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ABSTRACT
Among the different applications where data hiding tech-
niques can be used, one that has received huge attention in
the last years is steganography. In that scenario, not just
the embedded message is hidden, but the communication
process itself is tried to be concealed. In spite of the numer-
ous works in this field, the capacity of a perfect stegosystem
(meaning a system where it is impossible to know if a given
signal is watermarked or not) is still an open question in
the data hiding community. In this paper we deal with the
capacity of a discrete perfect stegosystem using some opti-
mization procedures, and also present a lower-bound to the
capacity of a perfect Gaussian stegosystem; interestingly this
bound approaches the capacity of an AWGN channel (with-
out host signal or the perfect steganography constraint) for
small (compared with the power of the host) values of the
embedding power. Furthermore, we apply the methodology
used in this Gaussian scheme to a lattice-based embedding
structure, introducing some promising results.
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1. INTRODUCTION
Among the different applications of data hiding techniques

which have been studied in the literature, few of them have
been paid more attention than steganography. Following
Cachin’s definition [1] “steganography is the art and science

of communicating in such a way that the presence of a mes-

sage cannot be detected”, establishing clearly the difference
between the other data hiding applications and steganogra-
phy. In this application, the target is not only to hide a
given message in a host signal, but to conceal the communi-
cation process itself. In this way, an unauthorized observer,
usually denoted warden due to the prisoners’ problem [13]
should not be able to determine if a given signal is water-
marked or not.

This condition is usually translated using the Kullback-
Leibler distance (KLD) [7], an information theoretic mea-
sure which quantifies the similarity between the distribu-
tions of two random variables. In fact, Cachin defined that
a stegosystem is perfectly secure if the KLD between the
original host signal and the watermarked one is 0, defend-
ing that in that case the warden would not be able to dis-
tinguish between both signals [1]. Similarly, Cachin also
defined an ǫ-secure stegosystem as that where the former
KLD is smaller or equal that ǫ, weakening the initial con-
straint. At this point we would like to make some remarks
on Cachin’s nomenclature and properties of the Kullback-
Leibler distance:

• Although Cachin denoted those stegosystems where
the Kullback-Leibler distance between the original host
signal and the watermarked one is 0 as perfectly secure

(or ǫ-secure when that definition is relaxed), we will
refer to that case as perfectly steganographic stegosys-

tem, or, for the sake of simplicity, perfect stegosys-

tem. With that change of nomenclature we want to
emphasize the difference between the steganographic
constraint established by Cachin, and the security def-
initions currently used in the data hiding community
[2, 4], related to the impossibility for an attacker of
getting knowledge about the secret key. In that sense,
Cachin’s constraint (which hereafter we will denote as
steganographic constraint) is more related to the de-

tectability of the watermark [11, 12].

• The KLD is not really a distance, as it is not symmetric
and does not satisfy the triangle inequality [7].



• For discrete random variables, the KLD is always non-
negative and is zero if and only is the two compared
distributions coincide.

• For continuous random variables, the KLD is larger
or equal to 0, with equality if and only if the two
probability density functions (pdf) are equal almost
everywhere. In fact, in this paper we will translate
the steganographic constraint to the continuous case
imposing that both pdfs coincide everywhere.

Based on the former definition by Cachin of a perfectly
steganographic system, some works exist in the literature
dealing with the search of the capacity of such a system.
For example, in [12] Moulin and Wang study the case where
the host signal follows a Bernoulli(1/2), both for passive
and active wardens (i.e., where the attacker just observes
and where he also introduces some attacking noise, respec-
tively). The same authors deal in [14] with the capacity of a
perfect stegosystem based on additive spread-spectrum wa-
termarking techniques, and study the KLD obtained when
Quantization Index Modulation (QIM) [3] methods are used.
Furthermore, the authors present the Stochastic QIM, where
the original signal is just modified when it lies in the decod-
ing region of a message different from that one wants to
embed. Stochastic QIM asymptotically verifies the perfect
steganography constraint when the embedding distortion is
much smaller than the power of the original host signal, but
its capacity is below the capacity achievable by QIM.

Our target in this paper is to quantify how much is lost in
terms of achievable rate when the steganographic constraint
is verified. To the best our knowledge, this is still an open
question; although there are some works in the literature
dealing with the loss in the achievable rate in a perfectly
steganographic system, as [14], the trade-off between un-
dectability (perfect steganography) and achievable rate has
not been measured yet for finite DWRs.

The remainder of the paper is organized as follows: in
Sect. 2 we introduce the used notation and framework, which
are employed in Sect. 3 and Sect. 4 for studying the ca-
pacity of both discrete and continuous stegosystems. The
results in the later section are generalized to the case of ǫ-
steganographic systems in Sect. 5, whereas Sect. 6 studies
a steganographic scheme where lattice-based quantization is
used for embedding. Finally, some conclusions are intro-
duced in Sect. 7.

2. NOTATION AND FRAMEWORK
In this section we present the notation that will be used

throughout the paper. We will denote scalar random vari-
ables with capital letters (e.g., X) and their outcomes with
lowercase letters (e.g. x). The same notation criterion ap-
plies to random vectors and their outcomes, denoted in this
case by bold letters (e.g. X, x). The ith component of a
vector X is denoted as Xi. In the data hiding problem the
embedder wants to transmit a message m, which belongs to
a M -ary alphabet M = {1, · · · , M}, to the decoder sending
a signal y in place of the original host vector x, both of them
of length L. We will model these signals as realizations of
random vectors Y, and X, respectively. The power of the
original host signal will be denoted by σ2

X , 1
L

PL

i=1 σ2
Xi

,

where σ2
Xi

, Var{Xi}, whereas the power of the watermark

is given by De , 1
L

PL

i=1 E{(Yi − Xi)
2}.

Both watermarked and non-watermarked signals are ob-
served by the attacker (warden), who estimates if a given
signal was watermarked or not, considering for that purpose
the statistical characterization of the source generating the
original (non-watermarked) signals. In the case of active at-
tackers a noise vector n (which can be seen as realization of

random vector N, with σ2
N , 1

L

PL

i=1 E{N2
i }) is added to y;

therefore, the decoder receives the signal z = y+n. Finally,
the decoder estimates the embedded symbol with a suit-
able decoding function. The corresponding block-diagram
is plotted in Fig. 1.
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Figure 1: Block-diagram of a stegosystem.

For the discrete case the Kullback-Leibler Distance (KLD)
is defined as

D(pX||pY) =
X

x∈X

pX(x) log

„

pX(x)

pY(x)

«

,

where pX and pY are the probability mass functions (pmf)
of X and Y respectively, and X is the alphabet where both
random vectors take values.

On the other hand, for continuous random variables, one
has that

D(fX||fY) =

Z

fX(x) log

„

fX(x)

fY(x)

«

dx,

where fX and fY denote the pdf of X and Y, respectively.
In order to compare the power of the host signal and the

watermark, we will use the Document to Watermark Ratio

(DWR), defined as DWR =
σ2

X

De
; similarly, the Watermark

to Noise Ratio (WNR) is defined as WNR = De

σ2
N

.

3. COMPUTATION OF THE CAPACITY OF
A DISCRETE STEGOSYSTEM, BASED
ON THE JOINT PMF OF X, Y AND U

As a first step, we consider that the warden is passive,
i.e., he is limited to guessing if the observed signal is water-
marked or not, but he is not allowed to modify it.

As it is known from Gel’fand and Pinsker’s paper [10], the
capacity of a system with side information at the embedder
is given by

C = max
pU,Y |X

I(U ; Y ) − I(U ; X),

where U is an auxiliar random variable. Taking into account
that

I(U ; Y ) − I(U ; X) = H(U) − H(U |Y ) − H(U) + H(U |X)

= H(U |X) − H(U |Y ),



the problem of computing the capacity of a perfect stegano-
graphic system can be seen to be equivalent to maximizing
the last expression over pU,Y |X , constrained to

X

u,x

pU,Y |X(u, y|x)pX(x) = pY (y) = pX(y),

due to the steganography constraint, and
X

u,y,x

pU,Y |X(u, y|x)pX(x)(x − y)2 ≤ De,

the embedding distortion condition.

3.1 Upperbounding the capacity with the
entropy of the host signal

The introduced framework implies that the capacity of
a stegosystem is upperbounded by the entropy of the host
signal, because recalling the result by Gel’fand and Pinsker,
one can show that

I(Y ; U) − I(X; U) = H(Y ) − H(Y |U) − I(X; U)

≤ H(X), (1)

where we have used the facts that both H(Y |U) and I(X; U)
are non-negative (since we are working with discrete random
variables), and H(Y ) = H(X), due to the perfect stegano-
graphic constraint.

The equality in (1) will be achieved if and only if H(Y |U) =
0 and I(X; U) = 0; the first condition implies that Y is a
function of U , while the second one implies that X and U
are independent. Taking these circumstances into account,
we will try to get some knowledge about how the embed-
ding method should work, or equivalently the structure of
pU,Y |X , in order to achieve a capacity equal to H(X). In
order to do so, we will first show that under the conditions
described above, X and Y must be independent:

I(X; Y ) = H(X) − H(X|Y )

= H(X) − I(X; U |Y ) − H(X|U,Y )

= H(X) − H(X) = 0,

where we have used the fact that I(X; Y |U) = H(Y |U) −
H(Y |X, U) = 0 = H(X|U) − H(X|U, Y ), so H(X|U, Y ) =
H(X|U) = H(X), and where the last equality is due to
the independence of X and U . So, once we have shown
that X and Y are independent, we can write pX,Y (x, y) =
pX(x) · pY (y) = pX(x) · pX(y), as the perfect steganography
condition establishes that pY = pX . Therefore, systems
approaching a H(X) capacity must verify

X

U

pU,X,Y (u, x, y) = pX(x) · pX(y),

yielding the following embedding distortion

D∗
e =

X

x∈X ,y∈X

(x − y)2pX(x)pX(y) =
X

x∈X

x2pX(x)

+
X

y∈X

y2pX(y) − 2

 

X

x∈X

xpX(x)

!

·
 

X

y∈X

ypX(y)

!

= 2E{X2} − 2 (E{X})2

= 2Var{X},
which means that the maximum value of the capacity for
any perfect discrete steganographic system, i.e. H(X), is

achieved for a DWR of −3 dB. Obviously this is not a prac-
tical scenario, due to the large embedding distortion that
would be introduced, but it is useful for assessing the very
limits of a perfectly steganographic system and knowing its
asymptotic behavior.

3.2 Optimizations results
In order to study the performance of the perfectly stegano-

graphic system in more realistic situations, i.e. with larger
values of DWR, one must appeal to numerical optimization
tools. In this way, in Fig. 2 we have plotted the capacity of
a perfectly steganographic system, as well as the capacity of
the system with side information at the embedder and tak-
ing values only on the alphabet of the host signal, but with-
out the steganographic constraint. For illustration purposes,
here we have fixed the pmf of the host signal to a 4 symbols
alphabet, following the distribution pX(−3) = pX(3) = 0.05
and pX(−1) = pX(1) = 0.45, yielding a host entropy of
1.47 bits. Notice that for medium to high DWRs the dif-
ferences between the two capacities are negligible, meaning
that the steganographic constraint has nearly no impact on
the achievable rate. On the other hand, when the DWR is
reduced, the capacity of the steganographic system is up-
perbounded by the maximum capacity given above, i.e. the
entropy of the host signal, which in this case takes a value
of 1.47 bits, and is achievable, as it was previously said,
for a DWR of −3 dB. Therefore, one could think of upper-
bounding the capacity of the stegosystem by the minimum
of both the capacity of the side-informed system without the
steganographic constraint and the entropy of the host, ob-
taining a quite good approximation to the real capacity. An-
other choice for upperbounding the capacity of the stegosys-
tem when the codewords are regularly distributed, as it is in
the current case, is the capacity of a lattice-based commu-
nication system, meaning a system where the designer has
to assign a probability to each centroid of a given lattice (in
the current case 2Z), trying to maximize the entropy of the
resulting signal for a given variance. The advantage of this
last alternative is that it is independent of the pmf of the
host signal, as long as the the alphabet of the host signal is
a subset of the considered lattice.

We can also see that a by-product of the former reason-
ing is that the cardinality of the alphabet of U , U , must
verify |U| ≥ |X | in order to achieve a value of the capacity
equal to the entropy of the host signal. In fact, that value
of the capacity can be achieved when |U| = |X |, as we could
implement a scheme where the probability of the auxiliar
variables U followed the same distribution as X, being X
and U independent; if we take Y = U , it is obvious that the
perfect steganographic condition is achieved, and simultane-
ously the capacity has its maximum value (i.e., H(X)), as Y
is a function of U , and X and U are independent. This strat-
egy can be interpreted as a kind of dither modulation (DM)
[3] scheme where each message is related to a one-centroided
quantizer.

4. COMPUTATION OF A LOWER BOUND
ON THE CAPACITY OF A GAUSSIAN
PERFECT STEGOSYSTEM

In this section, we introduce some theoretical results on
the capacity of a perfect stegosystem based on Costa’s con-
struction [6] (therefore, assuming i.i.d. Gaussian host, wa-
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Figure 2: Comparison of the capacity of the per-

fectly steganographic system with the capacity of

the side-informed scheme using the host alphabet,

but without the steganographic constraint. The host

entropy and the capacity of the lattice-based com-

munication system are also shown.

termark and channel noise). This result has to be considered
as a lower bound to the capacity of a general steganographic
system, as we are fixing its structure without showing it is
optimal; nevertheless, the obtained results are asymptoti-
cally optimal (in the sense of approaching Costa’s result)
as the DWR goes to infinity, showing the interest of the
obtained bound.

The proposed scheme has the following structure:

Y = β(X + W), (2)

U = W + αX, (3)

Z = Y + N, (4)

where W is independent of X, so in order to achieve perfect

steganography, β must verify β =

r

σ2
X

σ2
X

+σ2
W

. On the other

hand, the embedding distortion De can be seen to be

De = E{||X − Y||2} = (1 − β)2σ2
X + β2σ2

W ,

yielding

σ2
W =

σ2
XDe(4σ2

X − De)

(De − 2σ2
X)2

, (5)

which imposes a condition on the range of DWRs where this
method could be implemented, as σ2

W ≥ 0, so De ≤ 4σ2
X ,

i.e. the DWR has to be greater or equal than −6 dB; this
condition is exactly the same as that implicitly obtained in
[14] for the Spread-Spectrum based scheme. Be aware that
this condition will be fulfilled in most practical scenarios.

Considering Gel’fand and Pinsker’s result [10], the capac-
ity of this system is given by

max I(U;Z) − I(U;X) = max h(Z) − h(Z|U)

− h(X) + h(X|U), (6)

where

h(Z) =
1

2
log[2πe(σ2

X + σ2
N)],

h(X) =
1

2
log[2πeσ2

X ].

On the other hand, for the computation of h(Z|U), we
can write Z = cU + V1, where V1 is a Gaussian random
variable independent of (orthogonal to) U. Considering this
decomposition, we can write

Z = cU + V1 = cW + cαX + V1 = β(X + W) + N,

so

V1 = X(β − cα) + W(β − c) + N,

yielding

Var{V1} = σ2
X(β − cα)2 + σ2

W (β − c)2 + σ2
N .

Furthermore, due to the independence of U and V1 we have

Var{Z} = Var{cU} + Var{V1}
= c2α2σ2

X + c2σ2
W + σ2

X(β − cα)2

+ σ2
W (β − c)2 + σ2

N

= σ2
X + σ2

N ,

where the last equality follows from (4) and the perfect
steganographic condition. Hence, c must take the value

c =

(De−2σ2
X )

σ2
X

[4ασ4
X + 4(1 − α)Deσ

2
X − (1 − α)D2

e ]

8α2σ4
X + 8(1 − α2)Deσ2

X − 2(1 − α2)D2
e

,

and the variance of V1 is given by

Var{V1} =

−(1 − α)2D4
e − 4(1 − α)D2

eσ2
X(−2(1 − α)De + σ2

N (1 + α))

4σ2
X(4α2σ4

X + 4(1 − α2)Deσ2
X − (1 − α2)D2

e

+
4(1 − α)Deσ

4
X(5(−1 + α)D2

e + 4(1 + α)σ2
N )

4σ2
X(4α2σ4

X + 4(1 − α2)Deσ2
X − (1 − α2)D2

e

+
16σ6

X ((1 − α)2De + α2σ2
N )

4σ2
X(4α2σ4

X + 4(1 − α2)Deσ2
X − (1 − α2)D2

e

.

Similarly, we can write X = dU + V2, with V2 a Gaussian
random variable independent of U:

X = dU + V2 = dW + dαX + V2,

so

V2 = (1 − dα)X− dW,

and

Var{V2} = (1 − dα)2σ2
X + d2σ2

W .

From the independence of V2 and U, we can write

Var{X} = Var{dU} + Var{V2}
= d2σ2

W + d2α2σ2
X + (1 − dα)2σ2

X + d2σ2
W

= σ2
X ,

implying that

d =
α

α2 +
De(4σ2

X
−De)

(2σ2
X

−De)2

,



in such a way that

Var{V2} =
Deσ

2
X(4σ2

X − De)

4α2σ4
X + 4(1 − α2)Deσ2

X − (1 − α2)D2
e

.

Therefore, (6) can be rewritten as

max I(U;Z) − I(U;X) = max
1

2
log

»

Var{Z}Var{V2}
Var{X}Var{V1}

–

, (7)

which is a function of σ2
X , De, σ2

N and α, so the last one
is the only parameter we can vary if we want to maximize
(7). The value of α that maximizes (7) is denoted by α∗ and
given by

α∗ =
De(4σ2

X − De)

4σ2
X(De + σ2

N) − D2
e

, (8)

which, when substituted into the rightmost term of (7),
yields the following achievable rate, that can be seen as a
lower bound for the capacity of a Gaussian stegosystem

1

2
log

„

1 +
De(4σ2

X − De)

4σ2
Xσ2

N

«

. (9)

It is straightforward to see that the steganographic con-
straint implies a loss in the performance of the presented
scheme compared with Costa’s original construction [6]; we
will quantify such gap with the increase in the WNR needed
to achieve a rate equal to Costa’s capacity (which is well
known to be the capacity of the AWGN channel), obtaining
that

Gap [dB] = −10 · log10

„

1 − De

4σ2
X

«

= −10 · log10

„

1 − 1

4DWR

«

. (10)

It is particularly interesting to note that when σ2
X goes to

infinity, then (10) goes to 0, and (9) approaches Costa’s
result, i.e.

lim
σ2

X
→∞

1

2
log

„

1 +
De(4σ2

X − De)

4σ2
Xσ2

N

«

=
1

2
log

„

1 +
De

σ2
N

«

,

showing that the proposed scheme is asymptotically optimal
from a capacity point of view, being simultaneously perfectly
steganographic. Furthermore, under the same conditions, it
is straightforward to see that

lim
σ2

X
→∞

α∗ = lim
σ2

X
→∞

De(4σ2
X − De)

4σ2
X (De + σ2

N ) − D2
e

=
De

De + σ2
N

,

which is nothing but the optimal value of α derived by Costa.
Finally, for comparing this asymptotic behavior with the

actual performance when a finite value of σ2
X is used, we

have plotted in Fig. 3 the capacity of the proposed scheme
as a function of the WNR for different small values of DWR.
This plot shows the closeness of the achievable rate to the
unconstrained capacity for values of the DWR as small as 5
dB. The distance between the plots for the different studied
DWRs is constant for all the range of WNRs, as it was shown
in (10), and its value can be observed in Fig. 4. In that
figure one can also see the quick decrease of that gap when
the DWR is increased; for example, even for small DWRs in
practical applications, as it could be the case of a DWR of
20 dB, the gap is as small as 0.01 dB. Furthermore, Fig. 5
plots the value of α used in the studied scenarios, showing
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Figure 3: Comparison of Costa’s capacity and the

obtained lower bound for different DWRs.

again that the larger DWR, the closer the obtained results
will be to Costa’s values.

5. ǫ-STEGANOGRAPHIC SYSTEMS
Based on the idea proposed by Cachin in [1] one could

weaken the requirement of a steganographic system to be
ǫ-steganographic, instead of perfectly steganographic. This
would provide the embedder with an additional degree of
freedom for increasing the achievable rate, so the expected
maximum rate will be larger than in the previous frame-
work. In this section we study this trade-off between the
steganographic constraint and the achievable rate, assum-
ing for the sake of simplicity that the watermarked signal is
still zero-mean Gaussian, but could have a variance differ-
ent from that of the original host signal. In this sense, our
analysis is giving again a lower bound to the true achiev-
able rate, as for a given value of ǫ, the embedder could also
modify the distribution of the watermarked signal, i.e. use
a non-Gaussian distribution.

Another question that demands some attention is the or-
der the pdfs appear in that Kullback-Leibler distance; given
that the KLD is not symmetric, the obtained result, and
therefore the achievable rate for a given ǫ, will be different
depending on whether we are computing D(fX(x)||fY(x))
or D(fY(x)||fX(x)). Although the initial proposal of Cachin
[1] uses the former, one could also think of using the latter,
so we will explore both cases.

5.1 Computation of the range of possible
variances

Let f1(x) denote the pdf of a length L Gaussian vector
having i.i.d. components with zero mean and variance σ2

1 .
Let f2(x) be a similar distribution with variance σ2

2 . In this
section we determine the range of values of σ2

2 such that the
KLD D(f1(x)||f2(x)) ≤ ǫL/2. This KLD is known to be
(e.g., see [14])

D(f1(x)||f2(x)) =
L

2
log

„

σ2
2

σ2
1

«

+
L

2
· σ2

1

σ2
2

− L

2
.
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In the App. A we show that when ǫ > 0 the function

g(x) = − log(x) + x − 1 − ǫ, x ≥ 0 (11)

has exactly two roots, which we denote by ϕ1(ǫ) and ϕ2(ǫ),
with ϕ1(ǫ) < 1 < ϕ2(ǫ). Furthermore, for any ǫ > 0, ϕ1(ǫ) ·
ϕ2(ǫ) < 1. Hence, the constraint D(f1(x)||f2(x)) ≤ ǫL/2
implies that for a given value of σ2

1 , the variance σ2
2 must

verify

σ2
1ϕ1(ǫ) ≤ σ2

2 ≤ σ2
1ϕ2(ǫ), (12)

where ϕ1(ǫ) and ϕ2(ǫ) are respectively the lower and upper
roots of (11). A further characteristic of ϕ1(ǫ) and ϕ2(ǫ) is
that for any ǫ > 0, ϕ1(ǫ)·ϕ2(ǫ) < 1, as it is shown in App. A.

This result just mathematically quantifies how much the
variances of two zero-mean Gaussian distributions can differ
each other in order to have a KLD smaller or equal than
a given value. As it would be intuitively expected, once
the variance of one of the Gaussian random vectors is fixed,
this automatically defines an interval for the variance of the
second random variable. Notice that the variance of the first
random variable is always included in such interval, as when
the two variances coincide, the KLD is null.

5.2 Computation of the maximum achievable
rate for a generic power of the watermarked
signal

Once we have established the interval of possible variances
that will verify the ǫ-steganographic constraint, we have to
choose that variance of the watermarked signal which, be-
longing to this interval, maximizes the achievable rate. In
fact, in order to do so, we will use the same strategy fol-
lowed in Sect. 4, i.e. a scheme based on Costa’s construc-
tion. Once again, note that the fact that we are dealing
with a specific family of distributions, namely Gaussians,
and using this particular scheme implies that the obtained
achievable rate is just a lower bound to the true capacity of
the ǫ-steganographic system.

In the proposed scheme the embedding process is still
modeled by equations (2) to (4), so the embedder is free
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Figure 5: Comparison of Costa’s α and the obtained

one for different DWRs.

to choose the value of β to satisfy the steganographic con-
straint. If we want the watermarked signal to have a generic

power σ2
Y , then we have to make β =

r

σ2
Y

σ2
X

+σ2
W

. In that

case, the variance of W is given by

σ2
W =

σ2
X [2De(σ

2
X + σ2

Y ) − D2
e − (σ2

Y − σ2
X)2]

(σ2
X + σ2

Y − De)2
,

so, given that σ2
W ≥ 0, De must verify, (σY − σX)2 ≤ De ≤

(σY + σX)2.
For computing the maximum achievable rate we will use a

procedure similar to that in the previous section, i.e. we will
compute the variances of Z, V1, X and V2, and afterwards
we will optimize the right hand side of (7).

In order to determine the variance of V1 we have first to
compute the variance of Z, and then compute the parameter
c described in the previous section. Following a procedure
similar to that in Sect. 4, it is easy to see that

Var{Z} = c2α2σ2
X + c2σ2

W + σ2
X(β − cα)2 + σ2

W (β − c)2

+ σ2
N = σ2

Y + σ2
N ,

so c will be now given by

c =

σ2
X+σ2

Y −De

σ2
X

„

2σ2
Y [De(1 − α) + σ2

X(1 + α)]

«

4[(1 − α2)De + σ2
X(1 + α2)] − 2(1 − α2)[(De − σ2

X)2 + σ4
Y ]

σ2
X+σ2

Y −De

σ2
X

„

− (1 − α)σ4
Y − (1 − α)(De − σ2

X)2
«

4[(1 − α2)De + σ2
X(1 + α2)] − 2(1 − α2)[(De − σ2

X)2 + σ4
Y ]

,



yielding the following variance of V1

Var{V1} = [2De(σ
2
X + σ2

Y ) − D2
e − (σ2

Y − σ2
X)2]

· (σ2
X + σ2

Y − De)
2(1 − α)2

·
 

4σ2
X

„

2σ2
Y [De(1 − α2) + σ2

X(1 + α2)]

− (1 − α2)[(De − σ2
X)2 + σ4

Y ]

«

!−1

+ σ2
N .

On the other hand, for the computation of the variance of
X given U, we still have that

Var{X} = d2σ2
W + d2α2σ2

X + (1 − dα)2σ2
X + d2σ2

W = σ2
X ,

so following a reasoning similar to that used in the previous
section, d will be now given by

d =
α(σ2

X + σ2
Y − De)

2

2[(1 − α2)De + σ2
X(1 + α2)] − (1 − α2)[(De − σ2

X)2 + σ4
Y ]

,

and the aforementioned variance can be shown to be

Var{V2} =

σ2
X [2De(σ

2
X + σ2

Y ) − D2
e − (σ2

X − σ2
Y )2]

2[(1 − α2)De + σ2
X(1 + α2)] − (1 − α2)[(De − σ2

X)2 + σ4
Y ]

.

The resulting maximum achievable rate is computed using
the rightmost term of (7), and it is maximized when

α∗ =
D2

e + (σ2
X − σ2

Y )2 − 2De(σ
2
X + σ2

Y )

D2
e − 4σ2

Nσ2
X + (σ2

X − σ2
Y )2 − 2De(σ2

X + σ2
Y )

,

taking the following maximum value

1

2
log

„

1 +
2De(σ

2
X + σ2

Y ) − (σ2
X − σ2

Y )2 − D2
e

4σ2
Nσ2

X

«

. (13)

An important observation in (13) is that it is a concave
function of σ2

Y , achieving its maximum when σ2
Y = σ2

X +De.
This implies that when σ2

Y is constrained to take values on
a finite interval as that given by (12), the embedder should
use σ2

Y = σ2
X + De when it were feasible, and otherwise

the maximum possible value. In the first case β = 1, so the
proposed scheme is reduced to Costa’s construction, and the
capacity is achieved. On the other hand, when ǫ = 0, i.e. for
the perfect stegosystem one has σ2

Y = σ2
X , so the analysis in

Sect. 4 can be seen as just a particular case of that made in
this section. In the general case, the gap to capacity can be
measured as

Gap [dB] = −10 · log10

0

@

2(σ2
X + σ2

Y ) − (σ2
X−σ2

Y )2

De
− De

4σ2
X

1

A .

5.3 Computation of the variance of the
watermarked signal

So far we have analyzed what is the relation between
the variances of two Gaussian random variables for a given
Kullback-Leibler distance, what is the achievable rate for a
given σ2

Y , and, given a range of possible values of σ2
Y , what

is value of σ2
Y the embedder will be interested in choosing

in order to maximize the achievable rate. Nevertheless, this
range of possible values of σ2

Y will depend on the consid-
ered KLD, i.e. on whether the constraint is given in terms
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of D(fX(x)||fY(x)) or D(fY(x)||fX(x)). Next, we discuss

the optimal value of σ2
Y for both cases:

• D(fX(x)||fY(x)) ≤ L · ǫ/2: In this case σ2
1 = σ2

X and

σ2
2 = σ2

Y , so

σ2
Y = min{σ2

Xϕ2(ǫ), σ
2
X + De}.

• D(fY(x)||fX(x)) ≤ L · ǫ/2: Now σ2
1 = σ2

Y and σ2
2 =

σ2
X , yielding that

σ2
Y = min



σ2
X

ϕ1(ǫ)
, σ2

X + De

ff

.

From the obtained values of σ2
Y , and given that ϕ1(ǫ) ·

ϕ2(ǫ) < 1, a particularly interesting conclusion of this sec-
tion is that the constraint on D(fY(x)||fX(x)) for a stegano-
graphic system will produce more optimistic results, in the
sense that the values of σ2

Y will be larger than when the
constraint is given in terms of D(fX(x)||fY(x)).

Finally in Fig. 6 one can compare the gap to capacity of
the perfect steganographic scheme, and the ǫ-steganographic
ones, for both choices of the KLD, i.e. D(fX(x)||fY(x))
and D(fY(x)||fX(x)), for ǫ = 0.1 and ǫ = 0.01. As it
was expected, the obtained results for the ǫ-steganographic
system with ǫ = 0.01 are closer to those of the perfect
steganographic one, than those corresponding to ǫ = 0.1.
Another interesting parameter is the point where Costa’s
capacity can be achieved, i.e., that value of DWR which
makes possible to have σ2

Y = σ2
X + De, cancelling the gap,

or, in other words, achieving Costa’s capacity. When ǫ =
0.1, those values are 2.872 dB and 2.068 dB, while for ǫ =
0.01, 8.293 dB and 8.0730 dB, for D(fX(x)||fY(x)) and
D(fY(x)||fX(x)), respectively. These results confirm that
the use of D(fY(x)||fX(x)) is somewhat optimistic, com-
pared to D(fX(x)||fY(x)).



6. LATTICE-BASED STEGANOGRAPHIC
SYSTEMS

Although the results obtained in the two previous sec-
tions have a great theoretical interest, as they show how
quickly the capacity of a Gaussian steganographic system
can approach Costa’s capacity when the DWR is increased,
their practical application is quite limited, due to the ran-
dom construction of the codebook and the assumption of a
Gaussian-distributed host. In this section we analyze the use
of a practical scheme, based on lattice-quantization, for con-
structing a stego-system with a high achievable rate. This
scheme solves the complexity problem raised by the random
construction of Costa’s scheme. On the other hand, for the
sake of tractability, we will maintain our assumption of an
i.i.d. Gaussian host.

To the best of authors’ knowledge the studied scheme was
introduced by the first time by Wang and Moulin in [14],
where it is proposed that the output of DC-QIM [3] undergo
a postprocessing stage to obtain a watermarked signal with
the same power as the original host. However, the results in
[14] are only numerical and restricted to the use of uniform
scalar quantizers. Both the loss in the achievable rate and
the resulting KLD are not analyzed in [14] either.

In this section we propose the use of more sophisticated
lattices; specifically, we will use the dirty paper trellis coding
scheme introduced by Erez and ten Brink in [8], and applied
in [5] to data hiding scenarios. Based on the fact that when
the number of dimensions goes to infinity there is a sequence
of lattices whose normalized second moment goes to 1

2πe
[9],

i.e. whose Voronoi regions tend to hyperspheres, one could
think of using those lattices for embedding the information
in steganographic schemes. In this way, the distribution of
the watermark will resemble the distribution of the Gaussian
host. Moreover, recalling the result in [9] that shows that
Costa’s capacity can be achieved by using lattice-based sys-
tems, the embedder will be able to simultaneously increase
the achievable rate and reduce the KLD between the original
host signal and the watermarked one.

6.1 Proposed method
In the classical version of DC-QIM, the watermark is con-

structed as

W = [T − αX − D] mod Λ,

where Λ is the lattice used for quantizing, D is a dither
vector uniformly distributed over the Voronoi region of Λ
(usually denoted by V(Λ)), α is a scaling parameter, and T

is a vector mapping the message to be embedded. Now, the
watermarked signal is given by

Y = X + W,

and the decoder will observe the attacked signal, modeled
as

Z = Y + N,

where the noise vector N is assumed to be i.i.d. Gaussian
with variance σ2

N .
On the other hand, in the proposal of Wang and Moulin

[14] the watermarked signal is given by

Y = β(X + W),

where β =

r

σ2
X

σ2
X

+σ2
W

, and σ2
W is the second moment of the

lattice Λ. Therefore, the embedding power is

De = (1 − β)2σ2
X + β2σ2

W ,

so σ2
W can be written as a function of De and σ2

X ,

σ2
W =

σ2
XDe(4σ2

X − De)

(De − 2σ2
X)2

, (14)

coinciding with the value obtained in (5) for the perfectly
steganographic system based on Costa’s construction; as
in that case, the proposed analysis only makes sense when
DWR ≥ −6 dB.

One question that was not addressed in [14], but which
needs to be solved is how the received signal is processed
before performing the decoding, as the scaling by β would
be modifying the considered codebook. In this paper we
will use the most immediate procedure, that amounts to
rescaling the received signal. Nevertheless, we would like to
remark that this may be a non-optimal strategy if one wants
to maximize the achievable rate. Hence, we will analyze the
case where the decoding is based on the random variable1

Z
′ =

»

αZ

β
+ D

–

mod Λ. (15)

6.2 Achievable rate analysis
In order to compute the achievable rate, we need to char-

acterize the random variable Z′. From (15) we can see that

Z
′ =

»

αX + αW +
αN

β
+ D

–

mod Λ

=

»

T− (1 − α)W +
αN

β

–

mod Λ

=
ˆ

T + N
′˜ mod Λ,

where N′ is defined as

N
′
,

»

−(1 − α)W +
αN

β

–

mod Λ.

Given that the achievable rate is given by

1

L
I(T;Z′) =

1

L
h(Z′) − 1

L
h(Z′|T), (16)

we can follow the reasoning in [9] to establish that the achiev-
able rate is maximized when T ∼ U(V(Λ)). On the other
hand, we can bound

1

L
h(Z′|T) =

1

L
h(N′) ≤ 1

L
h

„

−(1 − α)W +
αN

β

«

≤ 1

2
log

„

2πe

»

(1 − α)2σ2
W +

α2σ2
N

β2

–«

.

With the previous considerations in mind, the achievable
rate can be bounded like

1

L
I(T;Z′) ≥ 1

2
log

„

σ2
W

G(Λ)

«

− 1

2
log

„

2πe

»

(1 − α)2σ2
W +

α2σ2
N

β2

–«

,(17)

1This choice is equivalent to making the decision based on
the variable [αZ + βD] mod (βΛ).



where we have used the fact that Z′ is uniformly distributed
over V(Λ). Therefore, the embedder will be interested in
looking for the value of α that maximizes (17), which after
replacing σ2

W in (17) by the rightmost term of (14) can be
shown to be

α∗ =
De(4σ2

X − De)

4σ2
X(De + σ2

N) − D2
e

, (18)

which is the same value obtained in Sect. 4 when the random
codebook based stegosystem was analyzed. Replacing α∗ in
(17), one obtains

1

L
I(T;Z′) ≥ 1

2
log

„

1 +
De(4σ2

X − De)

4σ2
Xσ2

N

«

− 1

2
log(2πeG(Λ)).

Finally, as it was previously said, there is a sequence of lat-
tices such that G(Λ) → 1

2πe
when the number of dimensions

goes to infinity, so we can lower-bound the achievable rate
of the proposed system by

1

L
I(T;Z′) ≥ 1

2
log

„

1 +
De(4σ2

X − De)

4σ2
Xσ2

N

«

. (19)

It is remarkable that the maximum achievable rate in this
case coincides with that obtained in Sect. 4, so the con-
clusions extracted there are still valid in this framework, in-
cluding our comments regarding the gap to capacity. There-
fore, when the DWR goes to infinity, the rightmost term
of (19) approaches Costa’s capacity, implying that the pro-
posed scheme is asymptotically optimal. The behavior of
the achievable rate, the gap to capacity, and the value of α∗

can be checked for finite values of DWR in Fig. 3-5, respec-
tively, as their values coincide with the computed ones for
Costa’s construction based scheme, when the dimensionality
of the problem goes to infinity.

This result shows that the equivalence in the performance
of random codebooks and lattice-based schemes (with lat-
tices going to hyperspheres) is not only applicable to data
hiding capacity computation, but also to the computation
of the maximum achievable rate of stegosystems.

6.3 Analysis of the steganographic constraint
So far we have shown, from the point of view of the achiev-

able rate, the advantages of using lattices whose Voronoi
regions tend to hyperspheres. In this section we show the
advantages of those lattices also for verifying the stegano-
graphic constraint. The intuitive idea is that a random vari-
able uniformly distributed over a hypersphere, as for exam-
ple the watermark obtained using the mentioned lattices,
tends assymptotically to a Gaussian distribution when the
dimensionality goes to infinity. Therefore, it is expected
that the more similar the Voronoi region of the lattice is to
a hypersphere, the lower the KLD between the host and the
watermarked signals will be.

In Fig. 7 we can see D(fX(x)||fY(x)) for three differents
schemes: the basic DC-DM based on uniform scalar quan-
tizers without scaling, DC-DM also based on uniform scalar
quantizers but scaling by β, and the method by Erez and
ten Brink [8] also with scaling. In this last case one can
observe a floor in the KLD; this floor is due to the empiri-
cal computation of the KLD for this scheme. Nevertheless,
for the range of DWRs where that floor is not present, the
KLD obtained for Erez and ten Brink’s lattice is much lower
(about one order of magnitude) than the one obtained for
uniform scalar DC-DM with scaling. Finally, as expected,
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Figure 7: D(fX(x)||fY(x)) obtained using Erez and

ten Brink’s scheme scaled by β, DC-DM using uni-

form scalar quantizers also scaled by β, and DC-DM

using uniform scalar quantizers without scaling.

the results obtained for DC-DM without scaling are worse
that those obtained with scaling.

In the final version of the paper, we will introduce theo-
retical approximations to these plots.

7. CONCLUSIONS
In this paper we have tried to shed some light on the open

question of stegosystems capacity. Accurate lower bounds
have been provided, both for the discrete and for the con-
tinuous Gaussian case. Some of the main conclusions we
obtained are the following:

• For the discrete case, the capacity of the stegosystem
is bounded by the entropy of the host signal. The
capacity can take that value for values of DWR smaller
or equal than −3 dB. Accurate approximations to the
real capacity were provided.

• In the Gaussian case we proposed a stegosystem based
on Costa’s construction, which is shown to provide an
achievable rate very close to Costa’s capacity, being
this gap reduced when the DWR is increased.

• The maximum achievable rate for the ǫ-steganographic
version of the previous scheme is also analyzed. As
it was expected, the obtained values in that case are
closer to Costa’s capacity, as the embedder will have
an additional degree of freedom.

• Finally, the use of lattice-based data hiding is shown
to be a good choice for performing steganography, spe-
cially when one works with lattices whose Voronoi re-
gions tend to hyperspheres. In this case, the achiev-
able rate is maximized, coinciding with that obtained
by Costa’s based construction, and simultaneously the
KLD between the original host signal and the water-
marked one seems to be minimized.
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APPENDIX

A. PROOF OF THE PROPERTIES OF ϕ1(ǫ)

AND ϕ2(ǫ).
Given the continuous and concave nature of g(x), the fact

that it is not bounded, and that it achieves its minimum at
x = 1, where it is equal to −ǫ, g(x) has just a root in x = 1
if ǫ = 0 (implying σ2

1 = σ2
2 , as it was expected), and two

roots, one larger and other smaller than 1, when ǫ > 0.
On the other hand, when ǫ > 0, given that g(x) is strictly

increasing for x ∈ (1,∞), the inequality ϕ1(ǫ) · ϕ2(ǫ) < 1,
can be seen to be equivalent to

g

„

1

ϕ1(ǫ)

«

> 0,

or, equivalently

ϕ1(ǫ) +
1

ϕ1(ǫ)
− 2(1 + ǫ) > 0, (20)

where we have used the fact that log(ϕ1(ǫ)) = ϕ1(ǫ)− 1− ǫ.
In order to prove (20) we will follow the Reductio ad absur-

dum argument, assuming that g
“

1
ϕ1(ǫ)

”

≤ 0, and showing

then that it is not possible.

If g
“

1
ϕ1(ǫ)

”

≤ 0, then from (20) it must be verified that

ϕ1(ǫ) ∈ [1 + ǫ −
√

2ǫ + ǫ2, 1 + ǫ +
√

2ǫ + ǫ2]. Given that by
definition ϕ1(ǫ) < 1, then the previous range can be reduced
to [1 + ǫ−

√
2ǫ + ǫ2, 1). If one computes g(1+ ǫ−

√
2ǫ + ǫ2)

is easy to show that it is negative (as it is 0 for ǫ = 0, and its
derivative with respect to ǫ is negative). From the fact that
g(x) is strictly decreasing for x ∈ (0, 1), it is straightforward
to see that g(x) < 0 for any x ∈ [1 + ǫ −

√
2ǫ + ǫ2, 1), so it

is not possible that ϕ1(ǫ) belongs to that interval.


