
A Two–Objective Evolutionary Approach based on

Topological Constraints for Node Localization in

Wireless Sensor Networks

Massimo Vecchioa,∗, Roberto López-Valcarcea, Francesco Marcellonib

aDepartamento de Teoŕıa de la Señal y las Comunicaciones, University of Vigo,
C/ Maxwell s/n, 36310 Vigo - SPAIN

bDipartimento di Ingegneria dell’Informazione, University of Pisa,
Via Diotisalvi 2, 56122 Pisa - ITALY

Abstract

To know the location of nodes plays an important role in many current and
envisioned wireless sensor network applications. In this framework, we con-
sider the problem of estimating the locations of all the nodes of a network,
based on noisy distance measurements for those pairs of nodes in range of
each other, and on a small fraction of anchor nodes whose actual positions are
known a priori. The methods proposed so far in the literature for tackling this
non-convex problem do not generally provide accurate estimates. The diffi-
culty of the localization task is exacerbated by the fact that the network is not
generally uniquely localizable when its connectivity is not sufficiently high.
In order to alleviate this drawback, we propose a two–objective evolution-
ary algorithm which takes concurrently into account during the evolutionary
process both the localization accuracy and certain topological constraints in-
duced by connectivity considerations. The proposed method is tested with
different network configurations and sensor setups, and compared in terms of
normalized localization error with another metaheuristic approach, namely
SAL, based on simulated annealing. The results show that, in all the ex-
periments, our approach achieves considerable accuracies and significantly
outperforms SAL, thus manifesting its effectiveness and stability.

∗Tel: +34 986 818659; FAX: +34 986 812116
Email addresses: massimo@gts.uvigo.es (Massimo Vecchio),

valcarce@gts.uvigo.es (Roberto López-Valcarce), f.marcelloni@iet.unipi.it
(Francesco Marcelloni)

Preprint submitted to Applied Soft Computing February 23, 2011

Revised manuscript
Click here to view linked References

http://ees.elsevier.com/asoc/viewRCResults.aspx?pdf=1&docID=3460&rev=1&fileID=63828&msid={5739A64E-E458-47C3-BBCD-B0789DDD3408}


Keywords: Wireless Sensor Networks, Node Localization,
Range Measurements, Stochastic Optimization,
Multiobjective Evolutionary Algorithms.

1. Introduction

A Wireless Sensor Network (WSN) may consist of hundreds or even thou-
sands of low–cost nodes communicating among themselves [1]. Among clas-
sical applications of WSNs, one finds environmental and structural moni-
toring, event detection, target tracking, etc. In many of these applications,
tiny nodes are deployed in an area to be monitored, thus spanning a poten-
tially large geographical region. Each node is a small device that collects
information from the surrounding environment through one or more sensors,
processes this information locally, and exchanges data through a wireless
channel. The small size and low cost of the nodes impose several physi-
cal limitations; in particular, they cannot mount powerful microprocessors
or large memory devices, thus computational and storage capabilities are
tightly constrained. Moreover, they are typically powered by small batteries
which in general cannot be easily changed or recharged. A consequence of
these limitations is the need to save energy in order to extend the network
lifetime [2, 3].

In many envisioned or existent applications, such as environment moni-
toring, precision agriculture, vehicle tracking, and logistics, knowledge about
the location of sensor nodes plays a key role. In addition, location–based rout-
ing protocols can save significant energy by eliminating the need for route
discovery, and improve caching behavior for applications where requests may
be location–dependent. Finally, security can also be enhanced by location
awareness (see [4] and the references therein). Although location awareness
can be enabled in principle by the use of a Global Positioning System (GPS),
this solution is not always viable in practice, as the cost and power consump-
tion of GPS receivers are not negligible. In addition, GPS is not well suited
to indoor and underground deployments, and the presence of obstacles like
dense foliage or tall buildings may impair the outdoor communication with
satellites.

These limitations have motivated alternative approaches to the problem,
as reviewed in [5–7], among which fine–grained localization techniques may
represent the most suitable ones. In these schemes, only a few nodes of the

2



network (the reference or anchor nodes) are endowed with their exact posi-
tions through GPS or manual placement, while all nodes are able to estimate
their distances to nearby nodes by using any measurement technique. These
distance–related techniques include Received Signal Strength (RSS) measure-
ments, Time of Arrival (ToA), Time Difference of Arrival (TDoA), etc. (for
a review of these techniques the reader is referred to [6, 7]). Thus, assuming
that the coordinates of anchor nodes are known, and exploiting pairwise dis-
tance measurements among the nodes, the fine–grained localization problem
is to determine the positions of all non–anchor nodes. This task has proved
to be rather difficult, due to the following reasons. First, determining the
locations of the nodes from a set of pairwise distance measurements is a non-
convex optimization problem. Second, the measurements available to nodes
are invariably corrupted by noise. Third, even if the distance measurements
were perfectly accurate, a sufficient condition for the topology to be uniquely
localizable is not easily identified [8]. We will briefly discuss these issues in
the following.

Given a statistical characterization of measurement noise (which will de-
pend on the kind of adopted measurement technique [6]), the most natural
path to the localization problem is the Maximum–Likelihood (ML) estima-
tion approach. As stated above, this results in a multivariable nonconvex
optimization task, for which three different approaches can be found in the
literature: stochastic optimization, multidimensional scaling, and convex re-
laxation. The first class of techniques attempt to avoid local maxima of the
likelihood function via global optimization methods, such as simulated an-
nealing [9]. Multidimensional scaling (MDS) [10, 11] is a connectivity–based
technique, i.e., it exploits information of ”who is within range of whom” in
the network, in addition to the distance measurements. This connectivity in-
formation imposes additional constraints on the problem, since nodes within
range of each other cannot be arbitrarily far apart. The third class of methods
relax the original ML formulation in order to obtain a Semi–Definite Pro-
gramming (SDP) or a Second–Order Cone Programming (SOCP) problem.
An approximate solution can be then obtained in a globally optimum fashion
with reduced computational effort [8, 12]. Since the relaxation may incur in
non–negligible estimation errors [13], additional refinements may be needed,
for example via gradient–descent iterations starting from the approximate
solution [8].

The main advantage of SDP and SOCP is that the relaxation of the orig-
inal nonconvex problem reduces the computational load significantly, mak-

3



ing these methods well suited to large-scale and mobile network localization
problems; in these scenarios, the localization algorithm must trade off com-
putation time for some accuracy in the final estimate. On the other hand,
there are practical applications of WSNs which do not demand such highly
scalable or real–time solutions. Consider, for instance, a precision agriculture
application: clearly, it is preferable to spend some additional time in order to
obtain an accurate estimate of the node coordinates, rather than e.g. admin-
ister a fertilizer to a wrong zone of the monitored field. Moreover, current
existent sensor network testbeds are rarely composed by more than one hun-
dred nodes and their mobility is mainly enabled for security and surveillance
applications. Motivated by these considerations, we focus on developing lo-
calization schemes yielding accurate estimates, having in mind that they
may not be well suited to other applications that demand high scalability or
require real–time operation. We advocate the use of a stochastic optimiza-
tion technique, namely Multi–Objective Evolutionary Algorithms (MOEA),
in order to solve the original nonconvex problem.

In particular, we propose a two–objective evolutionary algorithm in which
the first objective function, referred to as CF, is given by the original non-
convex cost (the squared error between the estimated and the corresponding
measured inter–node distances). The second objective function, referred to
as CV, is defined as the sum of neighborhood violations in the candidate
topology. This second objective function exploits the connectivity–based a
priori information about the network, and is especially useful in order to
alleviate localizability issues. Given a set of data comprised by the set of
anchor nodes and the inter–node distance measurements, a network is said
to be localizable if there is only one possible geometry compatible with the
data. Localizability is a fundamental problem which can be studied within
the framework of rigid graph theory [14]. If the network is not localizable,
then multiple global minima will be present in the cost function, with only
one of them corresponding to the actual geometry of the deployment. Thus,
in settings which are close to not being localizable, any localization algo-
rithm based on the data above will become extremely sensitive to these false
minima of CF, resulting in very large location errors [15, 16].

Perhaps the simplest instance of lack of localizability is the so-called flip
ambiguity phenomenon, illustrated in Fig. 1. As the neighbors of node i (i.e.
nodes j, k, l and m) are almost collinear (see the double line in the figure), it
is clear that if the location of node i is reflected (flipped) with respect to this
line to the new position denoted by i′, then the new geometry so obtained

4



is almost compatible with the original inter–node distance measurements (it
would be totally compatible if nodes j, k, l and m were perfectly aligned). As
mentioned above, connectivity considerations are helpful in order to combat
this lack of localizability. Observing Fig. 1, one notices that whereas the
flipped position i′ is within the communication range of node n, the actual
position i is not. In a sufficiently dense network, it can be expected that false
minima of CF will result in some connectivity constraints of this sort being
violated.

This observation was exploited in the approaches proposed in [9] and in
[17]. The former, denoted SAL in the following, exploits two executions of a
simulated annealing. In the first execution, the simulated annealing is used
to obtain an accurate estimate of the node locations by minimizing CF. At
the end of the optimization process, if the neighborhood of a sensor node is
correct then it is elevated to an anchor node. Otherwise, it is identified as
a non-uniquely localizable node and re-located during the second execution
of the simulated annealing (refinement phase). In this phase, the simulated
annealing minimizes a function which increases CF when the node is placed
in a wrong neighborhood. Unlike SAL, which performs two executions of
the simulated annealing, the second approach proposed in [17] exploits a
unique execution, but introduces a correction phase that is executed for a
pre-fixed number of iterations. The correction phase is triggered during the
main simulated annealing loop whenever the value of the cost function is
lower than a manually tuned threshold. During the correction phase an
iterative multilateration scheme [18] tries to relocate the nodes placed in
the wrong neighborhoods by exploiting the anchor nodes and/or the non–
anchor nodes violating the smallest number of neighborhood constraints (thus
provisionally elevating them to the status of anchor nodes). Although the
idea of enforcing the constraints during the optimization is certainly correct,
these implementations with the use of two separate optimizations (in cascade
as in [9] or nested as in [17]) may bring to unsatisfactory results. Indeed,
as observed by the authors themselves, especially when the node density
is low, it is likely for a node to be flipped and still maintain the correct
neighborhood. In such situations, the node will be identified as uniquely
localizable and thus erroneously elevated to an anchor node. Since both
the refinement and the correction phases perform the optimization relying
on also these unreliable anchor node positions, these errors may lead the
optimization process to generate poorly accurate solutions. On the contrary,
since in our MOEA-based approach we exploit only the true anchor nodes

5



and, at each generation of the algorithm, we evaluate each solution in terms of
both accuracy (CF ) and constraint violation (CV ), the drawback highlighted
in the approaches proposed in [9, 17] is considerably mitigated.

The proposed approach is tested with ten different network topologies
and three different connectivity ranges and compared in terms of normalized
localization error with SAL (for the sake of brevity, we do not discuss the
comparison with the approach proposed in [17] since in our experiments
it has always achieved solutions characterized by a lower accuracy than the
ones obtained by SAL). The results highlight that our approach considerably
outperforms SAL, though using a lower number of fitness evaluations.

Figure 1: The flip ambiguity problem.

The remainder of this paper is organized as follows. In Section 2, we
present the problem formulation. Section 3 introduces our multi–objective
evolutionary approach to the problem. The experimental results of our per-
formance analysis are presented in Section 4. Finally, in Section 5 we draw
some conclusions and discuss our future work.

2. Problem formulation

In this section we introduce the system model, the objective functions
adopted by the evolutionary algorithm and the performance metric used to
asses the effectiveness of the approach. Finally, we introduce the geometrical
constraints which can be defined on each non–anchor node, exploiting the a
priori information about the network.

2.1. System model

Consider a WSN with n nodes uniformly deployed in T = [0, 1]× [0, 1] ⊂
R2. Among these, nodes from 1 to m, with m < n, are anchor nodes whose

6



coordinates pi = (xi, yi) ∈ R2, i = 1,. . . , m, are known. In the following,
we assume that, if two sensor nodes, say i and j, are within communication
range of each other, their inter–node distance dij can be estimated by using
some measurement technique (see Section 1). In the following, we model
distances dij as

dij = rij + eij (1)

where rij = ‖pi − pj‖ is the actual distance between nodes i and j (‖·‖
denotes the Euclidean norm), and eij is the measurement error. Measurement
errors are often assumed to be normally distributed. Similar to [9], we assume
that these errors follow a zero-mean Gaussian distribution with variance σ2.
Further, we suppose that the random variables eij and ekl are independent
of each other if (i, j) 6= (k, l).

We adopt a simple disk model for network connectivity: nodes i and j
can communicate with each other if and only if rij ≤ R, where R is the
connectivity range. This model is commonly used in the literature, although
empirical measurements on real WSNs have shown that it is only an approx-
imation in practice. On the other hand, different connectivity models could
be adopted by modifying the geometrical analysis in Section 2.3. We refer
to nodes j such that rij ≤ R as first-level neighbors of node i. Further, we
refer to all nodes j which are not first-level neighbors of node i, but which
share at least a first-level neighbor with node i, as second-level neighbors of
node i. Let

Ni = {j ∈ 1 . . . n, j 6= i : rij ≤ R} (2)

N i = {j ∈ 1 . . . n, j 6= i : rij > R} (3)

be the set of the first-level neighbors of node i and its complement, respec-
tively. We assume that sets Ni and N i are known for all i = 1, . . . , n. This
is a reasonable assumption, since each node can easily determine which other
nodes it can communicate with.

2.2. Objective functions and performance metric

Our goal is to estimate the positions of the non-anchor nodes as accurately
as possible. Towards this goal, we aim to concurrently minimize two objective
functions. Let p̂i = (x̂i, ŷi), i = m + 1, . . . , n be the estimated positions of
the non-anchor nodes i. The first objective CF is defined as:

CF =
n∑

i=m+1

(∑
j∈Ni

(
d̂ij − dij

)2)
, (4)

7



where d̂ij is the estimated distance between nodes i and j computed as fol-
lows:

d̂ij =


√

(x̂i − xj)2 + (ŷi − yj)2 if node j is an anchor,√
(x̂i − x̂j)2 + (ŷi − ŷj)2 otherwise.

(5)

Thus, CF is the squared error between the inter–node distances correspond-
ing to the candidate geometry (as given by the estimated positions p̂i, i =
m+ 1, . . . , n of the non-anchor nodes and the positions of the anchor nodes)
and the measured data.

The second objective function CV counts the number of connectivity
constraints which are not satisfied by the current estimated positions of non-
anchor nodes. CV is defined as

CV =
n∑

i=m+1

∑
j∈Ni

δij +
∑
j∈N i

(1− δij)

 , (6)

where δij = 1 if d̂ij > R and 0 otherwise.
The goodness of an estimate can be evaluated a posteriori by using the

normalized localization error NLE defined as:

NLE =
1

R

√√√√ 1

(n−m)

n∑
i=m+1

(
(xi − x̂i)2 + (yi − ŷi)2

)
× 100%. (7)

2.3. Geometrical constraints

The connectivity ranges and the positions of the anchor nodes determine
subspaces of the overall search space where each single non-anchor node
can be positioned. These subspaces, which will be expressed by means of
geometrical constraints, depend on the type of non-anchor node. We adopt
the following classification based on the position of a non–anchor node with
respect to anchor nodes:

• Class 1 node: a non–anchor node which is first-level neighbor to at
least one anchor node.

If a node belongs to Class 1, then its position must lie within the
intersection of the circles of radius R centered in the anchor nodes
which it is neighbor to.

8



• Class 2 node: a non–anchor node which is second-level neighbor to at
least one anchor node.

If a node belongs to class 2, then its position must lie within the inter-
section of the annuli with inner and outer radii R and 2R, respectively,
centered in the anchor nodes which it is second-level neighbor to. Fig. 2
shows two examples of class 2 nodes.

• Class 3 node: a non–anchor node which belongs to neither class 1 nor
class 2.

If a node is class 3, then its position must lie outside the union of the
circles of radius R centered in all anchor nodes.

The membership of a non-anchor node to one of the three classes allows
restricting the space where the node can be located. This information can be
exploited both in the generation of the initial population of the MOEA and,
during the evolutionary process, to constrain the application of the mating
operators. Thus, by avoiding generating solutions which certainly cannot be
optimal (since they violate the geometrical constraints determined by the
connectivity ranges and by the known anchor node positions), we can speed
up the execution of the evolutionary algorithm. Further, these constraints
help alleviate the localizability issues discussed in Section 1 and in particular
the flip ambiguity phenomenon. This phenomenon is much more likely to
occur if the candidate positions of non–anchor nodes are not constrained
within the subspace corresponding to its membership class.

3. The Optimization Framework

MOEAs have been investigated by several authors in recent years [19].
Although there exist a number of recently proposed MOEAs with different
peculiarities, we have focused our attention on some of the most popular,
namely the Strength Pareto Evolutionary Algorithm (SPEA) [20] and its
evolution (SPEA2) [21], the Niched Pareto Genetic Algorithm (NPGA) [22],
the different versions of the Pareto Archived Evolution Strategy (PAES) [23],
and the Non–dominated Sorting Genetic Algorithm (NSGA) [24] and its
evolution (NSGA–II) [25]. On the other hand, the main aim of this paper is
to demonstrate that the localization problem in wireless sensor networks can
be successfully tackled by an MOEA. Thus, we did not investigate whether
recent MOEAs might improve the performance, but simply used well-known

9



(a) node i is neighbor to
node k, which in its
turn is neighbor to an-
chor node j.

(b) node i is neighbor to nodes m and n, which
in their turns are neighbors to anchor nodes
j and l, respectively.

Figure 2: Constraints imposed on class 2 nodes.

algorithms. Besides, these algorithms are often used as benchmarks when
proposing new MOEAs. After some experimentation, we realized that PAES
guaranteed fast convergence towards remarkable Pareto fronts. Further, the
PAES evolutionary scheme is very similar to the simulated annealing process
exploited by SAL in [9], thus making the comparison quite fair. Indeed,
both PAES and SAL exploit a (1 + 1) optimization scheme: a single random
initial solution is generated and mutated (in PAES), or perturbed (in the
simulated annealing), in order to obtain a single solution. The key difference
between them relies on the generation of the mutated/perturbed solution:
in PAES the algorithm exploits the principles of the genetic evolution, while
the simulated annealing resembles the temperature–lowering process used in
metallurgy to ensure good quality of the final metal cast [26]. We have used
the jMetal [27] implementation of PAES for our optimization.

In the following subsections, we describe the chromosome coding, the
objective functions, the genetic operators and the PAES algorithm.

3.1. Chromosome coding and objective functions

In our optimization framework each chromosome encodes the positions
of all non–anchor nodes in the network. Thus, each chromosome consists
of n −m pairs of real numbers (see Fig. 3), where each pair represents the
coordinates x̂ and ŷ of a non–anchor node. The variation range of each co-
ordinate is bounded by the geometrical constraints described in Section 2.3.

10



We enforce compliance with these constraints in the initial population. Fur-
ther, whenever mutations are applied during the evolutionary process, only
mutated individuals satisfying these constraints are generated.

Figure 3: The chromosome coding.

Each chromosome is associated with a vector of two elements, which
represent the values of the two objective functions CF and CV (Eqs. (4)
and (6) in Section 2.2).

3.2. Genetic operators

PAES exploits only mutation during the evolutionary process. We have
defined two mutation operators. The first mutation operator, denoted node
mutation operator, performs a uniform–like mutation [28]: the position of
each non–anchor sensor node is mutated with probability PU = 1/(n −m).
Positions are randomly generated within the geometrical constraints imposed
on the specific sensor location.

The second mutation operator, denoted neighborhood mutation operator,
mutates, with probability PU = 1/(n−m), the position of each non–anchor
sensor node within the geometrical constraints determined for the specific
node, but unlike the first operator, it applies the same translation, which
has brought the mutated node i from the pre–mutation position to the post–
mutation position, to the neighbors of i with probability PN . Fig. 4(a) shows
an example of application of the neighborhood mutation operator. Let i be
the sensor node to be mutated. In the figure, we denote with p̂i and p̂′i
the positions of i before and after the application of the mutation operator.
The translation applied to node i for shifting this node from p̂i to p̂′i is also
applied to the nodes k and m, which are randomly selected from the set
{j, k, l,m} of neighbors of i.

The neighborhood mutation was introduced to deal with particular topo-
logical configurations such as the one shown in Fig. 4(b). Here, the actual
positions pi and pj of nodes i and j are marked with squares, while the esti-
mated positions are marked with circles. We note that the distance ‖pi − pj‖

11



between the actual positions is similar to the distance ‖p̂i − p̂j‖ between the
estimated positions, thus resulting in a low contribution to CF . Let us sup-
pose that node i is moved from position p̂i to position p̂′i by applying the
node mutation operator. By analyzing the figure, we can realize that, though
p̂′i is closer to pi than p̂i, the distance ‖p̂′i − p̂j‖ between the estimated posi-
tions is much larger than that between the actual positions, thus resulting in
a considerable increase of CF . This increase will probably lead to discarding
the solution with i′, even though this solution is certainly better than the
one with i. On the other hand, applying the neighborhood mutation, node j
would have been translated, with a certain probability, together with i into
j′ and i′, respectively, as shown in Fig. 4(b), thus leaving the distances be-
tween estimated and actual positions unchanged. It follows that the solution
with i′ and j′ has the same contribution to CF (as far as these two nodes
are concerned) as the solution with i and j, and thus the previous problem
is avoided. We experimentally verified that this mutation operator performs
better when not all the neighbors are translated with the mutated node. In-
deed, if the estimated positions of the neighbors of a mutated node are very
close to the actual positions, then translating all of them would considerably
worsen the solution. Thus, the translation is applied only to a randomly
chosen subset of neighbors.

(a) An example of application of the
neighborhood mutation

(b) Impact of the application of
the neighborhood mutation
on the CF objective

Figure 4: The behavior of the neighborhood mutation operator.

12



3.3. PAES

The PAES algorithm was introduced in [23] and probably represents the
simplest possible nontrivial algorithm capable of generating diverse solutions
in the Pareto optimal set. Further, PAES is characterized by a lower compu-
tational complexity than traditional niching methods [23, 29]. PAES consists
of three parts: the candidate solution generator, the candidate solution ac-
ceptance and the non-dominated solution archive. The candidate solution
generator maintains a single current solution c, and, at each iteration, pro-
duces a new solution m from c, by using a mutation operator. The candidate
solution acceptance compares m with c. Three different cases can arise:

1. c dominates m: m is discarded;

2. m dominates c: m is inserted into the archive and possible solutions in
the archive dominated by m are removed; m replaces c in the role of
current solution;

3. neither condition is satisfied: m is added to the archive only if it is
dominated by no solution contained in the archive; m replaces c in the
role of current solution only if m belongs to a region with a crowding
degree smaller than, or equal to, the region of c.

The crowding degree is computed by firstly dividing the space where the
solutions of the archive lie into a number (numReg) of equally sized regions
and then by counting the solutions that belong to the regions. The number
of these solutions determines the crowding degree of a region. This approach
tends to prefer solutions which belong to poorly crowded regions, so as to
guarantee a uniform distribution of the solutions along the Pareto front.

PAES terminates after a given number maxEvals of evaluations. The
candidate solution acceptance strategy generates an archive which contains
only non-dominated solutions. On PAES termination, the archive includes
the set of solutions which are an approximation of the Pareto front. At the
beginning, the archive is empty and the first current solution is randomly
generated.

In Fig. 5, we show the PAES pseudocode. Here, the operator � indicates
dominance (i.e., m � c means that the mutated solution m dominates the
current solution c). At the beginning an empty archive of size archiveSize
is allocated (line 2); an initial random solution obeying to the topological
constraints is generated (line 4), evaluated in terms of CF and CV (line 5)
and added to the archive (line 6). In the loop (lines 7-23), the new solution m
is generated by applying the first mutation operator with probability PM . If

13



this operator is not applied, then the second mutation operator is executed.
If the new solution dominates the current one, then it substitutes the latter
in the archive (lines 15-16) becoming the new current solution; otherwise,
if it is dominated by the current solution or by any solution contained in
the archive, then the mutated solution is discarded (line 18); if none of the
conditions mentioned is met (i.e., the mutated solution is not dominated by
any member of the current archive of solutions) the function applyTest is
called (line 20) in order to decide whether the mutated solution has to be
included in the archive (and eventually which solution has to be discarded to
make place for m, if the archive is full), and which solution will become the
current solution for the next iteration. For more details on PAES the reader
should refer to [23, 29].

4. Simulation results

In this section we show the effectiveness of the proposed two–objective
evolutionary algorithm in tackling the fine–grained localization problem in
WSNs. We have built different network topologies by uniformly placing 200
nodes in T = [0, 1] × [0, 1] ⊂ R2. We have fixed the percentage of anchor
nodes to 10% (thus each topology consists of 20 anchor nodes and 180 non–
anchor nodes). Further, we have set the values of the connectivity range R to
0.13, 0.15 and 0.17. The distance measurements between neighboring nodes
are generated according to the model (1), i.e. dij = rij + eij. We assume
that these distance estimates are derived from RSS measurements, which
are commonly affected by log-normal shadowing, such that the standard
deviation of the errors is proportional to the actual range rij [6]; i.e. the
variance of eij is given by σ2 = α2r2ij. A value of α = 0.1 is used in the
simulations.

For each value of R, 10 random network topologies are generated. We
first characterize the generated topologies in terms of nodes’ neighborhood
cardinalities, number of anchor nodes in non–anchor nodes’s neighborhood
and classification of non–anchor nodes in terms of the classes introduced in
Section 2.3. Then, we measure the performance of the proposed algorithm in
terms of normalized localization errors. Finally, we compare our results with
the ones obtained by the SAL algorithm which exploits a different stochastic
approach, based on simulated annealing, to solve the localization problem
and to alleviate the flip ambiguity threat.

14



1: procedure PAES(archiveSize,maxEvals, numReg, PM , PN)
2: archive[archiveSize]← []
3: t← 0
4: c← generateSolution()
5: evaluateF itness(c)
6: addSolution(archive)
7: while t < maxEvals do
8: r ← uniformRandom(0, 1)
9: if r ≤ PM then

10: m← applyNodeMutation(c)
11: else
12: m← applyNeighborhoodMutation(c, PN)
13: end if
14: if m � c then
15: replace(c,m)
16: addSolution(m)
17: else if c or any member of the archive � m then
18: discard(m)
19: else
20: c← applyTest(c,m, archive, numReg)
21: end if
22: t← t+ 1
23: end while
24: end procedure

Figure 5: The PAES algorithm.

4.1. Topology characterization

Fig. 6 shows the average percentages of nodes in the 10 random network
topologies versus the neighborhood cardinality for the different values of R.
For instance, for R = 0.13, about 12% of the network nodes (anchor and
non–anchor nodes) have 10 neighbors. We note that for R = 0.13, 0.15 and
0.17, no node has more than 20, 26 and 29 neighbors, respectively. Also,
note that increasing R induces an increase in the neighborhood cardinality,
as expected. For R = 0.13, 0.15 and 0.17, the highest percentages of nodes
correspond to values of cardinality around 10, 13 and 17, respectively.

Fig. 7 shows the average percentages of non–anchor nodes in the 10 ran-
dom network topologies versus the number of anchor nodes in their neigh-

15



Figure 6: Average percentage of nodes versus neighborhood cardinality for different values
of R.

borhood, for the different values of R. Note that, even when R = 0.17, the
number of non–anchor nodes with no anchor neighbor is not negligible and
the average percentage of non–anchor nodes with 3 or more anchor neighbors
is significantly low. This highlights the difficulty of the localization problem
for these network topologies.

Figure 7: Average percentage of non-anchor nodes versus the number of anchor nodes in
their neighborhood for different values of R.

16



Fig. 8 shows how the non–anchor nodes are distributed in the three classes
introduced in Section 2.3 for all the network topologies generated. Each
stacking bar in the figure, labeled as TOP0,. . . ,TOP9, corresponds to a dif-
ferent topology.

As expected, increasing R results in a larger percentage of non–anchor
nodes in class 1 (and hence smaller percentages of nodes in classes 2 and
3). The average percentage of non–anchor nodes in classes 1, 2 and 3 are,
respectively, 65%, 30% and 5% for R = 0.13; 71%, 24% and 5% for R = 0.15;
and 79%, 20% and 1% for R = 0.17.

4.2. Results of our approach

We performed 30 trials of PAES for each different network topology and
for each value of R. Table 1 summarizes the values of the parameters used
in the execution of PAES.

Parameter Value
Archive size 20
Number of regions 5
Number of fitness evaluations 400000
Node mutation probability (PM ) 0.9
Node rigid translation probability (PN ) 0.3

Table 1: parameter setup of PAES.

Fig. 9 shows an example of Pareto front approximation obtained by ap-
plying the PAES algorithm on a network topology generated for R = 0.15.
Each solution in the front encodes the estimated positions of the 180 non–
anchor nodes, and is associated with a different trade–off between the two
objectives CF and CV .

Once generated the Pareto front approximation, we have to choose a
solution. In our experiments, we verified that the variation interval of CF for
the solutions on the final Pareto front approximation is quite small. Thus,
we can assume that each solution on the Pareto front can be acceptable
with respect to the CF objective. In order to validate this assumption, we
have performed a two–sided rank sum test (Wilcoxon test) by selecting from
each final archive the solutions characterized by the minimum value of CV
and the minimum value of CF . Figs. 10-12 show the boxplots of the NLE
values obtained for the 10 network topologies and for the three connectivity
ranges. Here, the lowest and the largest values of NLE are represented as

17



(a) R = 0.13

(b) R = 0.15

(c) R = 0.17

Figure 8: Average distribution of the non–anchor nodes in the three classes introduced in
Section 2.3.

18



Figure 9: Final front of non–dominated solutions.

whiskers, the lower and upper quartiles are shown with a box, the median is
represented by a line and observations that may be considered outliers are
possibly marked with asterisks [30]. Further, mCV and mCF stand for the
sample distribution of the individuals characterized by the lowest value of CV
and CF in the final archive, respectively. Finally, we exploit the background
color of the labels used to identify the specific network topology to indicate
whether the null hypothesis is rejected or not: if the background color is
gray, the null hypothesis cannot be rejected; otherwise, if the background
color is white, the null hypothesis can be rejected. We observe that, for each
network topology and for each connectivity range, the null hypothesis cannot
be rejected. Thus, we can conclude that the distributions are statistically
equivalent with a confidence level of 95%. Further, we can also note that
the value of NLE decreases as R increases since, as shown in Fig. 8, a
larger number of non–anchor nodes have anchor nodes as neighbors. Finally,
we can also observe that the results achieved by our algorithm are quite
stable. Indeed, the number of outliers is rather low, the median is rather
well–balanced between the upper and lower quartiles and the whiskers are
not too far from the upper and lower quartiles.

Since no statistical difference exists in terms of NLE among the solutions

19



in the final Pareto front approximation, each solution can be actually selected
in order to perform a comparison with the SAL algorithm. For the sake of
brevity, we have decided to use the solution characterized by the lowest value
of CV .

Figure 10: Boxplots of the NLE values obtained for the ten network topologies with
connectivity range R = 0.13.

Figure 11: Boxplots of the NLE values obtained for the ten network topologies with
connectivity range R = 0.15.

20



Figure 12: Boxplots of the NLE values obtained for the ten network topologies with
connectivity range R = 0.17.

4.3. Comparison with the SAL algorithm

In this section, we compare the results obtained by the solution charac-
terized by the lowest value of CV among the solutions in the final Pareto
front approximation with those obtained by the SAL algorithm.

SAL is a stochastic optimization scheme which has proved to be very
effective in solving the WSN localization problem [9]. We will not perform
comparisons with non–stochastic methods since these methods are designed
for providing fast, though not very accurate, solutions. Thus, these methods
relax the original nonconvex problem so as to speed up the computation,
but generally cannot achieve values of NLE comparable to the ones of the
solutions generated by our approach. On the other hand, in [9] the authors
have already experimentally proved that SAL considerably outperforms a
non–stochastic method, namely SDP.

The SAL algorithm tackles the fine–grained localization problem in WSNs
using a 2–phase optimization task. In the first phase, a simulated annealing
approach is applied to estimate the non–anchor node positions so as to min-
imize the cost function defined in eq. (4). At the end of the first phase (after
a maximum number of iterations, or when the control temperature has gone
over a threshold value), the following check is performed: if the neighborhood
of a sensor node is correct then it is elevated to an anchor node, otherwise it
is identified as non–uniquely localizable node and placed in the set of nodes
to be re–localized using the refinement phase. In this phase, another simu-

21



lated annealing is performed on the non–uniquely localizable nodes in order
to minimize a new cost function (CFREF ) defined as:

CFREF =
n∑

i=m+1

∑
j∈Ni

(
d̂ij − dij

)2
+
∑
j∈N i

d̂ij<R

(
d̂ij −R

)2
 (8)

where Ni and N i are defined in formulas 2 and 3. If a node j ∈ N i has been
estimated such that d̂ij < R, then it is assumed to be placed in the wrong
neighborhood; the minimum error due to the misplacement is computed as
(d̂ij −R) and included in the cost computation as an extra additive term.

In Fig. 13, we show the pseudocode of the algorithm executed in the
two phases of the SAL approach: the unique difference between the two
phases is the fitness function used in line 13. Indeed, the first phase employs
eq. (4) as fitness function while the refinement phase uses eq. (8). After
the initialization (lines 2-5), SAL executes the main loop (lines 6-30). At
each iteration, the control temperature T and the perturbation entity ∆D
are slowly decreased according to the rules in lines (28-29) and N ∗ P ∗ Q
function evaluations are computed (where P and Q are given parameters,
and N is the number of non–anchor nodes to be localized) by systematically
perturbing the estimated non–anchor nodes locations (lines 7-27). If the per-
turbed position induces a lower value in the fitness function, then the solution
is accepted (downhill, lines 15-17), otherwise the solution with the increased
cost is accepted with a certain probability (uphill, lines 18-24). It can be
noticed that the SAL algorithm requires a fine tuning of the several simu-
lation parameters, in order to meet a good trade–off between the accuracy
of the results and the execution time. Since in [9] the complete parameter
setup was not provided, we have used the simulation setup provided in [17],
after having verified its effectiveness. Table 2 summarizes the values of the
parameters used in SAL.

We observe that, knowing the total number of non–anchor nodes to be
localized, after fixing the values of T0, Tf and α, one can derive the total
number of iterations that SAL will execute during the optimization phase.
Since for each iteration, N ∗P ∗Q fitness evaluations are performed, one could
also compute the total number of fitness evaluations carried out during the
optimization process. However, when SAL enters the second optimization
phase, an unpredictable number of non–anchor nodes will be elevated to

22



1: procedure SAL(#nonAnchorNodes, T0, Tf ,∆D0, α, β)
2: N ← #nonAnchorNodes
3: T ← T0
4: ∆D ← ∆D0

5: CFold ←∞
6: while T ≥ Tf do
7: for q ← 1 to Q do
8: aPermutation← randPerm(N)
9: for i← 1 to N do

10: curIndex = aPermutation[i]
11: for p← 1 to P do
12: perturbPosition(curIndex,∆D)
13: CFnew ← evaluateF itness()
14: ∆CF ← CFnew − CFold

15: if ∆CF ≤ 0 then
16: acceptPerturbation(i)
17: CFold = CFnew

18: else
19: r = uniformRandom(0, 1)
20: if r ≤ exp(−∆CF/T ) then
21: acceptPerturbation(i)
22: CFold = CFnew

23: end if
24: end if
25: end for
26: end for
27: end for
28: T ← α · T
29: ∆D ← β ·∆D
30: end while
31: end procedure

Figure 13: The algorithm executed in the two phases of the SAL approach.

the status of anchor–nodes and not relocated during the refinement phase.
Thus, the value of N cannot be determined a priori for the refinement phase.
Using the parameters in Table 2, in the 30 trials executed for each network
topology and for each connectivity range, SAL computed on average 710000

23



Parameter Value
T0 0.1
Tf 10−11

P 10
Q 2
D0 0.1
α 0.80
β 0.94

Table 2: parameter setup of SAL.

fitness evaluations. By analyzing the values of the parameters used in PAES
and shown in Table 1, we realize that the number of fitness evaluations is
higher for SAL and for PAES.

Figure 14: Boxplots of the NLE values obtained by PAES and SAL for the 10 network
topologies using a connectivity range R = 0.13.

Figs. 14-16 show the boxplots of the NLE values obtained by PAES and
SAL on the 10 network topologies for the three connectivity ranges. We can
observe that the results achieved by the SAL algorithm are less stable than
the ones achieved by PAES. Indeed, the ranges of variation of the values
of NLE are much wider. For verifying whether the distributions are sta-
tistically different, we have performed a two–sided rank sum test (Wilcoxon

24



Figure 15: Boxplots of the NLE values obtained by PAES and SAL for the 10 network
topologies using a connectivity range R = 0.15.

Figure 16: Boxplots of the NLE values obtained by PAES and SAL for the 10 network
topologies using a connectivity range R = 0.17.

25



test). Again, we exploit the background color of the labels used to identify
the specific network topology to indicate whether the null hypothesis is re-
jected or not: if the background color is gray, the null hypothesis cannot
be rejected; otherwise, if the background color is white, the null hypothe-
sis can be rejected. We observe that only for topologies TOP1 and TOP9
with connectivity range R = 0.17 SAL outperforms PAES. For all the re-
maining topologies PAES outperforms SAL, except for TOP4 and TOP8
with R = 0.15 and TOP0, TOP2 and TOP4 with R = 0.17 where the null
hypothesis cannot be rejected. Since PAES uses a lower number of fitness
evaluations, this result testifies the effectiveness of our approach.

5. Conclusions

In this paper we have proposed a two–objective evolutionary algorithm
able to accurately solve the fine–grained localization problem in WSNs. The
problem is not new in the literature, since several techniques have been pro-
posed in the last decade. The novelty of the approach relies on a better
exploitation of the connectivity graph so as to define topological constraints
to be used as a second objective function in a multi–objective optimization
framework. The topological constraints define zones of the space where each
sensor can or cannot be located, thus reducing the search space of the evolu-
tionary algorithm and contextually the chance of ambiguously flipping nodes’
locations. We have shown that the proposed approach is able to solve the
localization problem with high accuracy for a number of different topologies
and different connectivity ranges. Further, we have discussed how our ap-
proach considerably outperforms a recently proposed localization algorithm
based on simulated annealing.

26



[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, Wireless
sensor networks: a survey, Computer Networks 38 (2002) 393–422.

[2] F. Marcelloni, M. Vecchio, Enabling energy-efficient and lossy-aware
data compression in wireless sensor networks by multi-objective evolu-
tionary optimization, Information Sciences 180 (10) (2010) 1924–1941.

[3] S. Croce, F. Marcelloni, M. Vecchio, Reducing power consumption in
wireless sensor networks using a novel approach to data aggregation,
The Computer Journal 51 (2) (2008) 227–239.

[4] L. Hu, D. Evans, Localization for mobile sensor networks, in: MobiCom
’04: Proc. of the 10th Int. Conf. on Mobile Computing and Networking,
2004, pp. 45–57.

[5] L. M. R. Peralta, Collaborative localization in wireless sensor networks,
in: SENSORCOMM 07: Proc. of the 2007 Int. Conf. on Sensor Tech-
nologies and Applications, 2007, pp. 94–100.

[6] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, III, R. L. Moses,
N. S. Correal, Locating the nodes: cooperative localization in wireless
sensor networks, IEEE Signal Processing Mag. 22 (4) (2005) 54–69.

[7] G. Mao, B. Fidan, B. D. O. Anderson, Wireless sensor network local-
ization techniques, Computer Networks 51 (10) (2007) 2529–2553.

[8] P. Biswas, T.-C. Liang, K.-C. Toh, Y. Ye, T.-C. Wang, Semidefinite pro-
gramming approaches for sensor network localization with noisy distance
measurements, IEEE Trans. Autom. Sci. Eng. 3 (4) (2006) 360–371.

[9] A. A. Kannan, G. Mao, B. Vucetic, Simulated annealing based wireless
sensor network localization with flip ambiguity mitigation, in: Proc. of
the 63-rd IEEE Vehicular Technology Conference, 2006, pp. 1022–1026.

[10] X. Ji, H. Zha, Sensor positioning in wireless ad-hoc sensor networks
using multidimensional scaling, in: Proc. of IEEE INFOCOM, Vol. 4,
2004, pp. 2652–2661.

[11] J. A. Costa, N. Patwari, A. O. Hero, III, Distributed weighted–
multidimensional scaling for node localization in sensor networks, ACM
Trans. on Sensor Networks 2 (1) (2006) 39–64.

27



[12] P. Tseng, Second–order cone programming relaxation of sensor network
localization, SIAM J. on Optimization 18 (1) (2007) 156–185.

[13] Z. Wang, S. Zheng, Y. Ye, S. Boyd, Further relaxations of the semidef-
inite programming approach to sensor network localization, SIAM J.
Optim. 19 (2) (2008) 655–673.

[14] R. Connelly, Generic global rigidity, Discrete Comput. Geometry 33 (4)
(2005) 549–563.

[15] A. A. Kannan, B. Fidan, G. Mao, Analysis of flip ambiguities for robust
sensor network localization, IEEE Trans. Vehicular Technology 59 (4)
(2010) 2057–2070.

[16] S. Severi, G. Abreu, G. Destino, D. Dardari, Understanding and solving
flip-ambiguity in network localization via semidefinite programming, in:
GLOBECOM’09: Proc. of the 28th IEEE Conf. on Global Telecommu-
nications, 2009, pp. 3910–3915.

[17] E. Niewiadomska-Szynkiewicz, M. Marks, Optimization schemes for
wireless sensor network localization, Applied Mathematics and Com-
puter Science 19 (2) (2009) 291–302.

[18] A. Savvides, C.-C. Han, M. B. Srivastava, Dynamic fine–grained local-
ization in ad-hoc networks of sensors, in: MobiCom ’01: Proc. of the 7th
Int. Conf. on Mobile Computing and Networking, 2001, pp. 166–179.

[19] E. Zitzler, K. Deb, L. Thiele, Comparison of multiobjective evolutionary
algorithms: Empirical results, IEEE Trans. Evol. Comput. 8 (2) (2000)
173–195.

[20] E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: a compar-
ative case study and the strength Pareto approach, IEEE Trans. Evol.
Comput. 3 (4) (1999) 257–271.

[21] E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the strength
Pareto evolutionary algorithm for multiobjective optimization, in:
K. Giannakoglou, et al. (Eds.), Evolutionary Methods for Design, Opti-
misation and Control with Application to Industrial Problems (EURO-
GEN 2001), International Center for Numerical Methods in Engineering
(CIMNE), Barcelona, Spain, 2002, pp. 95–100.

28



[22] J. Horn, N. Nafpliotis, D. E. Goldberg, A Niched Pareto Genetic Al-
gorithm for Multiobjective Optimization, in: Proc. of the 1st IEEE
Conference on Evolutionary Computation, Vol. 1, 1994, pp. 82–87.

[23] J. D. Knowles, D. W. Corne, Approximating the nondominated front us-
ing the Pareto Archived Evolution Strategy, IEEE Trans. Evol. Comput.
8 (2) (2000) 149–172.

[24] N. Srinivas, K. Deb, Multiobjective optimization using Nondominated
Sorting in Genetic Algorithms, IEEE Trans. Evol. Comput. 2 (3) (1994)
221–248.

[25] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multi-
objective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2)
(2002) 182–197.

[26] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by Simulated
Annealing, Science 220 (4598) (1983) 671–680.

[27] J. J. Durillo, A. J. Nebro, E. Alba, The jMetal framework for multi-
objective optimization: Design and architecture, in: CEC ’10: Proc. of
the IEEE Congress on Evolutionary Computation, 2010, pp. 1–8.

[28] Z. Michalewicz, Genetic algorithms + data structures = evolution pro-
grams, 2nd Edition, Springer-Verlag New York, Inc., New York, NY,
USA, 1994.

[29] C. A. C. Coello, G. B. Lamont, D. A. V. Veldhuizen, Evolutionary
Algorithms for Solving Multi-Objective Problems (Genetic and Evolu-
tionary Computation), Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2006.

[30] J. W. Tukey, Exploratory Data Analysis, Addison-Wesley, 1977.

29


