
Technical Report for ID TNET-2015-00294

“Optimal delay characteristic when the number of

users is comparable to the number of rounds”
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In this document, we explain the similarity of the solutions of the optimal pool mix problem and the
quasi-optimal pool mix problem, presented in the main manuscript ID TNET-2015-00294. We do this
under the assumptions that the number of users in the system N is comparable to the number of rounds
observed ρ, while ρ → ∞. Please refer to the original document for a description of the notation used
here.

We recall that the optimal pool problem is the solution to

dopt = argmax
d

Tr {MCeM}

subject to

ρ−1∑
k=0

dk = 1, dk ≥ 0, ∀k

ρ−1∑
k=1

k · dk ≤ δ̄

(1)

where
Ce = E

{
(XTDTDX)−1XTDTΣY|XDX(XTDTDX)−1

}
, (2)

and

ΣY|X = diag {DX · 1N} −D · diag {X · r1} ·DT + D ·

[
N∑
i=1

(
XiX

T
i ◦Ei

)
· r2(i)

]
·DT . (3)

Note that, as now N is comparable to ρ, we can no longer approximate 1
ρXTDTDX by its expected

value Rxx = 1
ρE
{
XTDTDX

}
. Therefore, we cannot write ( 1

ρXTDTDX)−1 = R−1xx .

In the quasi-optimal pool problem, the objective function is a simplified version of the one above:

d′opt = argmax
d

ρ · Tr
{

E
{
M · (XTDTDX)−1 ·M

}}
subject to

ρ−1∑
k=0

dk = 1, dk ≥ 0, ∀k

ρ−1∑
k=1

k · dk ≤ δ̄

(4)

One possible strategy to increase the value of the optimization function in (1) consists in making
XTDTDX “almost singular”, so that after inverting this matrix in (2), performing the matrix mul-
tiplications and computing the trace, the value obtained is large. Note that we can also follow this
strategy to increase (4). In the following section, we explain why this idea can be seen as a filter design
problem, where we want to compute the filter that removes a specific set of frequency bins. Then, in
Section 2 we show empirically that the solution to this filter design problem is close to the optimal and
quasi-optimal pool designs, which explains the similarities between them.
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1 Maximizing the trace of the inverse input sample autocorre-
lation matrix: a filter design problem.

In this section, we formulate a filter design problem that intuitively maximizes the trace of the inverse
sample autocorrelation matrix of the inputs. This matrix can be written as XTDTDX, and therefore
we want to study how to maximize the function

f(d)
.
= Tr

{
E
{

(XTDTDX)−1
}}

. (5)

We first study the solutions of this problem when the input processes are i.i.d and follow a normal
distribution Xr

i ∼ N(0, 1), ∀r, i. We then argue why the findings for this particular scenario may also
apply in more general cases.

1.1 Normal input processes

Assume the input process are distributed as N(0, 1), and both the number of users in the system N
and the number of communication rounds observed ρ are sufficiently large. Also, note that matrix D is
approximately circulant since we can disregard the border effects as ρ → ∞. In that case, this matrix
can be diagonalized by means of the DFT, i.e.,

D ≈WΛddW
∗ , (6)

where W is the ρ × ρ DFT matrix and Λdd is the diagonal matrix containing the ρ-point DFT of dk.
This means that DTD = W|Λdd|2W∗. Therefore, we can write

f(d) = Tr
{

E
{

(XTW|Λdd|2W∗X)−1
}}

= Tr
{

E
{

(X̃H |Λdd|2X̃)−1
}}

(7)

where X̃
.
= W∗X. Since the Wishart distribution is unitarily invariant and W is a unitary matrix, X̃

has the same distribution as X.

Given the expression in (7) and following equation (9) in [1], we can write the following identity for the
trace function f ≡ f(d):

ρ−1∑
k=0

1

1 + λk · f
= ρ−N (8)

where λk is the k-th diagonal element of |Λdd|2. Note that this means that λk is the squared absolute
value of the k-th frequency bin of the ρ-point DFT of the delay characteristic dk, k = 0, 1, · · · , ρ− 1.

Taking the derivative with respect to λi in the equation above, we get,

∂f

∂λi
= − f

(1 + λi · f)2
·

(
ρ−1∑
k=0

λk
(1 + λk · f)2

)
(9)

Since f > 0 and λk ≥ 0, this derivative is always negative, which implies that the trace increases when
the values of λk decrease. In order to increase the trace as much as possible, one could think of making
ρ−N frequency bins close to zero, so that their contribution to the summation in (8) is close to ρ−N .
This in turn would force the contribution of the rest of the terms in the sum to be close to zero, which
means that f → ∞. Therefore, this problem is equivalent to designing a filter dk that minimizes the
summation of a certain number of frequency bins.

We now explain intuitively the meaning of each constraint in this filter design problem. First of all, the
constraint

∑ρ−1
k=0 dk = 1 forces λ0 = 1. The effects of the positivity constraints (dk ≥ 0, ∀k) in the filter

design problem are complex and studied in the literature [2, 3, 4]. One of the consequences of these
constraints is that λ0 ≥ λk for k 6= 0. Another consequence, explained in detail in [3], is the fact that
achieving an attenuation factor in high frequencies is much easier than increasing the magnitude of the
filter around those frequencies, and therefore designing a low-pass filter is the best option if our aim is
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just to achieve low value of a certain number of frequency bins. One of the immediate consequences of
the average delay constraint (

∑ρ−1
k=1 k ·dk ≤ δ̄) is that, from all the filters whose magnitude response (i.e.,

λk, ∀k) minimizes f(d), we want the solution whose zeros lay inside the unit circle, i.e., the minimum
phase filter. This is because the average delay of d and the group delay of the filter are closely related
(note that they are equal if the delay characteristic is symmetric), and the minimum phase filter would be
the one achieving a smaller average delay. We leave a deeper study of the effects of the delay constraint
on this problem as subject for future work.

With all these considerations, we are ready to formulate an alternative optimization problem where we
minimize the sum of the ρ−N high-frequency values (assume N is even for simplicity):

d′′opt = argmin
d

ρ−N/2+1∑
k=N/2+1

λk

subject to

ρ−1∑
k=0

dk = 1, dk ≥ 0, ∀k

ρ−1∑
k=1

k · dk ≤ δ̄

(10)

where λk is the k-th coefficient of the ρ-point DFT of dk.

1.2 General input processes

The relation (8) above is only valid for normal inputs. We now explain why it is reasonable to apply the
results of the previous section even if the inputs are not normal.

First, consider the diagonalization of D above in (6), together with the spectral decomposition

XXT = AΛ2
xxA

T (11)

where A is a ρ× ρ orthogonal matrix and Λ2
xx is a diagonal matrix containing the eigenvalues of XXT .

Note that only N of these eigenvalues are non-zero. This leads to writing

X = AΛxxSBT (12)

for some N × N orthogonal matrix B and a ρ × N column-selection matrix S that keeps the non-null
columns of Λxx.

Let V
.
= W∗A, and let V′ = VS. Also let Λ′xx be the N ×N diagonal matrix containing the N non-null

eigenvalues of XXT . Then, we can write the following chain of equalities:

(XTDTDX)−1 = (BSTΛxxA
TW|Λdd|2W∗AΛxxSBT )−1 (13)

= (BΛ′xxS
TATW|Λdd|2W∗ASΛ′xxB

T )−1 (14)

= (BΛ′xxS
TVH |Λdd|2VSΛ′xxB

T )−1 (15)

= B(Λ′xxS
TVH |Λdd|2VSΛ′xx)−1BT (16)

= B(Λ′xx)−1(STVH |Λdd|2VS)−1(Λ′xx)−1BT (17)

= B(Λ′xx)−1(V′H |Λdd|2V′)−1(Λ′xx)−1BT (18)

In (13) we have just replaced D and X using (6) and (12). In (14) we have used that ΛxxS = SΛ′xx,
and in (15) we have used V

.
= W∗A. We have used the fact that B is orthogonal in (16) and that Λ′xx

is a non-singular diagonal matrix in (17). In the last step we have just used the definition of V′.

Therefore, we can write the function (5) as

f(d) = Tr
{

E
{
B(Λ′xx)−1(V′H |Λdd|2V′)−1(Λ′xx)−1BT

}}
. (19)

3



0 1 2 3 4 5 6 7 8 9
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
Impulse Response

 

 

Opttimal

Q−Optimal

Filter Design

0 500 1000 1500 2000 2500
−30

−25

−20

−15

−10

−5

0

5
Frequency Response (dB) 

(a) Threshold mix

0 1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2
Impulse Response

 

 

Opttimal

Q−Optimal

Filter Design

0 500 1000 1500 2000 2500 3000
−35

−30

−25

−20

−15

−10

−5

0
Frequency Response (dB) 

(b) Timed mix

Figure 1: Impulse and frequency responses of the optimal pool for the different problems, Email dataset.

From random matrix theory, we know that “the eigenvectors of a random matrix are very likely to be
delocalized in their sense that their l2 energy is dispersed more or less evenly across its coefficients” [5].
This property would be satisfied by the elements of the columns of A. The multiplication of A by the
DFT matrix W∗ to get V = W∗A is likely to increase the delocalization of the l2 energy even further.
We conjecture that because of this delocalization, the results obtained above for (X̃H |Λdd|2X̃)−1 are
also applicable to (V′H |Λdd|2V′)−1, and therefore even if the input processes are not normal we can still
model the optimal and quasi-optimal pool design problems as filter design problems. In the next section,
we show that this is true for the real datasets we consider in our work.

2 Evaluation

We now show the solutions of the proposed problems (1), (4) and (10) for the real datasets introduced in
the main document. We show the impulse response (i.e., the coefficients dk) and the frequency response
in dB (i.e., the values 10 · log10 λk defined above for k = 0, · · · , ρ− 1). For the Email dataset, the results
are shown in Figure 1. For Location and MailingList, the results are in Figs. 2 and 3 respectively.

As we can see, the solution of the filter design problem is not far from the optimal and quasi-optimal
solutions in the threshold mix scenario, specially in the MailingList dataset. For the timed mix, the worst
result is achieved in the Email dataset. If we look at the frequency response, we can see the optimal and
quasi-optimal designs are indeed minimizing the sum of a reduced number of frequencies. Studying how
to obtain the set of frequency bins that should be minimized to optimally reduce the trace f(d) is left
as subject for future work.

This shows that the problem of looking for the optimal and quasi-optimal pool can be seen as a filter
design problem, where we want to find the delay characteristic d that reduces the sum of a set of high-
frequency bins, given a set of constraints on d. This explains the similarities between the optimal and
quasi-optimal solutions.
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Figure 2: Impulse and frequency responses of the optimal pool for the different problems, Location
dataset.
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Figure 3: Impulse and frequency responses of the optimal pool for the different problems, MailingList
dataset.
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