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Abstract—We develop channel estimation agorithms for mil-
limeter wave (mmWave) multiple input multiple output (MIMO)
systems with one-bit analog-to-digital converters (ADCs). Since
the mmWave MIMO channel is sparse due to the propagation
characteristics, the estimation problem is formulated as a one-
bit compressed sensing problem. We propose a modified EM
algorithm that exploits sparsity and has better performance than
the conventional EM algorithm. We also present a second solution
using the generalized approximate message passing (GAMP)
algorithm to solve this optimization problem. The simulation
results show that GAMP can reduce mean squared error in the
important low and medium SNR regions.

I. INTRODUCTION

Millimeter wave (mmWave) communications is a promis-
ing technology for the future outdoor cellular systems due
to its huge bandwidth. As larger bandwidths are used, the
corresponding sampling rate of the analog-to-digital converters
(ADCs) scales up. High speed (e.g., ≥ 1 GSamples/s), high
precision (e.g., ≥ 6 bits) ADCs are either unavailable, or may
be too costly and power-hungry for portable devices [1], [2].
A possible solution is to simply employ one-bit ADCs which
have low power consumption and cost.

In this paper, we consider a multiple-input multiple-output
(MIMO) systems with one-bit ADCs, which only output the
signs of the inphase and quadrature baseband signals. The
main advantage of this architecture is the ADCs can be
implemented with very low power consumption [3]. It also
simplifies the overall complexity of the circuit, for example
automatic gain control may not be required. The use of one-
bit ADCs results in performance loss of the communication
systems compared to perfect ADCs (the ADCs with infinite
precision). The capacity of one-bit quantized single-input
single-output (SISO) channel was studied in [4] where it was
shown that at low SNR, there is only −1.96 dB power loss due
to one bit quantization. The capacity in the high SNR regime
was studied in our previous work [5]. We found that the high
SNR capacity of SIMO channel grows logarithmically with
the number of the receiver antennas. For the mmWave MIMO
channel, the high SNR capacity increases with the number of
paths in the channel.

In our previous work [5], we proposed to design the input
constellation to maximize the channel capacity. To perform
such optimization, channel state information (CSI) is required

at the transmitter. An effective way to estimate the SISO chan-
nel is to use dithering for combating the severe non-linearity
of low-precision quantization [6]–[8]. For the MIMO channel,
a pilot-based channel estimation method using expectation-
maximization (EM) algorithm was proposed and analyzed in
[9]–[11]. These papers [7]–[11] considered the MIMO channel
with small antenna arrays in lower frequency UHF (ultra high
frequency) band and thus did not take into account specific
features of mmWave channels.

In this paper, we propose channel estimation methods for
mmWave MIMO channels when one-bit ADCs are used at the
receiver. In the mmWave channel, there are fewer paths in the
channel and large antenna arrays are deployed at the transmit-
ter and receiver [12]. Therefore the channel is ‘sparse’ in the
angular domain and assuming perfect sparsity we propose to
design low complexity channel estimation algorithms. In [13],
an adaptive algorithm was proposed to estimate the mmWave
channel parameters with hybrid analog/digital beamforming
and perfect ADCs. Here, we consider the channel estimation
problem with one-bit ADCs and all digital combining at the
receiver. A modified EM algorithm exploiting the sparsity
is proposed and achieves better performance than the con-
ventional EM algorithm. In addition, we apply an efficient
algorithm called generalized approximate message passing
(GAMP) [14] to our problem. The GAMP algorithm has the
best performance in the low and medium SNR regions.

Notation : a is a scalar, a is a vector and A is a matrix.
tr(A), AT , A∗ and ||A||F represent the trace, transpose,
conjugate transpose and Frobenius norm of a matrix A,
respectively. A⊗B denotes the Kronecker product of A and
B. vec(A) is a vector stacking all the columns of A.

II. SYSTEM MODEL

Consider the Nt × Nr MIMO system with one-bit quan-
tization shown in Fig. 1. The narrowband baseband received
signal is

y = Hx + n, (1)

where H ∈ CNr×Nt is the channel matrix, x ∈ CNt×1 is the
transmitted symbol with power E[x∗x] = PT, y ∈ CNr×1 is
the received symbol and n ∼ CN (0, I) is the noise. With the
one-bit ADCs, the receiver will obtain

r = sgn(y), (2)
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Fig. 1. A Nt ×Nr MIMO system with one-bit quantization at the receiver.
For each receiver antenna, there are two one-bit ADCs. Note that there is no
limitation on the structure of the transmitter.

where sgn(·) is the signum function applied component-wise
and separately to the real and imaginary parts. The quantiza-
tion output at the ith antenna is ri ∈ {1+j, 1−j,−1+j,−1−j}
where j =

√
−1. Our aim is to estimate the channel H based

on our observations r and the training signal x.
The mmWave channel can be modelled using a ray-based

model with L paths. Denote α`, ϕr`(or θr`), ϕt`(or θt`) as the
strengths, the azimuth (or elevation) angles of arrival and the
angle of departure of the `th path, respectively. In the case of
a uniform planar array (UPA) in the yz-plane consisting of
Y × Z elements on the y and z axes respectively, the array
response vector at the transmitter at or receiver ar is given by
[15]

a(ϕ, θ) =
1√
N

[
1, · · · , ej 2πλ d(m sin(ϕ) sin(θ)+n cos(θ)), · · · ,

ej
2π
λ d((Y−1) sin(ϕ) sin(θ)+(Z−1) cos(θ))

]T
, (3)

where λ is the wavelength, d is the inter-element spacing,
0 ≤ m < Y and 0 ≤ n < Z are the y and z indices of an
antenna element respectively. Hence, the channel matrix is,

H =

L∑
`=1

α`ar(ϕr`, θr`)a
∗
t (ϕt`, θt`) (4)

= ArΣA∗t , (5)

where Ar = [ar(ϕr1, θr1),ar(ϕr2, θr2), · · ·ar(ϕrL, θrL)],
Σ = diag(α1, α2, · · · , αL) and At =
[at(ϕt1, θt1),at(ϕt2, θt2), · · ·at(ϕtL, θtL)].

The mmWave channel will mostly be line-of-sight (LOS),
near LOS, or consists of a single reflected path [16]. Large
antenna arrays are usually deployed to obtain beamforming
gain for combating the higher path loss. It seems plausible
to have 256 antennas at the base station and 32 antennas at
the mobile station in future mmWave cellular networks [17].
Hence, we usually have L� min{Nr, Nt}.

The virtual channel representation [18] of H is,

H = UrHvU
∗
t , (6)

where Ur ∈ CNr×Nr and Ut ∈ CNt×Nt are unitary Discrete
Fourier Transform (DFT) matrices, Hv ∈ CNr×Nt is the
virtual channel matrix. The Fourier transformation in (6) can
be seen as a mapping from the antenna domain onto an
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Fig. 2. This figure shows the amplitude of each entry in the virtual channel
Hv in a 256×32 mmWave channel with 2 paths. The transmitter is equipped
with a 16× 16 UPA and the receiver is equipped with a 16× 2 UPA.

angular domain, and the entries of the matrix Hv can be
interpreted as the channel gains between the Nt transmit and
the Nr receive beams. Fig. 2 shows an example of Hv in a
256× 32 mmWave channel with 2 paths. The virtual channel
Hv contains 2 clusters of entries with large amplitude, each
of which corresponds to one path [18].

In this paper, we make a strong assumption that the array
response vectors are along the directions defined in the DFT
matrices. With this assumption, Hv is perfectly sparse, i.e.,
has exactly L nonzero entries. Each element of Hv, denoted as
hij , is assumed to follow the Bernoulli-Gaussian distribution.
The prior information about Hv is,

hij = (1− η)δ(hij) +
η

πσ2
L

e
−

|hij |
2

σ2
L (7)

where δ(·) is the delta function, η = L
NtNr

represents the
probability that hij 6= 0 and σ2

L is determined by the average
channel gain.

III. MAIN RESULTS

Noting that the channel H has the structure in (6), we
propose a heuristic method to design the training sequence,
denoted as X ∈ CNt×K where K is the length of the training
sequence. Let X = UtZ. Then, the received signal at the
receiver is

R = sgn (HX + N) (8)
= sgn (UrHvU

∗
tUtZ + N) (9)

= sgn (UrHvZ + N) , (10)



where N ∈ CNt×K is the i.i.d. Gaussian noise.
Through vectorization,

vec(R) = sgn (vec (UrHvZ + N))
(a)
= sgn

((
ZT ⊗Ur

)
vec(Hv) + vec(N)

)
,(11)

where (a) follows from the equality vec(ABC) =(
CT ⊗A

)
vec(B).

We rewrite the complex-valued (11) in real-valued form as

r = sgn (Wh + n) , (12)

where

r =

[
Re(vec(R))
Im(vec(R))

]
,h =

[
Re(vec(Hv))
Im(vec(Hv))

]
,

n =

[
Re(vec(N))
Im(vec(N))

]
,

and W =

[
Re(ZT ⊗Ur) −Im(ZT ⊗Ur)
Im(ZT ⊗Ur) Re(ZT ⊗Ur)

]
.

The channel estimation problem is: estimate h given the
equivalent training matrix Z, DFT matrix Ur and the quantized
noisy received signal r. The problem is similar to the one-bit
compressed sensing problem [19]–[21].

The conditional probability of r given h is

p (r|h) =

2Nr∏
i=1

Φ

(
riw

T
i h

σ

)
, (13)

where wT
i is the ith row of W, σ2 = 1

2 is the variance of
the real-valued noise n and Φ(·) is the normal cumulative dis-
tribution function. By setting the derivative of the log p (r|h)
to zero, the maximal-likelihood (ML) estimator ĥML should
satisfy the following equation,

2Nr∑
i=1

wiri
e−

(wTi ĥ)2

2σ2

Φ
(
riwTi ĥ

σ

) = 0. (14)

It is hard to find a closed form expression of ĥML except for
simple SISO and 2× 2 MIMO channel [10], [11].

In this paper, we implement three iterative algorithms to
estimate h. The first one is the EM algorithm proposed in [9]–
[11]. The steps of the EM algorithm are shown in Algorithm
1. The EM algorithm is sensitive to the initial value and may
converge to a local optimum. Note that the prior information
that h is sparse is not used in the EM algorithm.

The second algorithm is the modified EM algorithm. The
proposed algorithm is same as the EM algorithm except that
in the maximization step, matching pursuit method is used
to find the major nonzero components of h. The sparsity
of h is exploited to reduce the mean estimation error. In
the simulations, we also find this modified EM algorithm is
insensitive to the initialization.

The last one is the generalized approximate message passing
(GAMP) algorithm [14], which decomposes the vector-valued
estimation problem into a sequence of scalar problems. GAMP
is applicable to estimation problems with linear transform and

component-wise nonlinearities. In addition, GAMP converges
very fast (less than 25 steps in most cases). In the GAMP
algorithm, the prior information about the distribution of h in
(7) is exploited. The parameters η and σ2

L can be learned by
EM-GAMP algorithm [22] if they are unknown.

Algorithm 1 Expectation-Maximization algorithm

1: Initialize ĥ to a random vector.
2: Repeat

(a) Expectation step:
Compute the minimum mean square estimator of y:

ŷi = E
[
yi|r,W,h = ĥ

]
(15)

= wT
i ĥ + ri

σ√
2π

e−
(wTi ĥ)2

2σ2

Φ
(
riwTi ĥ

σ

) . (16)

(b) Maximization step:
Compute the maximum likelihood estimator of h:

ĥ =
(
WTW

)−1
WTy. (17)

3: Until ĥ converges.

Algorithm 2 Modified Expectation-Maximization algorithm

1: Initialize ĥ to a random vector.
2: Repeat

(a) Expectation step:
Compute the minimum mean square estimator of y as
in the EM algorithm.

(b) Use matching pursuit method to find ĥ.
3: Until ĥ converges.

IV. SIMULATION RESULTS

We consider the channel estimation problem in a 32 × 8
mmWave MIMO system. The transmitter is equipped with a
8 × 4 UPA and the receiver is equipped with a 4 × 2 UPA.
Throughout the simulations, E[||H||2F ] = NtNr.

The training matrix Z ∈ CNt×K is composed of rows of
Walsh-Hadamard matrix. Therefore, WTW = KPT

Nt
I2NtNr

is a diagonal matrix and the computation of (17) can be
simplified.

In the simulations, we compare several different algorithms:
i) GAMP with one-bit ADCs,
ii) EM algorithm with one-bit ADCs,
iii) Modified EM algorithm with one-bit ADCs,
iv) Lasso algorithm [23] with perfect ADCs,
v) ML estimation with perfect ADCs.
In the last two schemes, we assume that there are perfect

ADCs. In other words, the receiver knows y instead of r.
The performance metric is the normalized mean square error

(MSE), given by E
[
‖ĥ−h‖2
‖h‖2

]
where ĥ is the estimation of h.

In Figs. 3, 4 and 5, we compare these algorithms when
the length of the training sequence is 64, 128 and 256,
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Fig. 3. Performance comparison of different algorithms when there are L = 2
paths in the channel and the training signal has length K = 64.
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Fig. 4. Performance comparison of different algorithms when there are L = 2
paths in the channel and the training signal has length K = 128.

respectively. In these figures, L = 2 which means that there
are 2 non-zero entries in the virtual channel realization Hv.

First, we find that the GAMP algorithm has much better
performance than EM and modified EM algorithm, especially
in the low and medium SNR regions. Actually, when the SNR
is less than 0 dB, the normalized MSE of GAMP algorithm
is even close to that of Lasso algorithm with perfect ADCs.
Thus, GAMP is a promising algorithm for channel estimation
with one-bit ADCs.

Second, the modified EM algorithm has better performance
than the conventional EM algorithm in the low and medium
SNR regimes. The reason is that the sparsity of h is taken into
account in the modified EM algorithm. For the same reason,
the Lasso algorithm with perfect ADCs performs better than
the ML estimation with perfect ADCs.

Third, as the length increases from K = 64 to 128 and 256,
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Fig. 5. Performance comparison of different algorithms when there are L = 2
paths in the channel and the training signal has length K = 256.
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Fig. 6. Performance comparison of different algorithms when there are L = 1
paths in the channel and the training signal has length K = 128.

there is about 3 dB and 6 dB power gain, respectively.
Last, we find that for the GAMP and EM and modified

EM algorithms, there exists an optimal SNR achieving the
minimum normalized MSE. The reason is that the one-bit
ADC is a highly nonlinear system and noises may be helpful in
this kind of nonlinear systems. At high SNR, αh (α > 1) and
h will lead to almost the same one-bit quantization output r.
Therefore, αh and h are not distinguishable and the amplitude
information is lost. However, in the low and medium SNR,
αh and h will lead to different quantization outputs and the
amplitude of h can be somehow recovered. This phenomenon
is known as stochastic resonance [24]. For the ML estimator
without quantization, which is a linear system, the MSE
decreases as SNR increases as expected.

Figs. 6 and 7 show the performance of these three schemes
when there is 1 path and 4 paths in the channel, respectively.
We find that the performance of the algorithms is similar to
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Fig. 7. Performance comparison of different algorithms when there are L = 4
paths in the channel and the training signal has length K = 128.

the case of L = 2 shown in Fig. 4.

V. CONCLUSION

In the paper, we proposed a solution for channel estimation
in the mmWave MIMO channel with one-bit ADCs. The
mmWave MIMO channel has the property of sparsity and the
compressed sensing techniques can be used. We proposed a
modified EM algorithm, which take into account the sparsity
and has better performance than the conventional EM algo-
rithm. We also proposed to use a computationally efficient
algorithm, i.e., GAMP algorithm. In the simulations, we found
that GAMP has the best performance in the low and medium
SNR regions.

A key assumption in our paper is that each entry in the
virtual channel Hv follows i.i.d. Bernoulii Gaussian distribu-
tion. If the array response vector does not exactly follow the
directions defined in the two DFT matrices, there is ‘leakage’
and each path does not correspond to a single element in Hv.
In addition, each path has angular spread in the mmWave
channel and may correspond to several adjacent entries. Our
future work will consider these cases. A possible solution is
to make Hv sparse by a windowing approach [25].
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