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Abstract— In wireless communication systems operation of the
amplifiers near saturation is often required for efficiency reasons,
resulting in a nonlinearly distorted signal at the amplifier output.
A popular model for the corresponding baseband equivalent
nonlinear channel is a truncated Volterra series. By exploiting the
bandpass nature of the channel and the statistical properties of
phase-shift keyed signals, we show that the different terms in the
Volterra series are white and uncorrelated with each other. This
result is useful when considering blind equalization approaches
for this class of systems.

Index Terms—Nonlinear communication systems, Volterra
series, Phase Shift Keying.

I. INTRODUCTION

It is usual in wireless and satellite digital communication
systems to operate the RF amplifier at or near saturation to im-
prove its power efficiency [3]. The overall transmission system
can then be modeled as in Fig. 1, by a memoryless analytic
nonlinearity f(-) representing the near saturation amplifier
characteristic, and a bandpass linear time invariant system with
impulse response ¢(t), comprising the effects of the bandpass
transmit filter (which limits the spectrum of the output signal
to the available bandwidth) and the propagation channel. The
overall system thus induces nonlinear intersymbol interference
(1S1).

Let the transmitted symbols be a(k). In [1] it was shown
that the sampled baseband equivalent nonlinear channel can
be represented by a truncated Volterra series of the form

q I
y(k) =YD higsilk =) + z(k). (€

i=1 j=0
Here y(-) is the sampled received signal, z(-) is the additive
noise, and /; is the degree of the i-th Volterra kernel. These
kernels are defined as follows. The kernel indexed by i = 1 is
the linear kernel, i.e. s (k) 4 a(k), the transmitted symbols.
The terms s;(k) corresponding to the remaining kernels (i >
1) are restricted to be of the form

m; 2m;+1
si(k) = H a*(k —ti;) H a(k —ti;), 2
j=1 j=m;+1
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Fig. 1. Digital transmission system including a nonlinear amplifier.

where ¢;; correspond to certain time delays and m; are
positive integers. Observe that in (2) only odd-order kernels
appear, and that these have one more unconjugated input than
conjugated inputs. Even-order distortions are absent due to the
fact that they generate spectral components which lie outside
the channel bandwidth (centered at the carrier frequency) and
therefore are rejected by the bandpass filter following the
amplifier [1]. The h;; are the coefficients of the i-th baseband
equivalent Volterra kernel, which could be N x 1 vectors if
some form of diversity is available resulting in IV subchannels.
The parameters h;;, I;, m; and t;; can be determined from the
Taylor series expansion of the amplifier nonlinearity and the
impulse response ¢(t) [1]. Analyticity of f(-) guarantees the
existence of its Taylor series expansion. As with all \olterra
series models, the fidelity with which (1)-(2) represent the
actual system improves with larger ¢, the total number of
kernels.

Motivated by considerations of blind equalization of chan-
nels such as these, when both the impulse response ¢(¢) and the
nonlinearity f(-), and hence its Taylor series coefficients, are
potentially unknown at the receiver, in this letter we are con-
cerned with the second-order statistical properties of the terms
s;(+) in (2). In particular, we have presented in [4] sufficient
conditions under which, both zero forcing and minimum mean
square error equalizers for channels represented by truncated
\lterra series, can be obtained from the output second-order
statistics alone. One such condition appearing in the analysis
is that

i=7 and d=0. (3)

i.e. each s;(-) is a white process, and for ¢ # j the two
processes s;(-), s;(-) are uncorrelated.

We note that in general, even if the transmitted symbols
a(-) are zero mean, independent, identically distributed (iid),
the nonlinearities implicit in (2) may prevent (3) from holding,
even though the unknown nonlinearity f(-) is memoryless. The
contribution of this letter is to show that should the process
a(-) be iid and drawn equiprobably from a PSK constellation,
then because only odd order kernels appear in the Volterra
expansion, and symmetries manifest in PSK constellations [see

cov(si(k),sj(k —d)] #0 iff



e.g. (5) and (6)], (3) does indeed hold.

I1. MAIN RESULT

We make the following assumption:

Assumption 1: The symbols a(-) are drawn independently
and with identical probabilities from an M -ary PSK constel-
lation: a(k) € {R-e/>™/M — p=0,1,...,M —1}.

Our main result can then be stated as follows.

Theorem 1. Consider the terms s;(-) in (2). Then under
Assumption 1, (3) holds.

Proof: Given two terms s;(k),
can be written as

sj(k) of the form (2), they

si(k) = a"(k)a®*(k—1)---a”(k—1t)

x[aPo (B)]*[a” (k = D)]" -+ [a¥ (k = D)]",
si(k) = a®(k)a®(k—1)---a%(k—1t)

x[a® (k)]*[a® (k = 1)]" - -~ [a% (k = 1)]",

for some integers ¢ and p;, pi, ¢;, g} such that
—q) =1

(po—po)+--+e—pt) =1, (@0—aq5)+ -+ (a
(4)

(Some p;, pi, qi, q; may be zero). We shall show that if
cov[si(k),s;(k — d)] # 0 for some d, then s;(k) must be a
scaled version of s;(k—d). To do so, note that for all integers
[ > 0, the circular symmetry of the M-ary PSK constellation
gives

l _ j2rnl /M _ — e
Ela' (k)] = —Z 2t/ MW
0, I mod M #0, )
R', Imod M =0.

But if I mod M = 0 then a!(k) = R' reduces to a constant.
Thus without loss of generality we can assume that none of
the p;, p}, ¢, g} are multiples of M, since any multiplicative
constants in the terms s;(k), s;(k) can be absorbed by the
channel coefficients. As a consequence, since

RYE {aH’ (k)} LU,
E{d " ®]} = R, =,
RE{[a" ')}, 1<,
(6)
we have that for all [, I’ with [, mod M # 0,
E {al(k)[al’ (k)]*} £0  onlyifl=1, @)
in which case the term a!(k)[a!(k)]* is constant:
! (k)[a!(k))* = R ®)

Now observe that due to the independence and stationarity of
the symbols a(-), one has

]—HE{ap"

which is zero in view of (7) since (4) precludes having p ; = p
for all 0 < j < ¢; similarly, E[s;(k)] = 0. Hence the terms
have zero mean, so that

covsi(k), s (k — d)]

(B},

— Elsi(k)s’(k — d)].

Suppose that Els;(k)sj(k — d)] # 0. Then we must have
0 < d < t, or otherwise s;(k), s;j(k — d) are independent and
their covariance becomes zero automatically. Note that

Elsi(k)sj(k—d)] = E {Ha”" —-n a”"(k—n)]*}
xE{Ha”"
at-a(k = m)[a® (k - n)]" |

t+d
E { II a%(k —n)la®(k —n)]*

n=t+1

o (k = n)]*

} ©)

If (9) is nonzero, then the three factors in the right hand side
must be nonzero. Using the stationarity and iid properties of
the symbol sequence, for the first factor one has

0 # dr_[E {a? ()l (k)] |

= pa=p,,  0<n<d-1, (10)
in view of (7). Similarly, for the third factor,
t
o # [I e{e®at®r}
n=t—d+1
= q=d, t—d+1<n<t. (11)
From (8), (10) and (11), it follows that we must have
t
sitk) = RXottree) Tl ar (k= n)la™ (k = n))",
n=d
t—d
sj(k) = R2G—antota) H a®™ (k —n)[a®(k —n)]".
n=0

In addition, the second factor in the right hand side of (9) must
be nonzero. Therefore

0 # [IE{a"®a™®a @) ®] |
n=d

= Pn =Py =Gn-d—Gpg» d<N<L (12)

Define now p,, 2 min{p,,pl.}, dn 2 min{g,,q, }, and let

ECEEIR P

calk) A {Z,E’(“,)c’), in 2t 14)
Then one has

apn(k)[ap’n(k)]* _ Rzﬁn[bn(k)]mfpu,

aqn(k)[aq’n(k)]* _ qun[cn(k)]mnfq;\_

Then we can write

Rz(Zi;; pn+Z:=d ﬁn) H (b (k — n)]\pnfp'n\’

n=d
t—d _ t t—d
sj(k) = R2(Zn=o Tt s ays ) H[Cn(k — )]l aal,
n=0



But in view of (12)-(14) it follows that for d < n < 't, p, —
P, = Gn—a — q),_, and b, (k) = c,—q(k). Therefore s;(k) =
¢-sj(k — d) where ¢ is a constant, as was to be shown. m

I1l. EXTENSION TO OTHER MODULATION SCHEMES

The proof of Theorem 1 critically exploits the symmetry of
the PSK constellation and therefore it does not immediately
apply to other constellations such as higher-order quadrature
amplitude modulation (QAM) for which this symmetry is
lost. However, for certain PSK-derived modulation schemes
commonly found in wireless applications, Theorem 1 is still
valid:

1) Offset Quadrature PSK (OQP<K): This method is sim-
ilar to QPSK, but the in-phase and quadrature com-
ponents of the transmitted signal are offset in their
relative time alignment by half a symbol period, effec-
tively constraining the maximum phase shift to +90°.
The symbols a(k) can be seen as being drawn from
{—1,+1} for even k and from {—j, +;} for odd % [1].

2) /4 QPK: In this scheme the symbols are alternatively
drawn from two different PSK constellations with M =
4 (QPSK) with one of them rotated «/4 radians with
respect to the other. This constrains the maximum phase
shift to +135° [2].

These signaling methods are preferred to QPSK in systems
with nonlinear amplifiers [1], [2]. In both cases, the symbols
belong to constellations that vary from symbol to symbol but
which have the desired symmetry properties.

IV. CONCLUSIONS

The second-order statistical properties of the terms appear-
ing in the Volterra series expansion of a bandpass nonlinearity
have been analyzed. When the signaling method is phase-shift
keying (PSK) or one of its variants, we have shown that these
terms are white and uncorrelated. Application areas include
blind equalization of nonlinear channels.
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