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ABSTRACT
Among many security threats to sensor networks, compro-
mised sensing is particularly challenging due to the fact that
it cannot be addressed by standard authentication approaches.
We consider a clustered scenario for data aggregation in
which an attacker injects a disturbance in sensor readings.
Casting the problem in an estimation framework, we system-
atically apply the Generalized Likelihood Ratio approach to
derive attack detectors. The analysis under different attacks
reveals that detectors based on similarity of means across
clusters are suboptimal, with Bartlett’s test for homoscedas-
ticity constituting a good candidate when lacking a priori
knowledge of the variance of the underlying distribution.

Index Terms— resilient data aggregation, attack detec-
tion, sensor networks.

1. INTRODUCTION

Sensor networks typically consist of a large number of low-
cost sensor nodes measuring some physical phenomena and
reporting their readings to a fusion center (FC) [1, 2]. As the
overall data volume may be large, it is common to adopt clus-
tered topologies in which cluster heads (CH) aggregate indi-
vidual readings into compact reports sent to the FC, which in
turn computes a global aggregated value. The average, count,
min and max are typical aggregation functions [3, 4].

Security has long been recognized as a major challenge:
sensor networks are susceptible to a variety of attacks such
as physical tampering, node capture, denial of service, eaves-
dropping, etc. [5, 6]. In particular, sensor readings may be
compromised before they reach a CH if an attacker alters the
contents of data packets after capturing a node, or modifies
the environmental parameters around some sensors; the latter
need not be hard to achieve and does not require node cap-
ture. The effect of such malicious attacks (which cannot be
detected by standard cryptographic means) on data aggrega-
tion was originally posed as an estimation problem and an-
alyzed in [7], concluding that typical aggregation functions
are very sensitive: the adversary can inflict very large distor-
tion in the global aggregated value by compromising just a
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few nodes. Resilient aggregation functions based on robust
statistics [8] were advocated in [7] as a means of defense, e.g.
replacing the average by the sample median at the FC. In this
way, robustness is achieved at the price of some performance
loss. For example, in the absence of an attack, and assuming
independent and identically distributed (i.i.d.) observations,
the asymptotic Mean Squared Error (MSE) degradation when
estimating the mean of the underlying distribution by using
the sample median rather than the average is of 4.8 and 2 dB
with uniform and Gaussian data, respectively [9].

Alternatively, it may be desirable to actually detect
whether an attack is taking place, implementing mechanisms
for this task in an initial step. Then, the usual aggregation
function is applied if no attack is detected, as initially sug-
gested in [10] and further developed in [11–14]; when an
attack is declared, the FC may fall back on some resilient
aggregation function as in [7]. In this way, the adversary
faces a tradeoff between distortion and detectability.

We analyze different choices for attack detectors in this
scenario. Following [7], we adopt an estimation viewpoint,
regarding the average as a Maximum Likelihood estimator
(MLE) for a Gaussian model. Attack detection is then posed
as a hypothesis test at the FC based on local values aggre-
gated at CHs. Adopting the Generalized Likelihood Ratio
Test (GLRT) framework, previous ad hoc schemes [10–13]
can be derived in this more rigorous way. Among these, some
require a priori knowledge of the variance of the underly-
ing distribution, whereas some others have poor performance.
The GLRT approach also leads to other detectors not previ-
ously proposed in this context, such as Bartlett’s test for ho-
moscedasticity, which results in a better tradeoff in terms of a
priori knowledge and attack detection performance.

2. SYSTEM MODEL

As in [7], we cast the data aggregation problem in an esti-
mation theory framework. Consider a network of n sensors,
divided into c clusters with ni nodes each (n =

∑c
i=1 ni).

Sensor j in cluster i, denoted Sij , acquires a measurement
xij ∈ R and sends it to the corresponding cluster head CHi,
i = 1, . . . , c, which appropriately aggregates the collected
data and reports to an FC. The FC computes a global value
summarizing the readings of all n sensors in the network, with
the goal of estimating the value of an unknown parameter of



interest θ of the physical environment. Thus, xij is modeled
as a random variable whose distribution depends on θ. In par-
ticular we assume that, in the absence of attacks, the xij are
i.i.d. and follow a normal distribution with mean θ and vari-
ance σ2, denoted N(θ, σ2). In that case, the MLE of θ is the
(global) sample mean:

θ̂ = µ̂0 ,
1

n

c∑
i=1

ni∑
j=1

xij =

c∑
i=1

ni
n

 1

ni

ni∑
j=1

xij


︸ ︷︷ ︸

,µ̂i

. (1)

In (1), µ̂i is the local sample mean at cluster i. Thus, in this
benign scenario, it suffices for each CHi to send (ni, µ̂i) to
the FC, which in turn computes (1) as a weighted average.

Threat model. We assume a myopic adversary [7] which
is able to observe and alter the readings of a subset K of sen-
sors (|K| = k � n), not all necessarily in the same cluster,
and selected before the attack. The cluster heads and their
communication links to the FC are assumed secure, so that
the adversary cannot modify local computations at the CHi’s
or their reports. Sensor readings can therefore be written as

xij = x̃ij + zij , (2)

where zij is an attacker-injected disturbance (therefore zij =
0 if Sij /∈ K), whereas the ’clean’ values x̃ij = θ + eij are
i.i.d. with eij ∼ N(0, σ2).

If the attack goes unnoticed, the estimation performance
of (1) will deteriorate. This can be quantified in terms of the
MSE misadjustment, defined as

M ,
MSEattack −MSEno attack

MSEno attack
, (3)

where MSEno attack = E{(θ − θ̂)2 | zij = 0 ∀ i, j } = σ2

n . Let
x̃c, ec and z ∈ Rk comprise respectively the values of x̃ij ,
eij and zij for sensors in set K. It is readily checked that

M =
1

nσ2

[
1TKzz1+ 2 · 1TKez1

]
, (4)

with Kzz , E{zzT }, Kez , E{eczT }, and 1 ∈ Rk the all-
ones vector. Thus, the attacker is able to degrade performance
by increasing the correlation of the injected disturbance (first
term in (4)), and/or its cross-correlation with measurement
noise (second term). Depending on the setting, the adver-
sary may only have the ability to inject disturbances z in the
compromised nodes without being able to observe the corre-
sponding ’clean’ values x̃c; in that case, ec, z are necessarily
statistically independent and Kez = 0. This was the case
considered in [10–13], which constrained z = η1k, with η a
constant. On the other hand, if the adversary can observe the
sensor readings x̃c of the k captured nodes1, he may synthe-
size the injected disturbance z as a function of those readings.

1We assume that the adversary doe not have access to the readings of
sensors not in set K.

3. ATTACK DETECTORS: A GLRT APPROACH

In the absence of attacks, the fact that xij ∼ N(θ, σ2) ∀i, j
implies uniformity of the mean (µi) and variance (σ2

i ) of the
data across clusters: µi = θ and σ2

i = σ2 ∀i. Based on this
observation, different attack detectors can be devised.

3.1. Mean-based Detectors

If disparity of the means is considered as an indicator of the
presence of an attack, an hypothesis test can be posed as:

H0 : µ1 = · · · = µc; H1 : not all µi are equal, (5)

with µi the true mean of data from cluster i. Assuming a
Gaussian model under both hypotheses, different tests result
depending on knowledge about σ2. An attack is declared if
the corresponding statistic is larger than some threshold.

Common known variance. Assuming the variance σ2 is
the same under both hypotheses, the GLRT statistic is

LG(x) =

max
{µi}

∏c
i=1(2πσ

2)−
ni
2 e−

‖xi−µi1‖
2

2σ2

max
µ

∏c
i=1(2πσ

2)−
ni
2 e−

‖xi−µ1‖2

2σ2

, (6)

with xi , [xi1 · · · xini ]T . This is readily seen to yield

2 logLG(x) =
1

σ2

c∑
i=1

ni(µ̂i − µ̂0)
2, (7)

with µ̂0 and µ̂i as in (1). For clusters with equal sizes (n1 =
· · · = nc = n

c ), this test was proposed in an ad hoc manner
in [10] (for c = 2)2 and [12, Sec. III-A] (for general c).

By Cochran’s theorem [15], (7) follows a χ2
c−1 distribu-

tion underH0. This holds true even if the {xij} are not Gaus-
sian, provided that the ni’s are sufficiently large so that {µ̂i}
are approximately Gaussian by the Central Limit Theorem,
and allows to set the threshold for a given probability of false
alarm PFA as long as σ2 is known. Note that the FC can com-
pute (7) directly from the (ni, µ̂i) data sent from the CHi’s.

Common unknown variance. If σ2 is regarded as a nui-
sance parameter under both hypotheses, the numerator and
denominator in (6) must be maximized w.r.t. {µ1, . . . , µc, σ

2}
and {µ, σ2} respectively, yielding the following test statistic:

2 logLG(x) = n log

(
1 +

∑c
i=1

ni
n (µ̂i − µ̂0)

2∑c
i=1

ni
n σ̂

2
i

)
, (8)

where σ̂2
i denotes the local sample variance at cluster i:

σ̂2
i ,

1

ni

ni∑
j=1

(xij − µ̂i)2. (9)

2For c = 2 and n1 = n2 = n
2

, (7) can be written as 2 logLG(x) =
n

4σ2 (µ̂1 − µ̂2)2, which is the ”Split & Check” detector from [10].



Now the CHi’s must transmit (ni, µ̂i, σ̂2
i ) to the FC. This is

the case as well for all detectors in the sequel.
Note that (8) is equivalent to the ”analysis of variance”

(ANOVA) F -test statistic [16, 17]

F =
n− c
c− 1

∑c
i=1 ni(µ̂i − µ̂0)

2∑c
i=1 niσ̂

2
i

, (10)

which, under H0, follows an F distribution with c − 1 and
n − c degrees of freedom. For c = 2, the F -test reduces to
Student’s t-test [17]. In [13], such t-test was proposed for de-
tecting attacks concentrated in a given cluster, by combining
data from all remaining clusters in a single ”supercluster”.

3.2. Variance-Based Detectors

A different approach to attack detection is to test for equality
of variances across different clusters (homoscedasticity), i.e.,

H0 : σ2
1 = · · · = σ2

c ; H1 : not all σ2
i are equal, (11)

whereas the means {µi} are regarded as nuisance parameters.
Known variance under H0. If under H0 the common

variance is known to be σ2, the GLRT statistic becomes

LG(x) =

max
{µi,σ2

i }

∏c
i=1(2πσ

2
i )
−ni2 e

− ‖xi−µi1‖
2

2σ2
i

max
{µi}

∏c
i=1(2πσ

2)−
ni
2 e−

‖xi−µi1‖2

2σ2

, (12)

resulting in

2 logLG(x) =

c∑
i=1

ni

(
σ̂2
i

σ2
− log

σ̂2
i

σ2
− 1

)
, (13)

which, under H0 and for large n, is χ2
c-distributed. The first

term in (13) corresponds to the ad hoc test proposed in [12,
Sec. III-B], which follows a χ2

n−c distribution underH0:

T ,
1

σ2

c∑
i=1

niσ̂
2
i . (14)

Unknown variance under H0. Regarding σ2 as a nui-
sance parameter under H0, the denominator in (12) must be
maximized w.r.t. {µi} and σ2, yielding Bartlett’s test [18]:

2 logLG(x) = n log

∑c
j=1

nj
n σ̂

2
j∏c

i=1(σ̂
2
i )

ni
n

, (15)

UnderH0 and for large n, (15) is χ2
c−1-distributed.

3.3. Mean and Variance-Based Detector

Testing for equality of means and variances simultaneously,

H0 : (µ1, σ
2
1) = · · · = (µc, σ

2
c ), (16)

results in the GLRT statistic given by

LG(x) =

max
{µi,σ2

i }
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i=1(2πσ

2
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−ni2 e
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yielding 2 logLG(x)

= n log

∑c
j=1

nj
n σ̂

2
j∏c

i=1(σ̂
2
i )

ni
n

+ n log

∑c
j=1

nj
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2
i )

ni
n

, (18)

which is χ2
2(c−1)-distributed under H0 and for large n. Note

that the first term in (18) is Bartlett’s test statistic (15).

4. NUMERICAL RESULTS

The detectors from Secs. 3.1-3.3 are studied under different
kinds of attacks. The network has n = 128 sensor nodes in
c clusters, c ∈ {2, 4, 8}, all of the same size n

c . The SNR is
θ2/σ2 = 10 dB, and for all detectors considered, the thresh-
olds are set for PFA = 0.05. The attacker has control over
k = 5 nodes and no knowledge of the network cluster struc-
ture; thus, at each Monte Carlo run, the k compromised nodes
are chosen randomly and independently among the n network
nodes. Three different attack types are considered:
• Type A: The injected disturbance values are i.i.d. with
zij ∼ N(0, δ2) for Sij ∈ K, and independent of sensor
readings. Thus Kzz = δ2Ik, Kez = 0 andM = k

n
δ2

σ2 .

• Type B: The disturbance is proportional to the sensor
reading, i.e., zij = a · xij for Sij ∈ K. This yields
Kzz = a2(θ211T + σ2Ik), Kez = aσ2Ik, so that
M = a2 k

2

n
θ2

σ2 + (a2 + 2a) kn ≈ a
2 k2

n
θ2

σ2 in high SNR.

• Type C: The disturbance is constant across compromised
nodes: zij = b ∀Sij ∈ K, with b a deterministic constant.
Thus, Kzz = b211T , Kez = 0, andM = k2

n
b2

σ2 .
Results are shown in Fig. 1 for c = 2, 4, and 8 clusters. The
following observations can be made:

1. The variance-based detectors (13) (GLRT for ho-
moscedasticity) and (14) (Luo’s χ2 test [12]) consistently
outperform the remaining schemes. However, they require
knowledge of σ2 to set the threshold for a given PFA. If, e.g.,
the target is PFA = 0.05 and σ2 is underestimated in just 1
dB, in this setting Luo’s detector (14) yields PFA ≈ 0.56, 0.5
and 0.4 for c = 2, 4 and 8 clusters, respectively.

2. The F -test (10) is not adequate for attack detection. To
further illustrate this observation, suppose a single node, say
S11, is compromised (k = 1). In that case, it can be easily
shown that, for large values of z211, (10) becomes

F ≈ n− c
c− 1

z211
n−n1

n1n
+
∑c
i=1 ni(µ̃i − µ̃0)

2

z211
n1−1
n1

+
∑c
i=1 niσ̃

2
i

, (19)



0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Attack Type A

misadjustment

P
ro

b
. 
o
f 
D

e
te

c
ti
o
n

 

 

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Attack Type B

misadjustment

P
ro

b
. 
o
f 
D

e
te

c
ti
o
n

 

 

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Attack Type C

misadjustment

P
ro

b
. 
o
f 
D

e
te

c
ti
o
n

 

 

Luo χ
2
 test

GLRT homosced., known σ
2

Bartlett

GLRT eq. means&vars

GLRT eq. means, known σ
2

F test

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Attack Type A

misadjustment

P
ro

b
. 
o
f 
D

e
te

c
ti
o
n

 

 

Luo χ
2
 test

GLRT homosced., known σ
2

Bartlett

GLRT eq. means&vars

GLRT eq. means, known σ
2

F test

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Attack Type B

misadjustment

P
ro

b
. 
o
f 
D

e
te

c
ti
o
n

 

 

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Attack Type C

misadjustment

P
ro

b
. 
o
f 
D

e
te

c
ti
o
n

 

 

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Attack Type A

misadjustment

P
ro

b
. 
o
f 
D

e
te

c
ti
o
n

 

 

Luo χ
2
 test

GLRT homosced., known σ
2

Bartlett

GLRT eq. means&vars

GLRT eq. means, known σ
2

F test

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Attack Type B

misadjustment

P
ro

b
. 
o
f 
D

e
te

c
ti
o
n

 

 

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Attack Type C

misadjustment

P
ro

b
. 
o
f 
D

e
te

c
ti
o
n

 

 

Fig. 1. Probability of detection (PD) vs.M for the considered detectors under different attack types. PFA = 0.05, network size
n = 128, k = 5 compromised nodes. Top row: c = 2 clusters. Middle row: c = 4 clusters. Bottom row: c = 8 clusters.

where µ̃i, σ̃2
i are the values of µ̂i, σ̂2

i in the absence of attack
(z11 = 0). From (19), F → (n−c)(n−n1)

(c−1)n(n1−1) as z211 → ∞. If,
e.g., n1 = n

c , then F → 1, which will be below the detection
threshold for practical PFA values. Hence, the attacker can
inflict an arbitrarily large distortion with a small probability
of detection, even with a single compromised node.

3. In contrast with the F -test, the GLRT detector (7)
(equality of means) [10, 12], is responsive to attacks, but it
is outperformed by the remaining schemes. In addition, it re-
quires knowledge of σ2 in order to set the threshold.

4. Bartlett’s test (15) outperforms the GLRT for equality
of means and variances (18): the addition of the second term
in (18) is seen to be detrimental. This term can be seen as a
test for equality of means3. Thus, it is concluded that equality

3Note the similarity of the second term in (18) with (10): the arithmetic
mean of the sample variances is replaced by the geometric mean.

of means across clusters is not a good attack detection cri-
terion. To see this, suppose that the adversary compromises
ki nodes in cluster i and launches a Type C attack. It can be
easily shown that if ki

ni
= k

n ∀i, then the differences µ̂i − µ̂0

are unaltered by the attack. Due to this kind of events, for
mean-based schemes PD remains bounded away from 1 as
the distortion becomes arbitrarily large, even when the com-
promised nodes are picked at random.

5. For all detectors considered, Type C attacks have more
power (larger distortion for a given PD) than Type B attacks,
which in turn have more power than Type A attacks.

6. Whereas detectors (13)-(14) remain insensitive to the
number of clusters, the performance of detectors (7), (15) and
(18) degrades with too few clusters. The explanation is as
follows. Suppose the adversary captures exactly one node per
cluster, launching a Type C attack. Then µ̂i = µ̃i +

1
ni
b, and



for large b2, σ̂2
i ≈ σ̃2

i +b
2 ni−1
n2
i

, with µ̃i, σ̃2
i the sample means

and variances, respectively, in the absence of attack. Since
one can expect the µ̃i’s, and also the σ̃2

i ’s, to be close to each
other, with equal-size clusters (ni = n

c ∀i) so will the µ̂i’s
and σ̂2

i ’s; and even more so as |b| increases, since in that case
µ̂i → c

nb and σ̂2
i → b2 cn (1 −

c
n ), which are independent of

i. Thus, the attack is likely to go undetected, with arbitrarily
large distortion. This explains why some of the PD curves of
these detectors in Fig. 1 for c = 2 and c = 4 seem to saturate
at a value less than 1. For c > k, this kind of event is no longer
feasible and detection performance significantly improves.

5. CONCLUSIONS

We have systematically applied a GLRT approach to sensor
attack detection, revealing a variety of tests. Some of them
had been previously proposed in an ad hoc manner, and some
others are novel in this context. It has been shown that exploit-
ing uniformity of means across clusters is outperformed by
homoscedasticity based schemes, with Bartlett’s test achiev-
ing good performance as long as the number of clusters in the
network is not too low, without requiring a priori knowledge
about the variance of the underlying distribution. The power
of different attack types has also been discussed.

Future work will address more sophisticated data models,
including spatial correlation among sensor readings [14] and
different parametric dependencies of the readings’ pdf and the
parameters of interest. Also, Bartlett’s test is known to be
sensitive to deviations from normality [17]. Levene’s test [19]
is a popular robust alternative in statistics, but since it is posed
as an F -test on a transformed data set, it is not well suited to
attack detection, similarly to the standar F -test (10).
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