SNR detector Tsw (resp. Tsc), and that of the low-
SNR detector Λlow

sw (resp. Λlow
sc ) coincide. This is due to the

equivalence of (72) and (73) for binary PSDs. This is not the
case though for the GLRT under Model 2, Tsu and Λlow

su , or for
other primary signal models. To see this, consider a 16-QAM
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Fig. 4. 16-QAM signal with squared-root raised cosine pulse shaping (roll-off
factor 1), for spatially i.i.d. noise (Model 1), M = 2, N = 128, PFA = 0.01.

primary signal with square-root raised cosine pulse shaping
with roll-off factor 1 and the receiver bandwidth matching
that of the signal. Hence, the sampling rate is 2 samples per
QAM symbol. All other parameters are as in Fig. 2.

Fig. 4 shows the misdetection probability 1 − PD versus
ρ. While in this case none of the all-SNR detectors is exactly
equivalent to its low-SNR approximation, the performance loss
of Λlow

sw and Λlow
sc is negligible. Hence, these closed-form low-

SNR detectors offer a good complexity-performance trade-off
even when the primary signal PSD is non-binary. We can also
appreciate their robustness to non-Gaussian primary signals.

Additionally, comparing Figs. 2 and 4, we note that for the
16-QAM scenario in Fig. 4, the performance of Tsu and Tsw
is still accurately predicted by the analytical expressions.

Comparing Figs. 2 and 4, in Fig. 4 we observe a degradation
in the detection probability of the three detectors, moderate
for Tsw, and increasingly larger for Tsu and Tsc. This can be
attributed to the effect of the spectral uniformity coefficient
ξt in the three detectors. For the signal in Fig. 2, we have
ξt = 0.5, while for the signal in Fig. 4, ξt ≈ 0.67. From the
analysis in Section IV, the asymptotic performance of Tsw,
Tsu and Tsc depends respectively on (1 − 1

M ξt), (1 − ξtξs)
and (1 − ξt), with 1

M ≤ ξs ≤ 1. Hence, these detectors are
increasingly sensitive to variations of the spectral uniformity.

C. Detector performance vs. spatial selectivity ξs

We now evaluate the performance of the detectors under
Model 2 for particular per-antenna SNR profiles. We consider
the GLR detector Tsu, and its particularizations: the selection
combining detector Tsu-sc, the equal gain combining detector
Tsu-egc

3, and the similar gain combining detector Tsu-sgc.
We consider a Gaussian primary signal with binary PSD

occupying half of the bandwidth, and a diagonal Σ2. For each
simulated point, we fix the per-antenna SNR profile such that
ρ1 and ρi = ρ0, i = 2, . . . ,M , are chosen to yield the desired
spatial selectivity ξs. At each run, the diagonal coefficients of

3The optimizer of ψHAψ over ψ is approximated by using the phases of
the eigenvector components associated with the largest eigenvalue of A.
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Fig. 5. Gaussian primary signal with binary PSD and spatially uncorrelated
noise (Model 2), ρ = 1, M = 4, N = 64, PFA = 0.01.
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H ]
−1 0 1

−40

−20

0

Normalized frequency

Fig. 6. GMSK primary signal and spatially i.i.d. noise (Model 1), ρ = −3
dB, M = 4, N = 256. Inset: PSD of the GMSK signal.

Σ2 are drawn from a χ2
1 distribution, and the phases of h are

drawn, independently, from a uniform distribution U(0, 2π).
We set ρ =

∑M
i=1 ρi = 1, M = 4, N = 64, and PFA = 0.01.

Fig. 5 shows the misdetection probability 1−PD versus the
spatial selectivity ξs. The corresponding low-SNR detectors
are shown with markers. We can see that Tsu-sc, derived
assuming ξs = 1, outperforms the other detectors when ξs is
indeed close to 1. However, its performance degrades rapidly
as ξs decreases. Whereas detectors Tsu-sgc and Tsu-egc have
similar performance as ξs → 1

M , Tsu-sgc outperforms Tsu-egc
for ξs > 1

M . For intermediate values of ξs the GLRT Tsu
offers the best detection performance.

In Fig. 5 we can see that the performance of the all-SNR
detectors Tsu-sc, Tsu-egc and Tsu-sgc coincides with that of the
corresponding low-SNR detectors, as the signal PSD is binary.
Note however, that since Λlow

su = Λlow
su-sgc it does not coincide

with that of Tsu, even for a binary PSD.
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D. Comparative evaluation for real communication signals

The GLR tests in Section III exploit prior knowledge of
the primary signal spectral shape. To show the advantage
of this approach over other known detectors, consider a
scenario based on the parameters of the GSM system [37].
We synthesize samples of a baseband Gaussian Minimum Shift
Keying (GMSK) with a symbol rate of 270 K symbols/second,
and a sampling rate of 400 kHz.4 Hence, we are considering
1.5 samples per symbol. At each run the channel coefficients
are drawn from a Rayleigh distribution and are normalized to
have a constant SNR ρ = hHΣ−2h. We fix M = 4 antennas,
N = 256 samples.

Figures 6 and 7 compare the receiver operating characteris-
tic (ROC) curves of the tests Tsw, Tsu and Tsc with respect to
existing detectors for a calibrated and an uncalibrated receiver,
respectively. The following base-line tests are considered:

1) GLRT for temporally white Gaussian signals under
Model 1, λmax

(
ȲȲH

)
[4], [16]. This test corresponds

to Tsw in (17)-(18) when C = IN .
2) Low-SNR GLRT for temporally white Gaussian signals

under Model 2, λmax

(
ỸỸH

)
[6]. This test corresponds

to Λlow
su in (38) by setting C = IN .

3) Rank-blind GLRT for temporally white Gaussian signals
under Model 2, det

(
ỸỸH

)
[3]. This test was shown to

be the Locally Most Powerful Invariant Test at low-SNR
for an unknown spatial rank of the primary signal [38].

Fig. 6 shows the ROC curves for spatially i.i.d. noise. Tsw
and Tsu offer the best performance. Comparing the perfor-
mance of the proposed detectors to that of the baseline detec-
tors we can see the advantage of exploiting prior knowledge on
the shape of the primary signal power spectral density. Fig. 7
shows the ROC curves for a receiver with different per-antenna
noise power levels. In this setting, the detectors derived under

4The separation between GSM channels is 200 kHz, although in a given
geographical area two adjacent channels cannot be active in order to avoid
interference. Thus, the effective channel separation is 400 kHz, which is the
same as the approximate bandwidth of the GSM signal. The PSD of the
GMSK waveform is shown in the inset in Fig. 6.
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Fig. 8. Flat-fading channel model: DVB-T primary signal, spatially i.i.d. noise
(Model 1), ρ = −3 dB, M = 4, N = 256. Inset: PSD of the DVB-T signal.
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Fig. 9. WINNER II channel model: DVB-T primary signal, spatially i.i.d.
noise (Model 1), ρ = −3 dB, M = 4, N = 256. Inset: One realization of
the frequency selective channels to each of the antennas.

noise Model 1 (Tsw and λmax

(
ȲȲH

)
) degrade considerably,

while Tsu and Tsc offer the best performance.

E. Effect of frequency-selective fading
The model presented in Section II implicitly assumes fre-

quency flat fading, since under frequency-selective fading the
rank-1 assumption on the primary signal is no longer valid.
Nevertheless, we show next that the proposed detectors are
robust to frequency-selective fading in practical scenarios. We
consider a 7.61 MHz-wide primary OFDM signal (DVB-T
standard) with 8 MHz channel separation (Fig. 8 inset), for
which we study detection performance under flat-fading and
under the WINNER Phase II channel model5 [39] (Fig. 9 inset
shows one realization of the fading).

Additionally to the proposed detectors, we consider:
1) GLRT for rank-P temporally white Gaussian signals

under noise Model 1, [40, Eq. (11)], P = 1, 2.

5Profile C1 (suburban), Non-line-of-sight (NLOS), central frequency 800
MHz, channel bandwidth 8 MHz. Transmitter/receiver randomly distributed
over a 10 km-side square. M = 4 linear receiver array with 10 cm separation.
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2) Rank-blind GLRT for temporally white Gaussian signals
under noise Model 1 [41], det

(
ȲȲH

)
(sphericity test).

3) Rank-blind GLRT for temporally white Gaussian signals
under noise Model 2 [3], det

(
ỸỸH

)
.

Figs. 8 and 9 show the ROC curves when the channel
is frequency-flat and frequency-selective, respectively. We fix
M = 4, N = 256, and we consider spatially i.i.d. noise. We
can see that all detectors suffer a performance degradation
under frequency selectivity. However, Tsw still offers the best
detection performance, even under a deviation from the rank-1
model. The performance is in this case very close to that of the
rank-1, rank-2 or rank-blind detectors derived for temporally
white Gaussian signals. This is attributed to the fact that DVB-
T signals are frequency flat occupying most of the band, with
spectral shape similar to that of a temporally white signal.

VII. CONCLUSIONS

We have derived the GLRT for detecting Gaussian sig-
nals with known temporal correlation and unknown rank-
one spatial signature in additive, temporally white, spatially
uncorrelated Gaussian noise. For spatially white (i.i.d.) noise,
the GLRT boils down to a scalar optimization problem. For
noises of disparate powers across antennas, we proposed to
solve the problem by means of an alternating optimization
algorithm. For low SNR, the GLRT admits a closed form
under both models, and is shown to yield the exact all-SNR
GLRT under particular conditions. When the primary signal
is assumed temporally white, the proposed tests particularize
to several detectors in the literature. However, exploiting
prior knowledge of the signal temporal correlation signifi-
cantly improves detection performance. We have provided an
asymptotic analysis accurately quantifying this improvement.
We have also shown that the derived low-SNR detectors are
capable of operating under spatial rank larger than one for the
primary signal.

APPENDIX A
GLRT UNDER MODEL 1

1) Proof of Theorem 1: Under Model 1 we can write Σ2 =
σ2IM . Under H0, i.e. h = 0, the ML estimation of the noise
variance yields σ̂2

0 = 1
NM tr

(
YYH

)
. Substituting h = 0 and

Σ2 = σ̂2
0IM into (15), we get the compressed log-likelihood

ℓ0
.
= −MN log

πe

MN
−MN log tr

(
YYH

)
. (74)

Under H1, the parameter space is given by Ω
.
= {h, σ2}, with

Σ2 = σ2IM . To derive the detector under H1 we operate
instead in the transformed parameter space Ω′ .

= {h̄, ρ, σ2}.
The direct and inverse mappings are given respectively by,

Ω→ Ω′ : h̄ =
h√
hHh

, ρ =
hHh

σ2
, σ2 = σ2 (75)

Ω′ → Ω : h = h̄
√

ρσ2 , σ2 = σ2, (76)

where ∥h̄∥2 = h̄H h̄ = 1. The mapping between the two
spaces is bijective and we may maximize the likelihood under

H1 over either of the two spaces. Therefore, under H1 and in
Ω′, we particularize (15) for Σ2 = σ2IM ,

log f(Y | h̄, ρ, σ2) = −MN log(πσ2)− log det(IN + ρC)

− 1
σ2 tr

(
YYH

)
+ 1

σ2 ρ tr
(
h̄h̄HYC∗(ρ)YH

)
, (77)

Setting the derivative of (77) vs. σ2 equal to zero, we get σ̂2
1 =

1
MN tr

(
YYH − ρh̄h̄HYC∗(ρ)YH

)
for the ML estimate of

σ2 under H1. Substituting σ̂2
1 into (77), we get

log f(Y | h̄, ρ) = −MN log
πe

MN
− log det(IN + ρC)

−MN log
(
tr
(
YYH

)
− ρh̄HYC∗(ρ)YH h̄

)
. (78)

Its dependence on the unitary vector h̄ is restricted to the
term h̄HYC∗(ρ)YH h̄. Thus, the maximizing h̄ is the eigen-
vector associated with the largest eigenvalue of YC∗(ρ)YH .
Substituting this value into (78), the log-likelihood under H1

can be written as a scalar optimization problem,

ℓ1
.
=max

ρ≥0

[
−MN log

πe

MN
− log det(IN + ρC)

−MN log
(
tr
(
YYH

)
− ρλmax

(
YC∗(ρ)YH

))]
(79)

Using that Tsw = exp{ℓ1 − ℓ0}, Theorem 1 follows.
2) Asymptotic low-SNR GLRT: Consider the Taylor series

expansion of log tsw(ρ) in Theorem 1 as ρ→ 0+: log tsw(ρ) =∑∞
i=1 aiρ

i. In the low-SNR regime only the coefficient a1 is
relevant for the test (up to first order). In order to compute the
coefficient a1 in the series expansion we use that, as ρ→ 0+,

(IN + ρC)−1 = IN − ρC+ o(ρ), (80)
det(IN + ρC) = 1 + ρ trC+ o(ρ). (81)

Substituting (81) in the definition of tsw(ρ) in (18), applying
the logarithm, we obtain

log tsw(ρ)

= −MN log
(
1− ρλmax

(
ȲC∗ȲH−ρȲ(C∗)2ȲH+o(ρ)

))
− log

(
1 + ρ trC∗ + o(ρ)

)
(82)

= ρ
(
MNλmax

(
ȲC∗ȲH

)
− trC∗

)
+ o(ρ), (83)

where we used that log(1 + aρ) = aρ + o(ρ). From (83), it
follows that the first coefficient a1 is given by

a1 = MNλmax

(
ȲC∗ȲH

)
− trC∗. (84)

For consistency with the maximization range ρ ≥ 0 in (39),
the low-SNR test in (20) is max{0, a1}.

3) Performance analysis: The asymptotic performance of
the test Tsw is characterized by the non-centrality parameter
αsw = E

[
2 log Tsw

∣∣H1

]
. To compute this expectation, we

recover the property in [12, Eq. 76] concerning convergence
in variance of sample spatial correlations when N →∞,

1
NYAYH → 1

N tr(A) ·Σ2 + 1
N tr(C∗A) · hhH . (85)

with A a temporal correlation matrix. From (85) one has

YC∗(ρ)YH → tr
(
C∗(ρ)

)
Σ2 + tr

(
C∗C∗(ρ)

)
hhH , (86)

tr
(
YYH

)
→ NMσ2 + ∥h∥2 trC∗, (87)
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as N →∞, where we used that tr(Σ2) = tr(σ2IM ) = Mσ2.
From (86) and (87) we obtain

λmax(YC∗(ρ)YH)

tr
(
YYH

) →
σ2 tr(C∗(ρ)) + ∥h∥2 tr

(
C∗C∗(ρ)

)
NMσ2 + ∥h∥2 trC∗ .

(88)

Now, with λk the eigenvalues of C, it follows that

tr
(
C∗(ρ)

)
+ ρ tr

(
C∗C∗(ρ)

)
(89)

=
∑N

k=1
λk

1+ρλk
+ ρ
∑N

k=1
λ2
k

1+ρλk
=
∑N

k=1λk = trC∗.

Given the consistency of ML estimators, the estimate of ρ con-
verges to its true value as N →∞. Then, for ρ→ ∥h∥2/σ2,
from (88) and (89) we obtain,

λmax

(
YC∗(ρ)YH

)
tr
(
YYH

) → trC∗

NM + ρ trC∗ . (90)

Substituting (90) into (17)-(18), yields

αsw → 2N log

(
1 + ρ

NM trC∗)M
det(IN + ρC)

1
N

. (91)

In our model, trC∗ = trC = N . Then, (44) follows.

APPENDIX B
GLRT UNDER MODEL 2

1) Proof of Proposition 1: The terms in (31) depending on
T are given by

J(T|v, ρ) .
= log det

(
T2
)
− tr

(
T2
)
+

β

vHT−2v
, (92)

with β = β(v, ρ). Using that T is a diagonal matrix, we
express J(T) in scalar form as

J(T|v, ρ) =
M∑
i=1

(
log t2i − t2i

)
+ β

(
M∑
i=1

|vi|2t−2
i

)−1

. (93)

Taking the derivative of J(T|v, ρ) with respect to t2i yields

∂
∂t2i

J(T|v, ρ) = t−2
i − 1 + 1

4ϕ
2|vi|2t−4

i , (94)

ϕ
.
= 2

√
β
(∑M

i=1|vi|
2t−2

i

)−1

. (95)

Equating (94) to zero for each i = 1, . . . ,M we obtain the
following nonlinear system of equations, as well as its solution

t4i − t2i − 1
4ϕ

2|vi|2 = 0, i = 1, . . . ,M. (96)

⇒ t2i = 1
2

(
1 +

√
1 + ϕ2|vi|2

)
, (97)

The solution of (96) in (97) can be shown to be a maximum of
J(T). In particular, we have discarded the negative solution,
as t2i must be positive. Note that (97) is an implicit equation
since ϕ depends on t2i , i = 1, . . . ,M . The value of ϕ can be
obtained as follows. Substituting (97) in (95) we obtain

ϕ = 2
√

β

(∑M
i=12|vi|

2
(
1 +

√
1 + ϕ2|vi|2

)−1
)−1

(98)

=
√
βϕ2

(∑M
i=1

(√
1 + ϕ2|vi|2 − 1

))−1

, (99)

where, multiplying and dividing by
√
1 + ϕ2|vi|2 − 1 each

term in the sum in (98), we obtain (99). Thus, from (99), ϕ
is defined as an implicit function in terms of β and v as√

β = ϕ−1∑M
i=1

(√
1 + ϕ2|vi|2 − 1

)
. (100)

The first part of Proposition 1 follows from (97) and (100).
To prove the second part, we multiply (96) by t−2

i and sum
the set of resulting equations for i = 1, . . . ,M . We obtain∑M

i=1

(
t2i − 1

)
= ϕ2

4

∑M
i=1

|vi|2
t2i

= β
(∑M

i=1
|vi|2
t2i

)−1

, (101)

where we used that ϕ2 = 4β
(∑M

i=1 |vi|2t
−2
i

)−2

. Writing the
sum in (101) in matrix form, (35) follows.

2) Asymptotic low-SNR GLRT: Let us define

λsu(v, ρ)
.
= log tsu(v, ρ) (102)

= N log det
(
T2(v, ρ)

)
− log det

(
IN + ρC

)
.

The low-SNR GLR detector follows from considering the
first term in the low-SNR expansion of λsu(v, ρ),

Λlow
su

.
= max

{
0,maxv limρ→0+

1
ρλsu(v, ρ)

}
. (103)

To compute Λlow
su , we first derive an alternative form for

λsu(v, ρ). Integrating τ(q) in (34) in Proposition 1 yields∫
τ(q)dq =

∑M
i=1

∫
−1+
√

1+|vi|2q2
q dq (104)

= c+
∑M

i=1

(√
1 + |vi|2q2 − log

(
1 +

√
1 + |vi|2q2

))
,

for an arbitrary constant c, where the last step follows from
[42, Eq. 17.9.12]. Also from (34) it follows that

q · τ(q) =
∑M

i=1

(√
1 + q2|vi|2 − 1

)
. (105)

Consider now an arbitrary one-to-one function τ = τ(q),
with q = q(τ) its inverse. It is easy to check that the area of
the rectangle [0, q]× [0, τ(q)] can be decomposed as

q · τ(q) =
∫ q

0

τ(q′)dq′ +

∫ τ(q)

0

q(τ ′)dτ ′. (106)

Then, by combining (104), (105) and (106) we obtain∫ τ

0

q(τ ′)dτ ′ =
∑M

i=1 log
(
1 +

√
1 + piq2

)
(107)

= log det
(
T2(v, ρ)

)
, (108)

where (108) follows from Proposition 1 for q = q
(√

β(v, ρ)
)
.

Substituting (108) in (102), we get the integral form

λsu(v, ρ) = N

∫ √β(v,ρ)

0

q(τ ′)dτ ′− log det(IN +ρC) (109)

for λsu(v, ρ). For small τ , from (34) we obtain q(τ) = 2τ +
o(τ), which integrates to τ2 + o(τ2). Hence (109) becomes

λsu(v, ρ) = Nβ(v, ρ)−log det(IN+ρC)+o(β(v, ρ)). (110)

At low SNR C(ρ) = C + o(ρ). Then, it follows that
β(v, ρ) = 1

N v
HỸHρC∗Ỹv + o(ρ). Substituting the low-

SNR expansions for β(v, ρ) and using that log det(I+ρC) =
ρ tr(C) + o(ρ) in (110), via (103) we obtain

Λlow
su = max

{
0, λmax

(
ỸC∗ỸH

)
− trC

}
. (111)
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3) Performance analysis: Under Model 2, the GLRT per-
formance depends on the non-centrality parameter

αsu = E
[
2 log Tsu

∣∣H1

]
. (112)

Using the property (85) it follows that, for N →∞,

D2 = diag
(

1
NYYH

)
→ diag

(
Σ2 + trC∗

N · hhH
)

(113)

Thus, from the definition of T in (25), and using the
asymptotic consistency of the ML estimator, we obtain that
t2i → 1+ trC∗

N ρi, where ρi =
|hi|2
σ2
i

. Substituting this result in
the detector Tsu in (36)-(37), from the definition (112) we get

αsu → 2N log

∏M
i=1

(
1 + trC∗

N ρi

)
det(IN + ρC)

1
N

. (114)

Eq. (45) follows using that trC∗ = trC = N .

APPENDIX C
DERIVATION OF (72) FOR BINARY POWER SPECTRUM

For ease of exposition let us define ϱ
.
= (1 + ρµ)−1. The

optimization in (71) in terms of ρ can be rewritten as

Tbs = max
0<ϱ≤1

exp {g(ϱ)}, (115)

g(ϱ)
.
= −L log (1− (1− ϱ)b) + r log ϱ, (116)

in terms of ϱ. To obtain the maximizing ϱ in (115) we first
differentiate g(ϱ), where: g′(ϱ) = −Lb

1−(1−ϱ)b + r
ϱ . Equating

g′(ϱ) to 0 we obtain the optimality condition

ϱ = 1
L−r · r(b

−1 − 1). (117)

As 0 < ϱ ≤ 1, this condition holds provided that b ≥ r/L.
On the other hand, for b < r/L, we have that

g′(ϱ) = L
ϱ

(
r
L −

(
1− 1−b

1−b+ϱb

))
≥ L

ϱ

(
r
L − b

)
≥ 0, (118)

where in (118) we used that ϱ ≤ 1 and that b ≤ 1 for the
detectors in Table II. Therefore, under the stated conditions,
g(ϱ) is nondecreasing in 0 < ϱ ≤ 1 and its maximum is
attained at ϱ = 1. Thus, from (117) (when b ≥ r/L) and from
(118) (when 0 ≤ b < r/L), the ϱ maximizing (115) is given
by ϱ⋆ = max

{
1, 1

L−r · r(b
−1 − 1)

}
. Substituting ϱ = ϱ⋆ in

(115), we get (72). The optimal value of ρ in (71) follows
from ϱ = (1 + ρµ)−1, as ρ⋆ = 1−ϱ⋆

µϱ⋆
.
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