
Neyman-Pearson Decision in Traffic
Analysis

by

Juan A. Elices

B.S., Computer Science, U.N.E.D., 2008
M.S., Telecommunication Engineering, Universidad Valladolid, 2009

M.S., Electrical Engineering, University of New Mexico, 2011
M.S., Computer Science, U.N.E.D., 2012

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Engineering

The University of New Mexico

Albuquerque, New Mexico

July, 2014

iii

c©2014, Juan A. Elices

iv

Dedication

To my parents and to my sister Rosa, that have been the greatest support on all the

decisions I have made.

To all my friends who have shared with me the good and bad moments of being so

far from home.

v

Acknowledgments

I would like to express my deepest gratitude to my advisor, Professor Fernando
Pérez González, for all his support and guidelines during this period of time. Without
him this work would have never been possible. I also express my warmest gratitude
to Professor Gregory L. Heileman, for all his help in solving any problems that have
raised during this time.

I also owe a great gratitude to Dr. Carmela Troncoso, for her helpful advices on
my research during the time I spent in University of Vigo.

I am indebted to the rest of committee members: Professor Jedidiah R. Crandall
and Professor Manel Mart́ınez-Ramón.

Also, I would like to thank all my labmates that I have had in the Informatics
Group of University of New Mexico, as well as in the Signal Processing in Commu-
nications Group of University of Vigo.

Finally, I would like to thank my parents for all the support and love in every
occasion. I also want to thank: Mario, Alejandro, Fernando , Iban, Alvaro Diaz,
Pancho, LuisFe, Lauren Casey, Fran, Fernando Serrano and a big list of friends that
have made me feel in Albuquerque as home. I want to thank specially to Kaile Liang,
one of the hardest working persons I have ever met and that has been a model for
me in many occasions.

vi

Neyman-Pearson Decision in Traffic
Analysis

by

Juan A. Elices

B.S., Computer Science, U.N.E.D., 2008

M.S., Telecommunication Engineering, Universidad Valladolid, 2009

M.S., Electrical Engineering, University of New Mexico, 2011

M.S., Computer Science, U.N.E.D., 2012

Ph.D., Engineering, University of New Mexico, 2014

Abstract

The increase of encrypted traffic on the Internet may become a problem for network-

security applications such as intrusion-detection systems or interfere with forensic

investigations. This fact has increased the awareness for traffic analysis, i.e., inferring

information from communication patterns instead of its content.

Deciding correctly that a known network flow is either the same or part of an ob-

served one can be extremely useful for several network-security applications such as

intrusion detection and tracing anonymous connections. In many cases, the flows of

interest are relayed through many nodes that reencrypt the flow, making traffic anal-

ysis the only possible solution. There exist two well-known techniques to solve this

problem: passive traffic analysis and flow watermarking. The former is undetectable

but in general has a much worse performance than watermarking, whereas the latter

can be detected and modified in such a way that the watermark is destroyed.

vii

In the first part of this dissertation we design techniques where the traffic analyst

(TA) is one end of an anonymous communication and wants to deanonymize the

other host, under this premise that the arrival time of the TA’s packets/requests

can be predicted with high confidence. This, together with the use of an optimal

detector, based on Neyman-Pearson lemma, allow the TA deanonymize the other

host with high confidence even with short flows. We start by studying the forensic

problem of leaving identifiable traces on the log of a Tor’s hidden service, in this case

the used predictor comes in the HTTP header. Afterwards, we propose two different

methods for locating Tor hidden services, the first one is based on the arrival time of

the request cell and the second one uses the number of cells in certain time intervals.

In both of these methods, the predictor is based on the round-trip time and in some

cases in the position inside its burst, hence this method does not need the TA to

have access to the decrypted flow.

The second part of this dissertation deals with scenarios where an accurate pre-

dictor is not feasible for the TA. This traffic analysis technique is based on correlating

the inter-packet delays (IPDs) using a Neyman-Pearson detector. Our method can

be used as a passive analysis or as a watermarking technique. This algorithm is

first made robust against adversary models that add chaff traffic, split the flows

or add random delays. Afterwards, we study this scenario from a game-theoretic

point of view, analyzing two different games: the first deals with the identification

of independent flows, while the second one decides whether a flow has been water-

marked/fingerprinted or not.

viii

Contents

List of Figures ix

List of Tables xiv

Glossary xvii

1 Introduction 1

1.1 Traffic analysis . 2

1.1.1 Origins in the military . 2

1.2 Traffic Analysis in the Internet . 6

1.3 Anonymous communications: Avoiding traffic analysis in Internet . . 12

1.3.1 Mixnet-based schemes . 12

1.3.2 DC-net systems . 17

1.3.3 Network routing-based techniques 19

1.3.4 Peer to peer anonymous communications systems 20

1.4 Contributions and Publications . 21

Contents ix

1.4.1 Publications . 21

1.4.2 Contributions . 22

1.5 Organization of the rest of the dissertation 23

2 Problem Description and Previous Approaches 25

2.1 Notation . 25

2.1.1 Performance Metrics . 26

2.1.2 Neyman-Pearson Lemma . 27

2.2 Brief Introduction to Game Theory 27

2.3 Problem Description . 28

2.3.1 Fingerprinting a hidden service log 31

2.4 Previous Approaches . 31

2.4.1 Passive Analysis . 31

2.4.2 Active Watermarking . 34

2.4.3 Detecting Watermarks . 42

2.5 Discussion . 45

3 Fingerprinting Log Files 47

3.1 Introduction . 47

3.2 Formal Problem Description . 48

3.3 HTTP Response Date Information 49

3.4 Modeling the number of Log Entries 51

Contents x

3.4.1 Data Collection . 51

3.4.2 Results . 52

3.5 Fingerprinting Method . 54

3.5.1 Creating the Fingerprint . 54

3.5.2 Detecting the fingerprint . 55

3.6 Simple Detector . 55

3.7 Analysis of the simple detector . 56

3.7.1 Probability of Detection . 56

3.7.2 Probability of false positives 58

3.7.3 Simple Detector Results . 59

3.8 Optimal Detector . 62

3.8.1 Optimal Detector Results . 62

3.8.2 Computational Cost . 63

3.9 Conclusions . 65

4 Prediction-based Flow Correlation 66

4.1 Introduction . 66

4.2 Description of the Problem . 67

4.2.1 Problem . 67

4.2.2 Proposed detector . 69

4.3 Application: Locating a Tor Hidden Service 69

Contents xi

4.3.1 Predictor . 70

4.4 Analysis and Results . 73

4.4.1 Mathematical analysis . 73

4.5 Results . 76

4.5.1 Simulator . 77

4.5.2 Real Implementation . 78

4.5.3 Detectability . 80

4.6 Conclusions . 81

5 Interval-count-based Flow Correlation 84

5.1 Introduction . 84

5.2 Model Problem . 85

5.3 Basic Detector . 86

5.3.1 Detector construction . 87

5.3.2 Modelling the number of cells per unit of time 88

5.3.3 Modelling the number of cells from Alice’s flow in each interval 89

5.3.4 Detector . 95

5.3.5 Calculating the threshold to achieve a certain probability of

false positive . 96

5.4 Results . 97

5.4.1 Interval size . 97

Contents xii

5.4.2 Results . 98

5.4.3 Comparison with prediction-based technique 99

5.5 Conclusions . 100

6 Inter-packet-delays-based Flow Correlation 103

6.1 Introduction . 103

6.2 Proposed Scheme . 104

6.3 Basic Detector . 105

6.3.1 Detector construction . 105

6.3.2 Modeling the packet delay variation 107

6.3.3 Modeling the Inter-Packet Delays 110

6.3.4 Detector . 112

6.4 Performance . 112

6.4.1 Simulator and Scenarios . 112

6.4.2 Impact of our assumptions . 114

6.4.3 Performance dependence on n 115

6.5 Robust detector . 116

6.5.1 Matching packets . 116

6.5.2 Test robust to chaff and flow splitting 119

6.5.3 Self-Synchronization . 119

6.5.4 Robust test against random delays 120

Contents xiii

6.5.5 Performance . 121

6.6 Comparison with an active watermark 124

6.7 Comparison with other schemes . 125

6.8 Real Implementation . 128

6.9 Conclusions . 130

7 Flow-Correlation with an adversary 133

7.1 Introduction . 133

7.2 Player order and equilibria . 134

7.3 Flow fingerprinting game: independent flows 136

7.3.1 Optimal Detector . 137

7.4 Delaying adversary . 138

7.4.1 Deterministic Attack . 139

7.4.2 Truncated-Gaussian Attack 140

7.4.3 Other distribution attacks . 144

7.4.4 Distribution mismatch between the adversary and the decoder 145

7.5 Chaff traffic adversary . 147

7.5.1 Matching Process . 148

7.5.2 Chaff traffic of the adversary 150

7.5.3 Results . 150

7.6 Flow Fingerprinting Game: correlated flows 151

Contents xiv

7.6.1 Detector . 153

7.6.2 Deterministic attack . 154

7.6.3 Truncated-Gaussian Attack 157

7.6.4 Other distribution attacks . 161

7.6.5 Distribution mismatch between the adversary and the decoder 163

7.7 Conclusion . 165

8 Conclusions and Future Work 166

8.1 Future Research Lines . 167

References 169

A Theoretical Probabilities for IPD-based without traffic modification181

A.1 Cauchy Test . 181

A.2 Laplace Test . 182

xv

List of Figures

1.1 Beeston hill ’Y’ station . 4

1.2 Mixnet network. 13

1.3 Tor circuit creation and data transmission 15

1.4 Establishing and accessing a hidden service 16

2.1 Flow correlation problem . 29

2.2 Packet counting to a mix network 33

2.3 Packet Counting Attack using timing information 34

2.4 IPD modification in quantization watermark 35

2.5 Example of Interval-Based Watermark 36

2.6 Example of Interval-centroid-based Watermark 37

2.7 Example of DSSS Watermark . 38

2.8 Example of RAINBOW Watermark 39

2.9 Selective Correlation in RAINBOW Watermark 39

2.10 Example of SWIRL Watermark . 40

List of Figures xvi

2.11 Low-Cost Traffic Analysis of anonymous networks 41

3.1 System Model . 48

3.2 Cumulative Distribution Function of ε in Apache 1.3.33 51

3.3 Autocorrelation of ClarkNet Log . 54

3.4 Simple detector results for University of Vigo’s web server 60

3.5 Simple Detector results for NASA’s web server 61

3.6 ROC Comparison for University of Vigo’s web server 63

3.7 ROC Comparison for NASA’s web server 64

4.1 System Model . 67

4.2 Cells in a Tor Request . 70

4.3 Performance of the MLP predictor and polynomial predictor 71

4.4 Theoretical PD for UVigo log for PF = 10−6 77

4.5 Simulator Results for UVigo web server with 3 requests 78

4.6 Simulator Results for NASA web server with 20 requests 79

4.7 Real Implementation, Simulation and Theoretical Results for Uvigo

web server . 80

4.8 Detectability using the KLD . 81

4.9 Autocorrelation of the number of requests per second with time be-

tween requests fixed to 30 . 82

4.10 Autocorrelation of the number of requests per second distributed

uniformly between 0 and 60 . 83

List of Figures xvii

5.1 System Model . 85

5.2 Goodness of fit for the different models for flow B to SR Hidden Service 90

5.3 Goodness of fit for the different models for flow I to SR Hidden Service 91

5.4 Goodness of fit for the different models for flow B to DDG hidden

service . 92

5.5 Goodness of fit for the different models for flow I to DDG hidden

service . 93

5.6 Cell Sequence of an HTTP request-response to a HS 94

5.7 Performance of the MLP predictor and polynomial regression 94

5.8 Performance depending on the interval size for DDG hidden service

for one request . 98

5.9 Performance depending on the interval size for SR hidden service for

one request . 99

5.10 ROC for DDG hidden service . 100

5.11 ROC for SR hidden service . 101

5.12 Performance for SR hidden service with 6000 requests per hour using

10 requests . 102

6.1 Autocorrelation of the PDV . 106

6.2 Autocorrelation of the IPD . 107

6.3 Simulated Scenario A. 113

6.4 Simulated Scenario B. 113

6.5 Impact of assumptions in Scenario A with n = 4. 115

List of Figures xviii

6.6 Impact of assumptions in Scenario B with n = 21. 116

6.7 Performance dependence with n in Scenario A. 117

6.8 Performance dependence with n in Scenario B. 118

6.9 Synchronization in Scenario A with n = 6. 120

6.10 Exhaustive search for PL in Scenario A with n = 21 and real value

of PL = 0.75. 120

6.11 Performance under different traffic modifications in Scenario A, n=21.122

6.12 Performance under different traffic modifications in Scenario B, n=251.123

6.13 PD vs the detectability for fixed PF in Scenario A with n = 6. 125

6.14 PD vs the detectability for fixed PF in Scenario B with n = 26. . . . 126

6.15 Comparison of algorithms on Scenario A with n = 6. 127

6.16 Comparison of algorithms on Scenario B with n = 51. 128

6.17 Comparison of algorithms on Scenario A under flow modification

with n = 51. 129

6.18 Comparison of algorithms on Scenario B under flow modification with

n = 251. 130

6.19 Real Implementation on Scenario A with n = 6. 131

6.20 Real Implementation on Scenario B with n = 51. 132

7.1 Model of the Flow Fingerprinting Game: independent flows 135

7.2 Solution of the constant games for Scenario 1 141

7.3 Solution of the constant games for Scenario 2 142

List of Figures xix

7.4 Solution of the truncated Gaussian, truncated Laplace and truncated

Cauchy games for Scenario 1 . 145

7.5 Solution of the truncated Gaussian, truncated Laplace and truncated

Cauchy games for Scenario 2 . 146

7.6 ROC curves using Gaussian detector for Scenario 1 148

7.7 ROC curves using Gaussian detector for Scenario 2 149

7.8 Model of the Flow Fingerprinting Game: correlated flows 152

7.9 Solution of the constant games for Scenario 1 with World Cup log . 156

7.10 Solution of the constant games for Scenario 1 with NASA’s log . . . 157

7.11 Solution of the constant games for Scenario 2 with World Cup’s log . 158

7.12 Solution of the constant games for Scenario 2 with NASA’s log . . . 159

7.13 Solution of the truncated Gaussian, truncated Laplace and truncated

Cauchy correlated flow games for Scenario 1 with WC’s log 162

7.14 Solution of the truncated Gaussian, truncated Laplace and truncated

Cauchy correlated flow games for Scenario 2 with NASA’s log 163

7.15 ROC curves for Gaussian detector for Scenario 1 with WC’s log . . . 164

7.16 ROC curves for Gaussian detector for Scenario 2 with NASA’s log . 165

xx

List of Tables

3.1 Percentage of responses in Apache 2.2.15 50

3.2 Probability mass function of ε in Apache 1.3.33 51

3.3 Summary of Access Log Characteristics 52

3.4 Pdf’s of the candidate distributions for the number of requests. . . . 53

3.5 MLE Parameters and Goodness of Fit for modeling the logs 53

3.6 Average Computational Time of simple detector and optimal detector 65

4.1 Distribution candidates for the prediction error 72

4.2 MLE Parameters . 73

4.3 Goodness of Fit . 73

4.4 Distribution candidates for the number of cells per unit of time . . . 74

4.5 Goodness of Fit for the number of requests 74

5.1 Goodness of fit of the candidate distributions for Prediction Error

and its parameters . 93

6.1 Basic Statistics of the measured delays 108

List of Tables xxi

6.2 Basic Statistics of the measured PDV. 109

6.3 Pdfs of the candidate distributions for PDV and IPD. 109

6.4 Goodness of fit of the candidate distributions for PDV. 110

6.5 Characteristics of the IPD sets. 111

6.6 MLE Estimator and goodness of fit of the candidate distributions for

IPD. 111

7.1 u∗A(σf , σa) for Scenario 1 . 143

7.2 u∗A(σf , σa) for Scenario 2 . 143

7.3 uA(σa, σ̂a) for Scenario 1 . 143

7.4 uA(σa, σ̂a) for Scenario 2 . 144

7.5 uA(σf , σa) for Scenario 1 . 144

7.6 uA(σf , σa) for Scenario 2 . 144

7.7 Scale parameter at the SPE for different distribution attacks for Sce-

nario 1 . 146

7.8 Scale parameter at the SPE for different distribution attacks for Sce-

nario 2 . 147

7.9 Comparison of the utility at the SPE for different amount of chaff

traffic for Scenario 1 . 151

7.10 Comparison of the utility at the SPE for different amount of chaff

traffic for Scenario 2 . 151

7.11 Scale parameter at the SPE for different amount of chaff traffic for

Scenario 1 . 151

List of Tables xxii

7.12 Scale parameter at the SPE for different amount of chaff traffic for

Scenario 2 . 152

7.13 u∗A(σa) for Scenario 1 with WC’s log 160

7.14 uA(σa, σ̂a) for Scenario 1 with WC’s log 160

7.15 u∗A(σa) for Scenario 2 with NASA’s log 160

7.16 uA(σa, σ̂a) for Scenario 2 with NASA’s log 161

7.17 Comparison of the utility at the SPE for different distribution attacks

and the scale parameters at the SPE in Scenario 1 with WC log . . 161

7.18 Comparison of the utility at the SPE for different distribution attacks

and the scale parameters at the SPE in Scenario 2 with NASA’s log 162

xxiii

Glossary

AS Autonomous System

AUC Area Under the ROC Curve

cdf Cumulative Distribution Function

CIDR Classless Inter-Domain Routing

DSSS Direct Sequence Spread Spectrum

EFF Electronic Frontier Foundation

HHM Hidden Markov Model

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

i.i.d Independent and Identically Distributed

IBW Interval Based Watermark

ICBW Interval-Centroid-Based Watermark

IPD Inter-Packet Delay

IP Internet Protocol

ISP Internet Service Provider

Glossary xxiv

JSD Jensen-Shannon Divergence

KDE Kernel Density Estimation

KLD KullbackLeibler Divergence

MLE Maximum Likelihood Estimation

MLP Multi-layer Perceptron

NAT Network Address Translation

NSA National Security Agency

NE Nash Equilibrium

NTP Network Time Protocol

P2P Peer-to-peer

PDV Packet Delay Variation

PMF Probability Mass Function

PDF Probability Distribution Function

RMSE Root-Mean-Square Error

ROC Receiver Operating Characteristic

RTT Round-trip Time

TA Traffic Analyst

TCP Transmission Control Protocol

TLS/SSL Transport Layer Security / Secure Sockets Layer

XOR Exclusive OR.

Glossary xxv

SPE Subgame Perfect Equilibrium

SSH Secure Shell

SVM Support Vector Machine

XOR Exclusive OR

1

Chapter 1

Introduction

In modern society, the use of communication networks is increasing dramatically,

especially the Internet. Although it has been really well accepted and it is diffi-

cult to imagine today’s world without this technology, its use entails some risks.

Very important information flows through the network that a malicious agent can

eavesdrop.

This problem has made Internet users become more concerned about the pri-

vacy and security of their information using encrypted channels to transmit it. For

instance, many applications, such as web servers, are migrating to be accessed us-

ing TSL/SSL protocols to assure the confidentiality and integrity of the transmitted

data. This concern is contributing to the massive growth of encrypted traffic through

the Internet.

However, with the additional security of encrypted channels come potential trade-

offs, such as the lack of visibility into encrypted traffic that can hide potential threats

to a firewall or an intrusion prevention system. This fact has increased the awareness

for traffic analysis, i.e., inferring information from communication patterns instead

of its content. In fact, traffic analysis can be performed even when the messages are

encrypted and cannot be decrypted.

Chapter 1. Introduction 2

Using the detailed profile of an observed communication, traffic analysis tries to

reveal important information, such as the identities of the parties communicating,

their locations and even the content of the communication. As most technologies,

traffic analysis can be used for “good” purposes, such as security enforcement, foren-

sics and investigation, or “evil” purposes, such as gathering private information or

to penetrate particular security protocols and thus violate traditional security prop-

erties.

1.1 Traffic analysis

1.1.1 Origins in the military

Traffic analysis has its origins in the military context, where the most common sce-

nario is radio traffic analysis. This is the study of intercepted or monitored wireless

traffic for the purpose of gathering intelligence information without recourse to crypt-

analysis [1].

Information Sources

The communication elements that are subject to study by radio traffic analysts

are [2, 3]:

• Callsigns: series of letters and/or numbers assigned that identify a specific

radio station.

• Frequencies: each organization using radio communications is allotted various

blocks of the radio frequency spectrum.

• Schedules: Military radio station networks usually have a prearranged schedule

for contacting other stations and sending messages. Discovering these schedules

Chapter 1. Introduction 3

is an important task of traffic analysis to allocate its monitoring resources most

efficiently, also, it might be possible to use communications schedules to identify

stations.

• Address systems: radio stations often used message address systems to route

messages to particular addressees or military units, several of which might be

served by a single radio station.

• Operator chatter: idle chatter between radio operators, with no valuable infor-

mation, can be unencrypted. Chatter collected from careless radio operators

can disclose information such as callsigns, frequencies, or contact schedule in-

formation.

• Transmission patterns: some operators had distinctive transmission patterns.

For example, ground forces would sign off in a different way than air forces.

• Location of the source: finding the azimuth (line bearing between the source of

the signal and the receiving station) of a propagated radio signal from different

locations allows to identify the position of the transmitter.

Counter-measures

Measures taken to avoid traffic analysis include:

• Changing frequencies, callsigns, and communications transmission schedules

according to a predetermined plan. Usually frequency rotations and change

callsigns are done simultaneously in order to difficult a listening attempt.

• Reducing the communication time.

• Encrypt addresses and operator chatter.

• Send dummy traffic to mislead the traffic analyst.

Chapter 1. Introduction 4

• Sending a continuous encrypted signal, whether or not traffic is being trans-

mitted. This is also called masking or link encryption.

History

Figure 1.1: Beeston Hill ’Y’ station in Sheringham, Norfolk, UK. [4]

The first documented use of traffic analysis dates from 1904 when the Japanese

Navy during the the Russo-Japanese War located a squadron of the Czar’s Vladivos-

tok fleet which was cruising secretly south of Tokyo Bay by intercepting a message [5].

But it was during the World War I when traffic analysis became an indispensable

information source. A well-known example is the Y stations (Figure 1.1) deployed

by the British to gather radio information that were used in both world wars.

During World War II, traffic analysis had a significant role in the most relevant

battles:

• Battle of the Atlantic: the combined use of traffic analysis, radio-direction

finding and cryptanalysis (ULTRA) helped to locate the U-boat wolfpacks [6].

• Battle of the Coral Sea, where the presence of Japanese in the Solomon Islands

was revealed [7, p. 93].

Chapter 1. Introduction 5

• Battle of Midway, the advanced warning that the entire Japanese combined

fleet was en route allowed to plan American strategy in advance [7, p. 144,

155, 165, 166].

• Battle of Stalingrad: the Germans took appropriate defenses when the Soviet

unit was moving towards Stalingrad as they intercepted a radio communica-

tion [8, p. 203].

Also countermeasures to traffic-analysis had a great impact to confuse the enemy:

• Pearl Harbour, where the Japanese aircraft carrier radio were transferred ashore

on November 15, 1941, and the radio operators kept generating dummy packets

with a common pattern [9, p. 140-142].

• Operation Quicksilver in Normandy which had the purpose of simulating an

invasion through Pas-de-Calais instead of Normandy. A main part of this

operation was creating wireless traffic simulating both the apparent movement

of a whole army to Southeastern England and the embarkation preparation

that this invasion would need [10, p. 127-128].

If the reader is interested in deepening in the field of history of traffic analysis and

its use during military operations, we recommend the following texts:

• The Origination and Evolution of Radio Traffic Analysis [11, 12]

• The history of traffic analysis: World War I - Vietnam [2]

• A Century of Spies: Intelligence in the Twentieth Century [13]

• Chicksands, a Millennium of History [14]

• Intelligence Power in Peace and War [15]

Chapter 1. Introduction 6

1.2 Traffic Analysis in the Internet

Traffic analysis techniques can be applied to Internet communications in such a way

that private and sensitive information can be extracted from encrypted communica-

tions.

In contrast to military powers, the adversary is many times assumed to have lim-

ited resources and not be able to intercept all the communications. Examples could

be commercial entities, local governments, law enforcement, criminal organizations

or terrorist networks, even this assumption may not hold for some governments or

law enforcement agencies, such as the National Security Agency (NSA) which has a

capacity to eavesdrop a large proportion of Internet traffic. In fact, the Wall Street

Journal estimated it in 75% of all Internet traffic of the U.S. [16].

In the following, we illustrate the most relevant previous work using traffic anal-

ysis.

Traffic Analysis of Secure Shell (SSH)

SSH is a cryptographic network protocol for secure data communication that allows

users to remote login and execute commands. SSH’s encryption is intended to provide

confidentiality and integrity of data over an unsecure network. However, as SSH only

transmits a packet per key stroke, it leaks a lot of information.

Song et al. [17] showed that using a hidden Markov model (HMM) they were

able to reduce the entropy of a password by 1.2 bits per character pair when the

passwords are generated from a uniform distribution. This reduction is achieved

when the attacker does not have typing statistics from the victim, but, of course,

knowing the user’s typing profile improves performance.

Monrose et al. [18] showed that passwords can be hardened using keystroke dy-

Chapter 1. Introduction 7

namics as every user’s typing pattern varies. This property can be used also by an

eavesdropper to identify the user that is connecting to an SSH server, particularly

after a long sequence has been observed.

Side-Channel leaks to obtain keyboard strokes

Measuring the inter-packet delays (IPDs) in SSH communications is not the only way

of figuring out the keys that a user is pressing. Obtaining the keystrokes constitutes

a serious information leakage as an attacker could easily obtain the passwords a user

is typing.

Asonov and Agrawal [19] and Zhuang et al. [20] showed that with acoustic ema-

nations it is possible to infer the pressed keys. Also, the electromagnetic emanations

can be used to recover the typed keys as shown by Vuagnoux and Pasini [21].

Zhang and Wang [22] demonstrated that in a multi-user environment, another

user can learn the instants another user is pressing keys from the stack information

disclosed by its virtual file within procfs. Afterwards, they use a HMM to obtain

the sequence of pressed characters.

Marquardt et al. [23] showed that a phone placed by a keyboard can be used to

recover text entered on the keyboard, using the vibrations information captured by

the accelerometers.

Cai and Chen [24] showed that on mobile phones, it is feasible that one application

recovers the keys typed on a different one, reading the motion and vibrations of the

screen.

Ristenpart et al. [25] demonstrated that an Amazon Elastic Computing Cloud

(EC2) user can intentionally place a virtual machine on the same physical machine as

another users virtual machine, which allows the former to estimate the cache usage,

traffic load and keystroke timing.

Chapter 1. Introduction 8

Web Fingerprinting

A web page fingerprinting attack is an attempt to identify the web page a user is

visiting using an encrypted connection. This attack can be done in IPSec tunnels,

SSH tunnels, and on anonymity networks such as Tor. The attacker first builds

profiles of web-site pages, and afterwards, its goal is to infer which web page is being

retrieved.

Mistry and Raman [26] and Cheng and Avnur [27] were among the first to demon-

strate the feasibility of inferring the objects downloaded via encrypted Secure Sockets

Layer (SSL) connections using the transmitted data volumes.

Hintz [28] and Sun et al. [29] proposed two different methods of web fingerprint-

ing. While Hintz demonstrates his attack only for a small number of websites using

SafeWeb, Sun et al. presented a larger validation.

Sun et al.’s classifier is based on the Jaccard’s coefficient obtaining a 75% cor-

rect identification. They also propose some countermeasures that include: padding,

mimicking another web page or morphing the traffic. These attacks need to be able

to differentiate connections so they are effective to SSL connections but not under

tunneling protocols.

The first attempts to fingerprint that were effective on tunneling protocols are

Bissias et al. [30] and Liberatore and Levine [31]. On the first one, the detector

is the correlation coefficient between the packet size, and on the second one, there

are two possible detectors: a) naive Bayes, and b) Jaccard’s coefficient, in both the

fingerprints are only based on packet lengths, discarding timing information.

Herrmann et al. [32] proposed a detector using a multinomial-naive Bayes clas-

sifier that outperforms the previous models. The authors claimed that they could

identify up to 97% of the requests on SSH and virtual private network (VPN) tun-

nels, obtaining low accuracy on low-latency anonymity systems as Tor [33] and Java

Chapter 1. Introduction 9

Anonymous Proxy (JAP) [34] due to equal size fragments.

Panchenko et al. [35] used a support vector machine (SVM) on some features

based on volume, time, and direction, with this detector they improved the accuracy

in Tor from 3% to 55% and in JAP from 20% to 80% in a close-world scenario and

in an open-world scenario they achieved a 73% correct detection for a 5% of false

positive probability, they proposed to obfuscate the traffic by loading several pages

simultaneously.

Coull et al. [36] proved that it is feasible to identify target web pages within

anonymized NetFlow data using kernel density estimation for mapping anonymized

addresses to logical servers and afterwards check constraints using a binary Bayes

belief network.

Chen et al. [37] have further showed that web fingerprinting cannot only infer

the web page that is being accessed, but also sensitive information, such as medical

records and financial data.

Web Privacy

A remote web server accessed by a client can infer information about the web-sites

that the client has previously browsed [38]. The malicious web-server can determine

this information by measuring the time the user’s browser requires to load an object

from other web-sites. Since browsers perform various forms of caching, the time

required for this action depends on the user’s browsing history.

Jackson et al. [39] proposed two additional ways. The first is based on reading

the color of the displayed links, and the second on a cooperative site tracking where

several domains agree to share the user’s visited history on their domains, for which

they redirect the user to a central tracking authority. They claimed that the only way

to prevent this attack is to disable the features of the browser that use persistent-

Chapter 1. Introduction 10

state.

Jang et al. [40] developed a framework for JavaScript to detect privacy-attacks

on information flows, showing that several popular sites perform this kind of attacks.

Machine identification

Kohno et al. [41] proposed how to determine if two different IP addresses are indeed

the same device. The method is based on the clock skew (the amount by which the

clock drifts per unit of time), that can identify a particular machine, as it is different

for all machines even for identical models from the same manufacturer. Therefore, if

the clock drift of two remote machines seems to match for a long time, they conclude

that the targets are indeed the same machine. The technique can be used even when

the machines use Network Time Protocol (NTP) for clock synchronization.

Murdoch [42] used a similar approximation to detect hidden servers in anonymous

networks such as Tor [33]. They modulate the number of requests send to this

server. These requests make the CPU load increase, heating up the machine with

the inevitable result of modifying the clock skew. If the provided time of this machine

can be measured, and the corresponding pattern of clock skew changes, it is possible

to link the machine with its hidden identity. Zander and Murdoch [43] modified this

scheme sampling at the desired instants in order to reduce the quantization error.

The opposite problem has also been widely considered, i.e., identify the machines

behind a certain IP address. This problem is relevant due to the common use of

network address translator (NAT) gateways and firewalls, that make all the connec-

tions from a private LAN to appear with the same source IP. Bellovin [44] addressed

this problem by noticing that on many operating systems, the IP headers ID field is

a simple counter. However, this technique is becoming less effective because many

operating systems have started to randomize this field to prevent ‘idle scanning’.

Beverly [45] showed that the TCP/IP stack varies with the operating system (OS)

Chapter 1. Introduction 11

and its version, which allows the attacker to identify the number of machines behind

a NAT gateway. This OS fingerprint can also be used for an attacker to identify pos-

sible vulnerabilities. A similar approach was used by Franklin et al. [46] to identify

wireless device drivers.

Detecting stepping stones

A stepping stone is a compromised host that is being used as an attack platform, re-

laying traffic to another remote destination for the real attacker to hide their identity.

Detecting stepping stones involves a firewall that sees incoming and outgoing con-

nections, and tries to determine if a pair of them may be carrying the same stream.

If so, it might mean that the a host is compromised and used as a stepping stone.

This problem is one of the main applications of the research presented in this

dissertation, and in Chapter 2 we deal with the different proposed strategies used on

the previous literature.

Location privacy

Location privacy is the ability of an individual to move in public space with the

expectation that under normal circumstances their location will not be systematically

and secretly recorded for later use.

Nowadays, location information can be gathered silently, and cheaply. That

allows studying individual movements of individuals and making models to predict

somebody’s position. This can be a serious concern not only because of the loss of

privacy but also due to safety reasons.

Brockman et al. [47] showed that human traveling behaviour can be modeled

as a continuous time random walk. Humans follow simple reproducible patterns in

most of their travels as shown in [48] and these movements can be explained by

Chapter 1. Introduction 12

periodical movements or social relationships[49] that allow the attacker to predict

future movements. This predictability is potentially very high and could achieve a

93% of correct prediction [50]. An interesting fact discovered by De-Montjoye et

al. [51] is that four spatio-temporal points are enough to uniquely identify 95% of

the individuals.

Data can be collected from the wireless access points the user connects to [52, 53],

cell phone base station [48, 54, 50], location-based Social Networks [55, 56, 57, 58]

or GPS position [58, 59].

It can be concluded that using location data, sensitive information about one’s

identity, relations and intentions can be inferred merely though traffic analysis.

1.3 Anonymous communications: Avoiding traffic

analysis in Internet

Privacy preserving communications, that do not leak any residual information from

their metadata, have been studied since Chaum [60] introduced the “mix”. Since

then, research in anonymous communications has been extended to many areas.

1.3.1 Mixnet-based schemes

The mixnet family of protocols use a chain of proxies or mix servers, each one receives

messages from multiple senders, shuffles them, and sends them back out in random

order to the next destination (see Figure 1.2).

Each message is encrypted in layers in such a way that each proxy can decrypt its

own layer of encryption to reveal where to send the message next. Hence, mixes only

know the node that they immediately received the message from, and the immediate

Chapter 1. Introduction 13

Mix 1 Mix 2

Message 1

Message 2

Message 3

Message 1

Message 2

Message 3

Figure 1.2: Mixnet network.

destination to send, making the network resistant to malicious mix nodes.

Anonymous remailers

Cypherpunk remailers or type I remailers [61] were the first widespread public im-

plementation of mixnet. They provide an anonymous store and forward architecture

for sending emails.

The next generation of remailers, type II, was introduced by Cottrell [62]. Type

II remailers are more resistant to traffic analysis as they send messages in fixed-size

packets, preventing attacks based on correlating messages by size. The reusable reply

blocks that they implement pose a security risk because they allow multiple messages

to be sent.

Mixminion [63] (type III remailer) avoids the reply problem by making reply

messages indistinguishable by a mix node to forward messages. Messages are trans-

ferred between remailers using a Transport Layer Security (TLS) protected tunnel

with ephemeral keys so material gathered by a passive adversary is useless after the

ephemeral keys are deleted.

Chapter 1. Introduction 14

Onion routing

Onion routing [64, 65, 66, 67] is the equivalent of mix networks, but in the context

of circuit-based routing. Instead of routing each anonymous packet separately, the

first packet opens a circuit. Then, the rest of packets are routed through this same

circuit. Finally, a message to close the path is sent.

The circuit is opened sending a message encrypted in layers, that can only be de-

crypted by a chain of onion routers using their respective private keys. This message

contains the addressing information about the next node, as well as material shared

between the sender and the routers. It has become clear that in the absence of heavy

amounts of cover traffic, patterns of traffic are present that could allow an attacker

to follow a stream in the network and identify the communicating parties [68]. This

kind of attacks will be addressed later in this dissertation.

Onion routing aims at providing anonymity in low-latency applications where

mix networks cannot be used because of their excessive delay, and in order to be

fast enough to be useful, its mixing strategy has to be minimal. This has resulted in

successful timing-correlation attacks.

Zero Knowledge designed the Freedom network following the architecture of onion

routing [69, 70] but it did not succeed on achieving enough widespread acceptance

to cover its operating costs.

Tor: the second-generation onion router

Tor was developed in 2004 by the Onion Router project team as the second generation

of the onion router [33].

Tor relays Internet traffic through free, worldwide volunteer servers called onion

routers or relays. Onion routers communicate with one another, and with users’

Chapter 1. Introduction 15

Client Server

Create c1, E(g^x1)

Created c1, g^y1, H(K1)

Relay c1{Extend, OR2, E(g^x2)} Create c2, E(g^x2)

Created c2, g^y2, H(K2)Relay c1{Extended c2, g^y2, H(K2)}

Relay c1{{Extend, OR3, E(g^x3)}}

Relay c1{{Extended c3,
g^y3, H(K3)}}

Relay c2{Extend, OR3, E(g^x3)}

Relay c2{Extended c3, g^y3, H(K3)}

Create c3, E(g^x3)

Created c3, g^y3, H(K3)

Relay c1{{{Begin address:port}}} Relay c2{{Begin address:port}} Relay c3{Begin address:port}
TCP Handshake

Relay c3{Connected}Relay c2{{Connected}}Relay c1{{{Connected}}}

Relay c1{{{Data, Request}}} Relay c2{{Data, Request}} Relay c3{Data, Request} Request

Relay c1{{{Data, Response}}} Relay c2{{Data, Response}} Relay c3{Data, Response} Response

...

Legend

E(x) - RSA Encription
{X} - AES Encryption

cN - circuit ID

Figure 1.3: Tor circuit creation and data transmission

onion proxies (Tor clients), via TLS connections.

Prior to sending data through Tor, a client has to establish a circuit. For this

purpose, the onion proxy chooses three Tor relays over which their communication

is relayed. Instead of a single message to create the whole circuit, the onion proxy

constructs circuits incrementally, negotiating a symmetric ephemeral key (session

key) with each onion router on the circuit, one hop at a time. This guarantees

forward secrecy and compulsion resistance: only short term encryption keys are ever

needed.

Once the onion proxy has established the circuit (so it shares keys with each relay

on the circuit), it can send relay cells that contain application data. When an onion

router receives a relay cell, it decrypts the cell using the session key for that circuit,

and if valid, the onion router sends the cell with one less encrypted layer to the next

hop. On the reply channel, each relay adds an encryption layer using the single key

Chapter 1. Introduction 16

Client Hidden
Service

HS Directory

Introduction
Point

Rendezvous
Point

(1): Create Introduction Circuits

(2): Upload Rendezvous Descriptor
(3): F

etch Rendezvous D
escriptor

(4): Build Rendezvous Circuit

and Send Rendezvous Cookie

(5): Create Circuit and Send
Rendezvous Information

(6): Forward Rendezvous Information

(7): B
uild Circuit and send Rendezvous Cookie

(8): Connect Circuits

Figure 1.4: Establishing and accessing a hidden service

of the circuit, sending the cell back toward the onion proxy along the circuit. This

whole process is depicted in Figure 1.3, where we represent a layer of encryption

using {}.

Tor also provides responder anonymity with location-hidden services, that allows

to offer TCP services without revealing their IP address.

The process to establish and access a hidden service is shown in Figure 1.4. First,

the hidden server creates introduction circuits with several Tor relays called intro-

duction points (step 1). Then the hidden service uploads its descriptor that includes

which onion routers are its introduction points to the hidden service directory (step

2). When a client wants to access this hidden service, the client fetches the hidden

service descriptor (step 3), afterwards the client chooses one Tor relay as rendezvous

point creating a circuit towards it, next the client sends an arbitrary 20-byte value

(rendezvous cookie) through this circuit (step 4). The client also builds a separate

circuit to one of the hidden services introduction points, through it the client sends

the rendezvous point and the cookie (step 5), that is forwarded to the hidden service

(step 6). Finally, the hidden service creates a circuit to the rendezvous point send-

ing the rendezvous cookie through it (step 7) so the rendezvous point can join both

Chapter 1. Introduction 17

circuits together (step 8).

In this way, the client and the hidden server does not know the other party of

the communication.

Web MIXes

Web MIXes [71] were designed for anonymous and unobservable real-time Internet

access that can prevent traffic analysis and flooding attacks. This scheme has been

implemented as a web-anonymizing proxy called JAP.

The design goal is to secure anonymous communication, even in the presence of a

very powerful adversary, that can observe all communications on the network (global

passive), modify the communications on the links by delaying, injecting or deleting

messages, and control all but one of the mixes.

Web MIXes use a cascade of mixes, where each message is processed by all mixes

in the same order. After the cascade of mixes, the cache-proxy sends the data to the

Internet and receives answers from the servers. To prevent traffic correlation attacks,

Web MIXes send the same amount of data per slot. Unfortunately, while this idea is

practical in the context of circuit-switching telecommunication networks, in modern

IP networks is very expensive to guarantee a constant bandwidth.

1.3.2 DC-net systems

Dining Criptographers problem

This problem was proposed by Chaum [72], as an illustrative example to show how

it was possible to send anonymous messages with unconditional sender and recipient

untraceability.

Chapter 1. Introduction 18

The problem is stated as follows: three cryptographers gather around a table for

dinner, where the waiter informs them that the meal has been paid by someone, who

could be one of the cryptographers or the NSA. The cryptographers respect each

other’s right to make an anonymous payment but want to find out whether the NSA

paid.

The protocol is performed in two stages. In the first stage, every two cryptog-

raphers establish a shared one-bit secret, i.e. cryptographer A and B share a secret

bit , A and C share another, and B and C share another. In the second stage, each

cryptographer publicly announces a bit, the XOR of the two shared bits they hold

with their two neighbours if they did not pay the meal and the opposite bit if they

did pay the meal. A XOR of all the announced bits determines whether the NSA

or any of the cryptographers paid, but the identity of who paid remains unknown to

the other cryptographers.

Under the assumption of a reliable broadcast network, the anonymity of the

senders is proved to be unconditional, without relying on a trusted third party and

even if the attacker is computationally unbounded. The problems of this method

are that only one participant is allowed to transmit at a time using this protocol,

and that a malicious player can jam the protocol so that the final XOR result is

useless. This attack cannot be detected easily since each node is as anonymous as

any initiator.

To solve this problem, Chaum proposed to detect dishonest players via a system

of traps. To jam the DC-net a dishonest player must transmit a message in a slot

that was not assigned to him, but if the slot in which he tries to transmit is a trap,

then the attacker may be detected during a decommitment phase.

Herbivore [73] is a peer-to-peer scalable anonymous communication system based

on DC-nets, where the network is divided into smaller anonymizing cliques of k-nodes

within which a DC-net protocol is implemented.

Chapter 1. Introduction 19

Dissident [74] is a messaging protocol that offers provable anonymity with ac-

countability for moderate-size groups. To this end, it shuffles a N × N matrix of

pseudorandom seeds, then uses these seeds in N “pre-planned” DC-nets protocol

runs.

1.3.3 Network routing-based techniques

CROWDS

Crowds [75] aims to provide an anonymous access to web servers. Each user contacts

a central server and receives the list of relays. Then, a user relays her web requests

by passing them to another randomly selected node in the crowd. This node can

either submit the request directly to the end server or forward it to another randomly

chosen member, and in the latter case this process can be repeated by the next node.

The random choice is biased in favor of forwarding to a new node. The anonymity

of initiators is based on the assumption that the members in the crowd cannot know

if the previous node was the actual requester or was just passing the request along.

However, it has been demonstrated that Crowds is vulnerable to predecessor

attacks [76]. This is because, if a node repeatedly requests a particular resource, the

node and the resource can eventually be linked.

Buses for anonymous delivery

The metaphor of messages being like the public transport system, where each piece

of information is allocated a seat within the bus was presented in [77].

Messages (buses) traverse the network using deterministic routes, since the mes-

sages traverse the network in fixed routes, the adversary cannot learn whether there

is any communication between the nodes or not.

Chapter 1. Introduction 20

Each time the bus gets to a node, this node checks which messages were for it

and ignores those containing dummy information. Then it changes the messages that

correspond to its seats to either a message or a dummy.

1.3.4 Peer to peer anonymous communications systems

Tarzan

Tarzan is a peer-to-peer anonymous IP network overlay [78] that achieves its anony-

mity with layered encryption and multihop routing, like a Chaumian mix.

A message initiator chooses a path of peers pseudo-randomly through a restricted

topology. Tarzan uses cover traffic to prevent a global observer from using traffic

analysis to identify an initiator.

Tarzan uses a restricted network topology for packet routing. Each node main-

tains persistent connections with a small set of other nodes, this set is called a mimic.

Routes of anonymous messages are created only through mimics and between mim-

ics to avoid traffic analysis through links with insufficient traffic. Unfortunately, a

security weakness of Tarzan is that the selection of neighboring nodes for the mimic’s

structure is done on the basis of a network identifier or address, which is vulnerable

to spoofs and also due to the small subset of known nodes a malicious node on the

path can identify uniquely the originator with very high probability as it knows three

nodes of the subset [79]. A new version of Tarzan forcing each node to know all other

nodes, which is clearly less practical.

MorphMix

MorphMix [80] has a similar architecture and threat model to Tarzan. An important

difference is that the route is chosen by intermediate nodes, observed by witnesses

Chapter 1. Introduction 21

and trusted by the user. MorphMix includes a collusion detection mechanism that

monitors for any cliques in the selection of nodes in the path, but this mechanism

has also been compromised [81].

1.4 Contributions and Publications

In the following, a brief summary of the contributions contained in this thesis together

with the published works that support their research value is provided.

1.4.1 Publications

The publications that support the research undertaken during the period of this

thesis are the following:

Journal Papers

J1 J. A. Elices and F. Pérez-González, “A highly optimized flow-correlation at-

tack,” Elsevier Computer Networks, 2014, submitted.

Conference papers

C1 J. A. Elices, F. Pérez-González, and C. Troncoso, “Fingerprinting Tor’s hidden

service log files using a timing channel,” in Information Forensics and Security

(WIFS), 2011 IEEE International Workshop on, 29 2011-dec. 2 2011, pp. 1

–6.

C2 J. A. Elices and F. Pérez-González, “Fingerprinting a flow of messages to an

anonymous server,” in Information Forensics and Security (WIFS), 2012 IEEE

International Workshop on. IEEE, 2012, pp. 97–102.

Chapter 1. Introduction 22

C3 J. A. Elices and F. Pérez-González, “Locating tor hidden services through

an interval-based traffic-correlation attack,” in Communications and Network

Security (CNS), 2013 First IEEE Conference on, 2013.

C4 J. A. Elices and F. Pérez-González, “The Flow Fingerprinting Game,” in In-

formation Forensics and Security (WIFS), 2013 IEEE International Workshop

on. IEEE, 2013.

C5 J. A. Elices and F. Pérez-González, “Locating Tor hidden services through

an interval-based traffic analysis,” in Communications and Network Security

(CNS), 2014 Second IEEE Conference on, 2014 (submitted).

Unpublished

U1 J. A. Elices and F. Pérez-González, “Linking correlated network flows through

packet timing: a game-theoretic approach,” 2013.

1.4.2 Contributions

The main contributions that have been made during the research detailed in this

thesis can be summarized in the following points. We indicate between brackets the

produced publications related to each of them:

• Proposed three different methods to detect correlated flows, i.e. flows that

carry the same stream. The first one is based on predicting the time a packet

should appear on the correlated flow ([C1], [C2]), the second on the IPDs ([J1,

C3, U1]) and the third on the number of packets that fall inside certain intervals

([C4], [C5]).

• We proposed a game-theoretic framework to study the impact of an active

attacker to the correlation ([C3, U1]) in the second method.

Chapter 1. Introduction 23

• We studied the common application of flow correlation: stepping stones de-

tection and compromising anonymity([J1,C3,U1]). But we have also proposed

how to detect if a flow has a certain flow embedded. This is used for locating

hidden servers of anonymous networks.

1.5 Organization of the rest of the dissertation

After having put a contextual framework in this chapter describing traffic analysis

and anonymous communications, the remaining chapters of the thesis are structured

as follows:

• Chapter 2 formally defines the problem we want to solve, describe the applica-

tions we want to address and shows the state-of-the-art.

• Chapter 3 describes a prediction-based method for leaving traces in log files.

• Chapter 4 describes a prediction-based method for correlating flows. We apply

this method to deanonymize Tor hidden services.

• Chapter 5 proposes a method for correlating flow based on detecting an incre-

ment of packets that fall in the intervals. We also apply it for deanonymizing

Tor hidden services.

• Chapter 6 describes a method using the IPDs, which, therefore, does not need

any delay predictor. We apply this method to detect stepping stones and to

correlate flows that go through Tor.

• Chapter 7 studies the scenario when an active-adversary is present in the

method given in 6 using a game-theoretic approach.

Chapter 1. Introduction 24

• Chapter 8 provides the conclusions that can be drawn from the research de-

veloped in this thesis, pointing out the future research lines that this thesis

opens.

25

Chapter 2

Problem Description and Previous

Approaches

2.1 Notation

In this section we introduce the notation that we use in the sequel.

Random variables are denoted by capital letters (e.g., X), and their individual

realizations by lower case letters (e.g., x). The domains over which random variables

are defined are denoted by script letters (e.g., X). Sequences of n random variables

are denoted by Xn if they have random nature or by xn if they are a particular

realization. Xi or xi indicate the ith element of Xn or xn, respectively. The pdf

(probability density function) of a random variable X is denoted by fX(x), x ∈ X .

We use the same notation to refer to the joint pdf of a sequence, i.e. fXn(xn), xn ∈

X n. When no confusion is possible, we drop the subscript in order to simplify

the notation. We denote by ∆ the difference operation of a sequence, i.e ∆xn =

{x2 − x1, . . . , xn − xn−1} and by ∆ix
n = xi+1 − xi the ith element of this sequence.

Chapter 2. Problem Description and Previous Approaches 26

The indicator function of x being in the interval [a, b] is denoted by

1[a,b](x) =

1 if x ∈ [a, b],

0 if x /∈ [a, b].
(2.1)

The Kullback-Leibler Divergence (KLD), that is a non-symmetric measure of the

difference between two probability distributions fP and fQ, is defined as follows:

DKL(P,Q) =
∑
i∈P

fP (i) log

(
fP (i)

fQ(i)

)
(2.2)

The Jensen-Shannon divergence (JSD), DJS [82], is a metric for two probability

distributions fP , fQ based on the Kullback-Leibler divergence (KLD) as follows:

DJS(P,Q) =

√
1

2
(DKL(P ||M) +DKL(Q ||M)) (2.3)

where M = 1
2
(P +Q) is the mid-point measure.

2.1.1 Performance Metrics

To measure performance, we use two metrics: the probability of detection (PD) and

the probability of false positive (PF). Given two hypotheses: H0 and H1, PD is the

probability of deciding H1 when H1 holds, whereas PF is the probability of deciding

H1 when H0 holds. Sometimes we use the probability of misdetection defined as

1− PD.

Typically, performance is graphically represented using the so-called Receiver

Operating Characteristic (ROC) curves, which represent PD vs. PF . In order to

compare different ROCs in a simple way, we use the Area Under the ROC Curve

(AUC), a measure that takes a value of 1 in the case of perfect detection and 0.5 in

the case of random choice.

Chapter 2. Problem Description and Previous Approaches 27

2.1.2 Neyman-Pearson Lemma

The Neyman-Pearson lemma [83] is a statistical theorem that guarantees that when

performing a hypothesis test between two hypotheses H0 and H1 the likelihood ratio

test is the most powerful test of size α. This means that given a fixed probability

of false positive, i.e., PF = α, the likelihood test gives the highest true positive rate

(probability of detection).

The likelihood test rejects H0 in favor of H1 when:

Λ(x) =
L(H1|x)

L(H0|x)
≤ η, where P (Λ(x) ≤ η|H0) = α, (2.4)

this means that η is a threshold to obtain PF = α.

2.2 Brief Introduction to Game Theory

Game theory is the mathematical study of interaction among intelligent rational

decision-makers. Formally, a two player game is defined as a quadruple G(A1, A2,

u1, u2), where Ai = {ai,1, . . . ai,ni} are the actions available to the i player, ui :

A1 × A2 7→ R, i = 1, 2 is the utility function or payoff of the game for player i.

An action profile is the double a ∈ A1 × A2. We are interested in zero-sum games,

where u1(a) + u2(a) = 0,∀a ∈ A1 × A2, which means that the gain (or loss) of

utility of player 1 is exactly balanced by the losses (or gains) of the utility of player

2. In this case, we can simplify the game notation to a triplet G(A1, A2, u), where

u = u1 = −u2.

We say that an action profile (a1,i∗ ; a2,j∗) represents a Nash equilibrium (NE) if

u(a1,i∗ ; a2,j∗) ≥ u(a1,i; a2,j∗) ∀a1,i ∈ A1

u(a1,i∗ ; a2,j∗) ≤ u(a1,i∗ ; a2,j) ∀a2,j ∈ A2, (2.5)

Chapter 2. Problem Description and Previous Approaches 28

intuitively this means that none of the players can improve his utility by modifying

his strategy assuming the other player does not change his own.

Games can be classified in simultaneous games, where both players move unaware

of the other player action, and sequential games, where later players have some

knowledge about earlier actions. In sequential games, an action profile is a subgame

perfect equilibrium (SPE) if it represents a NE of every subgame of the original game.

Therefore, a SPE is a refinement of the NE that eliminates non-credible threats.

2.3 Problem Description

The problem addressed in this thesis is the identification of correlated flows. We say

that two flows are correlated if they follow a common timing pattern due to sharing

the same source (i.e. the unencrypted payload of part of the packets is the same).

This means that:

• Packets can be added or/and removed at an encryption layer.

• Packets can be added to the flow.

• Several flows can merge into one and the traffic analyst (TA) cannot separate

them.

• Packets can be removed from the flow.

There are two general approaches for finding correlated flows: passive analysis

and active watermarks. Passive analysis schemes are based on correlating some

characteristics of the flows, such as packet timings or packet counts, without altering

such flows [84, 85, 86]. On the other hand, active watermarks actively modify the

flow by delaying individual packets to embed a watermark signal. This watermark

Chapter 2. Problem Description and Previous Approaches 29

TA
Detector

TA
Creator

Figure 2.1: Flow correlation problem

signal can be embedded in individual delays between packets [87, 88] or in some

properties of the intervals [89, 90, 91].

We also define flow fingerprinting, which is a flow watermarking scheme with a

unique modification to each flow, so that every source sequence can be indistinctively

identified. Note that the terms non-blind watermark and fingerprint are many times

interchangeable.

We outline the problem of finding correlated flows in Figure 2.1. The goal of the

TA is to accept or reject the hypothesis that a flow yn2 consisting of n2 packets is

indeed the same flow as a known one, xn, of length n packets. In the case we are in

an active watermark scenario, the TA can modify the flow by embedding a known

signal or watermark wn. Due to the nature of the problem the modification must

be additive, i.e., xn = un + wn, where wi ≥ 0, i = 0, . . . , n. In the case that we

deal with bidirectional flows, we add a direction subscript: I for the flow from TA

creator to TA detector, and B for the opposite flow. In chapter 3 instead of X and

Y representing a packet flow they denote an HTTP request flow, that has only the

I direction.

We denote by Dn the network delay of each packet, hence

Yxi = xi ±Di, i = 1, ..., n, (2.6)

where Yxi represents the component of Y n2 that corresponds to xi, and the sign varies

depending on the direction, plus for I and minus for B.

Chapter 2. Problem Description and Previous Approaches 30

Let us define the hypotheses:

H0 : yn2 is not correlated with xn

H1 : yn2 is correlated with xn.

In Chapters 3, 4 and 5 time is divided into intervals. We define the ith interval

or period for the TA creator as

Pi,c = (bi,c, ei,c) = (bi,c, bi,c + Ti,c), i = 0, . . . , L− 1, (2.7)

where bi,c is the beginning of each interval, ei,c is the end, Ti,c is the interval length

and L is the number of considered intervals. For the TA detector, the expression is

identical but changing the subscript c for d. Unless otherwise stated, we assume that

intervals do not overlap, i.e.

Pi,c ∩ Pj,c = ∅, and Pi,d ∩ Pj,d = ∅, ∀i 6= j. (2.8)

When there is no possible confusion about where the interval is measured, we drop

the subscript c or d in order to simplify the notation.

We also define the random variables Ci and Si that count the number of packets

that fall inside Pi,c and Pi,d, hence:

Ci =
n∑
j=1

1Pi,c(Xj) (2.9)

and

Si =

n2∑
j=1

1Pi,d(Yj). (2.10)

The packets at the detector can have either one of two sources: the flow by

the TA creator or a different source (chaff or other flows). We represent this as

SL = EL +RL, where EL is the number of packets that traverse the TA creator and

RL denotes the remaining packets. Formally,

Ei =
n∑
j=1

1Pi,d(Yxj). (2.11)

Chapter 2. Problem Description and Previous Approaches 31

2.3.1 Fingerprinting a hidden service log

In Chapter 3, we consider a different application. We assume a scenario where the

TA do not have access to the TA detector but he/she wishes to leave a fingerprint in

its log so as to use it later as a proof that a particular machine was indeed the receiver

of the HTTP flow. This can be used in network forensics to prove that a certain

machine once hosed a particular content, even if this content has been permanently

deleted. This fingerprinting problem is conceptually identical to the flow-correlation

problem.

2.4 Previous Approaches

In this section we explain how this problem, detecting correlated flows, has been

addressed previously, dividing these methods in passive analysis and active water-

marking according to the non-modification or modification of the flow, respectively.

Afterwards, we present some attacks against the invisibility of active watermarking.

2.4.1 Passive Analysis

Passive analysis schemes attempt to detect the correlation of two flows extracting

some characteristics of both, such as packet timings or packet counts, without mod-

ifying the flows. The decision is based on correlating those extracted characteristics.

Zhang and Paxson

Zang and Paxson [84] proposed to correlate the traffic by measuring the time when

both flows are in OFF state (i.e., no transmission for at least Tidle).

Chapter 2. Problem Description and Previous Approaches 32

• They consider that two OFF periods are correlated if their end times differ by

less than δ, where δ is a control parameter.

• Two flows F1 and F2 have a consistent ordering if once observed that F1 ends

its OFF period before F2, then F1 should always ends its OFF period before

F2.

• They consider two connections C1 and C2 are a stepping stone connection pair

if

OFF1,2

min(OFF1, OFF2)
≥ γ, OFF ∗1,2 ≥ mincsc, and

OFF ∗1,2
min(OFF1, OFF2)

≥ γ′

(2.12)

where OFF1 and OFF2 are the number of OFF periods in connections C1 and

C2, respectively, OFF1,2 is the number of correlated OFF periods, OFF ∗1,2 is

the number of consecutive coincidences with consistent order, and mincsc, γ

and γ′ are control parameters.

The method in [84] achieves a large confidence when connections are several minutes

long (i.e., thousands of packets) but not so much reliability on short connections.

They do not consider any alteration in the traffic.

Donoho, Flesia, Shankar, Paxson, Coit and Staniford

Donoho et al. [85] studied how to detect a stepping stone when it delays packets

up to a maximum tolerable delay constraint to evade detection. They conclude

that provided that a large enough sequence is available, they can correlate the traffic

regardless of the modification. They use wavelets to separate the short-term behavior

from the long-term behavior, and use the correlation on the latter.

They analyze Poisson streams, due to their mathematical properties, but claim

that the results are generalizable to other distributions. They also claim that in the

Chapter 2. Problem Description and Previous Approaches 33

105
0

523

315

420

850

1043

323

MIX

A

B

C

D

X

Y

Z

Figure 2.2: Packet counting to a mix network

presence of chaff packets the correlation parameter converges to a value that depends

on the chaff traffic but is strictly larger than 0, so they can still detect stepping stones

as long as the flow is long enough.

Blum, Song, and Venkataraman

Blum et al. [86] also studied stepping-stone detection under a maximum tolerable

delay constraint. They count the difference between the number of packets in both

flows. When this difference goes over a certain threshold they conclude that the flows

are not correlated.

In the case that the stepping-stone can introduce a certain amount of chaff traffic,

the threshold is incremented linearly with it. They also claim that under unlimited

chaff traffic, the attacker can always evade detection.

Packet Counting Attack

Serjantov and Sewel [92] proposed a packet count attack. This attack correlates the

number of packets that input and output flows carry in a period of time. This attack

is effective against low-latency mixes, including Tor onion routers. This is shown on

Figure 2.2, where the number on the arrow represents the number of packets observed

Chapter 2. Problem Description and Previous Approaches 34

outgoing

incoming

outgoing

incoming
t

t

D

d

H
id

de
n

S
er

ve
r

R
en

de
zv

ou
s

P
oi

nt

Figure 2.3: Packet Counting Attack using timing information [94]

by an attacker on the link over one time period. In the example, it is plausible that

the flow from A and C goes to Y, B’s to X and D’s to Z.

A very similar approach of counting the number of packets in periods of time is

followed by Levine et al. [93]. They propose to drop packets to mitigate the attack.

A modification of this attack is used by Øverlier and Syverson [94] to locate hid-

den servers when the attacker controls the first onion router in the circuit between

the hidden service and the rendezvous point. They propose to use the timing be-

tween bursts to correlate the flows, for instance D and d in Figure 2.3. The packets

that seem to have no correspondence in the other flow are considered to come from

the process of setting up the tunnelled connections and are not considered for the

correlation. The considered bursts are marked in Figure 2.3.

2.4.2 Active Watermarking

In this section, we present the state-of-the-art methods to identify correlated flows

using active watermarks. Recall that active watermarking is a technique that mod-

ifies the flow at the TA creator to incorporate a certain signal or watermark. This

signal is embedded by delaying certain packets.

Chapter 2. Problem Description and Previous Approaches 35

(2k-1)s 2ks (2k+1)s (2k+2)s

{ { { {

2ks (2k+1)s (2k+2)s (2k+3)s

bit =1

bit =0

Figure 2.4: IPD modification in quantization watermark

Quantization Watermarking

Wang and Reeves [87] proposed the first active flow watermark. The watermark is

embedded in the inter-packet delays (IPDs). They first quantize the IPD and embed

one bit of information by either adding half of the quantization step or not, as shown

in Figure 2.4.

They argue that with sufficient redundancy the watermark can always be detected

even if a timing perturbation is added to each packet. Hence, the drawback of this

method is the amount of packets needed to obtain a good performance.

Interval-based watermarking

Pyun et al. [90] proposed an interval-based watermark (IBW) designed to resist

attacks that modify the number of packets, such as flow splitting, chaff packets and

repacketization.

Starting from a random offset, the unwatermarked flow is divided into intervals Ii

of length TIBW . A bit is encoded in the difference of packets between two consecutive

intervals, Ik and Ik+1. As shown in Figure 2.5, a 0 is embedded by making the number

of packets within Ik larger than Ik+1, to this end the packets within intervals Ik−1

and Ik+1 are delayed by TIBW , so they fall into Ik and Ik+2, respectively. To embed

Chapter 2. Problem Description and Previous Approaches 36

Original
Flow

Watermarked
Flow (Bit 0)
{ Interval

Pair

Watermarked
Flow (Bit 1)

Figure 2.5: Example of Interval-Based Watermark

a 1, IBW tries to make the number of packets in Ik+1 larger than Ik, for which it

delays all the packets in Ik by TIBW , so that they fall into the interval Ik+1.

Tracking Anonymous Peer-to-Peer VoIP Calls

Wang et al. [95] proposed a watermark to trace VoIP connections, based on the idea

that the IPD of these connections at the source has a very small variance. They

embed the watermark in the “pseudo-IPDs” defined as xi+d − xi, i.e., the difference

between the timing of two packets separated by d− 1 other packets.

To embed a bit, they select 2r packets where r is the redundancy of a bit.

These packets are separated into two groups, G0 and G1, and then they delay by

a milliseconds all the packets of one of these groups. To decode this bit, they cal-

culate the difference between the mean of the “pseudo-IPDs” of each group, i.e.,

Chapter 2. Problem Description and Previous Approaches 37

Original
Flow

Watermarked
Flow (Bit 0)

Watermarked
Flow (Bit 1)

Figure 2.6: Example of Interval-centroid-based Watermark

1
r
(xi+d − xi − 1

r
(xj+d − xj), i ∈ G1, j ∈ G0, and the decision is based on the sign of

this difference.

Interval-centroid-based Watermarking

Wang et al. [91] proposed Interval-centroid-based watermarking (ICBW). As its name

suggests, the watermark is encoded by modifying the centroid of certain intervals.

Starting from a random point, the flow to be watermarked is divided into 2n

intervals of length TICBW . Then, ICBW randomly partitions the intervals into two

groups A and B, each containing n intervals. Afterwards, ICBW randomly deter-

mines which intervals of each group are used to embed a particular watermark bit.

As shown in Figure 2.6, to encode bit ‘1’ ICBW deliberately increases the centroid of

the intervals from group A mapping the whole interval (shown in red) into a smaller

Chapter 2. Problem Description and Previous Approaches 38

Original
Flow

Symbol
Sequence

Chip
Sequence

Transmitted
Sequence

Watermarked
Flow

Figure 2.7: Example of DSSS Watermark

subinterval at its end (depicted in green). To encode bit ‘0’, ICBW deliberately

increases the centroid of intervals from group B in a similar manner.

Direct-sequence Spread Spectrum Watermarking

Yu et al. [96] proposed an interval watermark based on DSSS (Direct Sequence Spread

Spectrum) communication techniques in order to become invisible.

A DSSS signal is created by XORing the pseudonoise sequence and the symbol

sequence. This DSSS signal is embedded by modifying the traffic rate. As shown in

Figure 2.7, in a flow with average rate of D a 1 is embedded by increasing its rate

up to D + A and a 0 by decreasing the rate to D − A. This method requires very

long sequences.

Chapter 2. Problem Description and Previous Approaches 39

Original
Flow

Watermarked
Flow

Key= 10010

Figure 2.8: Example of RAINBOW Watermark

RAINBOW

Houmansadr et al. [88] proposed RAINBOW (Robust And Invisible Non-Blind Wa-

termark), a non-blind watermark which is robust to packet drops and repacketization.

RAINBOW records the IPDs of the unwatermarked flow, then it embeds the

BA

A
Added
packet

B

Removed
packets

Figure 2.9: Selective Correlation in RAINBOW Watermark [88]

Chapter 2. Problem Description and Previous Approaches 40

Original
Flow

Watermarked
Flow

{ {Mark IntervalBase Interval

Figure 2.10: Example of SWIRL Watermark

watermark by modifying the IPDs by a different quantity (+a for 1, −a for 0, or vice

versa) as shown in Figure 2.8. The detector calculates the normalized correlation

between the received IPDs minus the original IPDs and the watermark sequence,

if this value goes over a threshold then the detector concludes that the received

sequence is watermarked. In order to deal with added and lost packets, it uses

“selective correlation” that removes the packets that have no correspondence in the

other flow as shown in Figure 2.9.

SWIRL

Houmansadr and Borisov [89] proposed SWIRL (Scalable Watermark that is Invisible

and Resilient to packet Losses).

Starting from a random offset α, SWIRL divides a flow into intervals of length

TSWIRL: half of them, called base intervals, are used to determine the slots pat-

tern, and the other half, mark intervals, are used to actually embed the watermark.

SWIRL associates one base interval to one mark interval conditioned to the fact that

the base interval is previous to the mark one.

Chapter 2. Problem Description and Previous Approaches 41

Tor Relay 1 Tor Relay 2 Tor Relay 3Victim
Corrupt
Server

Corrupt
Tor Node

Figure 2.11: Low-Cost Traffic Analysis of anonymous networks

The base intervals are used to calculate a symbol s in the range [0,m), as follows:

s = bqmC/TSWIRLc mod m (2.13)

where C is the centroid of the interval and q is a quantization multiplier that helps

smooth out the distribution.

The value s is then used to transform the associated mark interval. The mark

interval is divided into r subintervals, so that each one is further divided into m slots.

SWIRL selects a slot in each subinterval i by applying a permutation πi to s. Each

packet is delayed such that it falls within a selected slot, possibly moving it into the

next subinterval. This process is shown in Figure 2.10.

Low-Cost Traffic Analysis of anonymous networks

Murdoch and Danezis [97] proposed an attack against onion routing networks in

which a malicious server sends the data modulated in a very specific traffic pattern.

The goal of the attacker is to identify which relays this flow is traversing.

To this end, the malicious server needs to control only one corrupt relay that can

create connections to other relays. By measuring the latency of these connections,

Chapter 2. Problem Description and Previous Approaches 42

the attacker can identify that the modulated traffic is going through the other relay.

The whole process is depicted in Figure 2.11.

The attacker modulates traffic to be very distinguishable, sending bursts of traffic

(sending as fast as Tor allows) of 10 to 25 seconds followed by a silence for a period

between 30 to 75 seconds. The problem of this method is that a very recognizable

pattern needs to be used for being detected, but this also makes the attack easily

noticeable to the anonymous network or the client.

Cell counter watermarking for Tor Connections

Ling et al. [98] proposed to embed a watermark in the number of cells sent together,

i.e., the size of a burst. They apply this watermark against the Tor network.

They embed a ’1’ by sending a burst of 3 cells and a ’0’ by sending a single cell

alone. Although a burst of cells can be combined or divided in the intermediate

node, the authors claim that these modifications can be predicted and reversed in

most of the cases.

2.4.3 Detecting Watermarks

There is an inherent problem in watermarking schemes. They can be detected and

this allows an attacker, e.g. the stepping stone, anonymous network, etc., to easily

modify the timing of the watermarked flow in such a way that the watermark is

removed.

Peng, Ning and Reeves

Peng et al. [99] showed how the quantization watermark can be detected and repli-

cated. They use a sequential likelihood ratio test to differentiate between the hy-

Chapter 2. Problem Description and Previous Approaches 43

potheses that the delays come from a normal distribution (flow is not watermarked)

or that the delays come from a sum of a normal plus a uniform (flow is watermarked).

Afterwards, they recover the parameters of the watermarking algorithm: the

quantization step and the proportion parameter, using Expectation Maximization.

This method is an iterative optimization method to find the maximum likelihood

estimate of parameters that can deal with some missing data.

Results show that they can always detect the presence of the watermark and in

most of the cases (around 95%), they can obtain the parameters correctly with the

possibility of replicating the watermark in a different flow.

Multi-flow Attacks Against Network Flow Watermarking Schemes

Kiyavash et al. [100] discovered that by overlapping several network flows water-

marked using the same key, it is feasible not only to detect the watermark but also

to extract the parameters and the key. This is due to the fact that these flows share

a common pattern created by the watermark and from this pattern the parameters

can be obtained.

This technique can be used to detect any watermark for which the watermarked

pattern is not a function of the input, concretely IBW, ICBW and DSSS watermarks

are proven to be susceptible to this attack.

BACKLIT

Luo et al [101] showed that any practical timing-based traffic watermark causes

noticeable alterations in the intrinsic timing features typical of TCP flows, and so it

can be easily detected. Specifically, they use three features to detect anomalies:

• Request-response time (RRT)

Chapter 2. Problem Description and Previous Approaches 44

• IPDs

• Burst size

They classify the traffic into two groups:

• Bulk transfer traffic: the number of response packets is much larger than the

number of request packets, e.g., HTTP.

• Interactive traffic: the number of request packets and response packets are

similar, e.g., SSH.

When dealing with interactive traffic, the watermark is detected by anomalies in the

RRTs. RAINBOW and SWIRL are detected on the basis that the difference between

RRTs is much sparser than the common unwatermarked flows, and IBW and ICBW

are easily detected by looking at the proportion of packets with very large RRTs, this

is due to the fact that these watermark schemes delay packets by a large quantity

(hundreds of milliseconds).

In the case of burst traffic, the watermarks are detected using the distribution of

the IPDs. IBW and ICBW are detected because the IPDs larger than the RTT (IPDs

between bursts) are not concentrated around the RTT as it would be expected in an

unwatermarked flow. RAINBOW and SWIRL are detected using the IPDs smaller

than the RTT (IPDs inside the same burst) as they are not concentrated around 0.

They also show that the rate of one-packet bursts can be used to detect watermarks

in burst traffic.

Lin and Hopper

Lin and Hopper [102] also studied how to detect watermarks, concentrating their

efforts in detecting the “invisible” RAINBOW and SWIRL watermarks. First, they

define two classes of adversaries:

Chapter 2. Problem Description and Previous Approaches 45

• Isolated Adversary: the adversary has to decide if a flow is watermarked or not

just given this flow.

• Chosen-flow adversary: the adversary has to decide if a received flow is water-

marked or not, controlling the timing information of that flow at its source.

RAINBOW is detected by a chosen-flow adversary seeing the distribution of the

jitter, specifically the percentage of samples in a neighborhood of 0 ms. In the

case of an isolated adversary, they use the cosine similarity between the cumulative

distribution function (cdf) of the received flow IPDs and the cdf of unwatermarked

IPDs of similar flows.

SWIRL is detected by a chosen-flow adversary sending packets evenly separated,

this way the quantized centroid will not change. Hence, the marked flow will have the

same pattern of cleared and occupied intervals. In the case of an isolated adversary,

the attacker uses a naive clustering algorithm that groups packets by their arrival

times, then the attacker uses the maximum time-span among all the clusters to

determine if the flow is watermarked or not.

2.5 Discussion

As the previous section illustrates, we have seen a proliferation of new watermark-

ing schemes that claim to be invisible followed by attacks against their invisibility.

The watermarks are often designed to avoid a specific attack, for instance SWIRL

and RAINBOW were designed with the aim of avoiding the multi-flow attack, but

afterwards new attacks against its invisibility have been proposed.

In light of these facts, one may ask whether it is possible to construct a perfectly

invisible watermark. Unfortunately, this is not possible, as the distribution of the

delays is changed. It is not even possible to create a perfectly invisible watermark

Chapter 2. Problem Description and Previous Approaches 46

against an attacker that uses only first order statistics. Formally, a perfect invisible

watermark against this attacker would require DKL(D||D + W) = 0 [103]. Due

to the fact that the domain of W is R+, i.e., we cannot add a negative delay, the

only possible distribution for perfect invisibility is fW (w) = δ(w), i.e., no watermark

embedded.

In the case that the distribution of D is unknown for the attacker, and only the

distribution of ∆D is available for him, a perfect invisible watermark against this

attacker requires DKL(∆D||∆D + ∆W) = 0. In this case, the construction of a

perfect invisible watermark against a test based on first order statistics of the PDV

is feasible, but watermark amplitudes are very limited.

Another generalized problem we see is that all these designs are not constructed

over a mathematical model that guarantees optimality in any sense. For instance,

at the TA creator, one would be interested in finding the watermark that gives the

best performance under certain constraints, or at the TA detector, knowing which is

the best possible test for detecting the presence of the watermark.

These two observations motivate this dissertation. First, our traffic analysis meth-

ods are designed so they can be implemented in a passive analysis situation, and

second, we use a mathematical framework that guarantees optimality under some

assumed conditions. Specifically, we use detectors based on Neyman-Pearson lemma,

explained in Section 2.1.2, and in Chapter 7 we use a game-theoretic framework to

design an optimal fingerprint and an optimal detector in the presence of an adversary

who tries to impair the correlation.

47

Chapter 3

Fingerprinting Log Files

3.1 Introduction

This chapter deals with the application presented in Section 2.3.1, i.e., fingerprinting

a log file. We consider a scenario where we want to leave a fingerprint on a Tor’s hid-

den server log with the purpose of proving when the machine is confiscated that this

particular machine actually hosted the hidden service during some time by finding

this fingerprint in the log.

Detecting such a pattern is not straightforward, mainly because of two issues.

First, Tor’s high delay variability that makes hard to predict the time logged by the

hidden service. Second, when detecting a fingerprint it is not possible to distinguish

between the our log entries and the ones resulting from other users’ requests. We

overcome these problems by estimating the log time from the date field included

in the HTTP responses to our requests, and by statistically modelling the number

of other users’ entries in the log file. Our fingerprinting algorithm can be tuned

to achieve a probability of misdetection as small as desired, while minimizing the

probability of false positives.

Chapter 3. Fingerprinting Log Files 48

RV

RV

TOR

HS

ENTRY T

LOG

Z11
2 Z2
3 Z3
4 Z4
5 Z5
6 Z6
... ...

Rw Kw

ZNN

W

Sw= +Other Users

Law Enforcement

Figure 3.1: System Model

3.2 Formal Problem Description

In this section, we explain the problem and recall the notation that we defined in

Chapter 2 as well as that one specific to this chapter.

Figure 3.1 shows the basic model of our problem. We send n HTTP requests to a

hidden server through Tor. These requests will appear in the server’s log file mixed

with other clients’ requests (represented in blue and red, respectively, in Figure 3.1).

Note that in order to achieve our low detectability goal we do not tag the requests

in any way, we just use the timing information.

We consider that the ith request we send appears on the hidden service’s log at

time

Yxi = xi +Di, i = 1, ..., n (3.1)

recall that Di is random delay introduced by the Tor network. Loesing et al. modeled

Di as a Fréchet distribution [104], but we choose not to use this approximation since

an estimator Ŷxi of the log time is available in the HTTP response, as we will discuss

later.

We denote by F l the sequence of number of log entries per unit of time (granu-

larity of the log), where l is the number of units of time available in the log. These

entries can correspond to our fingerprinting requests that we denote as El, or to

Chapter 3. Fingerprinting Log Files 49

other clients’ requests, whose number is denoted by Rl.

The sequence Rl is modeled in Section 3.4 as a negative binomial distribution.

Formally, we can express this problem via classical hypothesis testing with the

following hypotheses:

H0: The log has not been fingerprinted.

H1: The log has been fingerprinted.

In a practical setting, one fixes a certain value of PF (that has to be very small

if we want to achieve a high reliability and avoid accusing an innocent server) and

then measure PD (which we would like to be as large as possible).

In addition, we want to avoid that the presence of the fingerprint can be easily

detected by any other party than the originator of such sequence, i.e., the sequence

should have low detectability.

3.3 HTTP Response Date Information

In this section we characterize the estimator of the log time, Ŷxi . On the header of

the HTTP response, there is the “date field”, which we use as an estimator of Yxi .

According to [105], in theory, this field represents the moment just before the HTTP

response is generated. We define the estimation error as εi
.
= Yxi − Ŷxi .

In order to characterize ε, we performed some experiments on an AMD Turion

64 X2 2GHz with 3GB of memory running Apache 2.2.15 over Windows Vista SP2.

The experiments were selected to cover a wide range of server situations:

1. Normal situation: We request a 44 bytes file 2 times per second.

2. Large transmission time: We request a 7 MBytes file every minute.

Chapter 3. Fingerprinting Log Files 50

3. Very loaded server: We request a 7 MBytes file 10 times per second.

4. Demanding requests: We request a dynamic file of around 80 bytes, for which

the server needs at least 5 seconds to generate the response.

Code 200 Code 200 Code 5xx Code 5xx
with ε = 0 with ε 6= 0 logged not logged

Experiment 1 94.10% 0.00% 0.01% 5.89%
Experiment 2 93.60% 0.00% 0.91% 5.49%
Experiment 3 11.33% 0.00% 33.78% 54.90%
Experiment 4 100.00% 0.00% 0.00% 0.00%

Table 3.1: Percentage of responses in Apache 2.2.15

Table 3.1 shows the percentage of HTTP responses that we receive with a given

response code. We can see that for valid HTTP responses (i.e., the ones with response

code 200) the estimation error is ε = 0.

The above results were obtained using only one machine with one server software.

In order to assess that those results can be generalized we performed a second ex-

periment. We requested one petition per second during 24 hours to a web server at

the University of Vigo. This machine is an AMD Athlon XP 2000+ with 512MB of

memory that runs Apache 1.3.33 over Debian 4.0. Table 3.2 shows the obtained pmf

(probability mass function) of ε, and Figure 3.2 plots the cdf of the same distribution.

An important conclusion is that ε depends on the machine and its running HTTP

server software. In this work we assume that the data from Table 3.2 (also depicted in

Figure 3.2) can be extrapolated. We also assume that no HTTP requests triggering

an error appear in the log.

Chapter 3. Fingerprinting Log Files 51

ε(s) Pr(ε) ε(s) Pr(ε) ε(s) Pr(ε)
<0 0.0000% 7 0.0011% 15 0.0000%
0 67.1689% 8 0.0022% 16 0.0000%
1 31.7958% 9 0.0011% 17 0.0000%
2 0.7881% 10 0.0110% 18 0.0000%
3 0.0773% 11 0.0066% 19 0.0155%
4 0.1214% 12 0.0011% 20 0.0000%
5 0.0055% 13 0.0000% ≥20 0.0143%
6 0.0055% 14 0.0000%

Table 3.2: Probability mass function of ε in Apache 1.3.33

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

ε

P
r(

ε i ≤
 ε

)

Figure 3.2: Cumulative Distribution Function of ε in Apache 1.3.33

3.4 Modeling the number of Log Entries

In the previous section we explained how to deal with the first noise source, i.e., the

HTTP server’s delay in logging the request. In this section, we present a model for

the number Rl of requests from other clients.

3.4.1 Data Collection

The access logs for this research were obtained from seven different World Wide Web

servers: a department-level web server at the University of Calgary (Department

of Computer Science); a research group web server at University of Vigo (Signal

Chapter 3. Fingerprinting Log Files 52

Processing Group); a campus-wide web server at the University of Saskatchewan;

the EPA WWW server located at Research Triangle Park; the web server at NASA’s

Kennedy Space Center; the ClarkNet WWW server, an old commercial Internet

provider in the Baltimore - Washington D.C. region; and the 1998 World Cup web

site WWW server.

Log
Access Log Access Log Access Log Total Requests
Duration Start Date File (MB) Requests per day

Calgary 1 year Oct 24/94 49.8 726,739 2,059
Vigo 1 year Jun 5/10 377 1,581,971 4,321

Saskatchewan 7 months Jun 1/95 222 2,408,625 11,255
EPA 1 day Aug 29/95 4.24 47,748 47,748
Nasa 2 months Jul 1/95 355 3,461,612 56,748

Clarknet 2 weeks Aug 28/95 327 3,328,587 237,756
World Cup 8 days May 1/98 907 10,345,553 1,293,200

Table 3.3: Summary of Access Log Characteristics

In Table 3.3 we show a summary of the different servers’ logs. We see that the

number of requests per day varies by several orders of magnitude. As we see in

Section 3.7 this has a great impact on the probability of false positives.

3.4.2 Results

According to [106], the inter-time between requests follows an exponential distribu-

tion. This implies that the requests follow a Poisson distribution with parameter λ

that can be estimated using the Maximum Likelihood Estimator (MLE) [107]:

fPoisson(λ)(k) =
λke−λ

k!
, and λ̂MLE =

1

N

N∑
i=1

ki, (3.2)

where N is the number of considered samples.

Another distribution commonly used to model counting processes is the negative

binomial distribution. We show the distributions in Table 3.4.

Chapter 3. Fingerprinting Log Files 53

Distrib. pdf

Poisson f(x|λ) = λxe−λ

x!

Negat. Binomial f(x|r, p) =
(
x+r−1
x

)
(1− p)rpx

Binomial f(x|n, p) =
(
n
x

)
px(1− p)n−x

Table 3.4: Pdf’s of the candidate distributions for the number of requests.

To calculate the parameters we can use the MLE as follows [108]:

r̂MLE =

⌊
(
∑N

i=1 ki)
2

N
∑N

i=1 k
2
i − (

∑N
i=1 ki)

2 −N
∑N

i=1 ki
+ 0.5

⌋
(3.3)

p̂MLE =

∑N
i=1 ki

r ·N +
∑N

i=1 ki
, (3.4)

where N is the number of considered samples.

Log
Poisson Neg. Bin. Poisson Neg. Bin.

MLE Param. MLE Param. K-L Div. K-L Div.
Calgary λ = 0.024 p = 0.023, r = 1 0.9104 0.0053
Vigo λ = 0.050 p = 0.048, r = 1 0.8843 0.0350
Saskatchewan λ = 0.130 p = 0.115, r = 1 0.6956 0.0046
EPA λ = 0.557 p = 0.358, r = 1 0.3638 0.0018
Nasa λ = 0.684 p = 0.406, r = 1 0.3018 0.0002
Clarknet λ = 2.753 p = 0.579, r = 2 0.1147 0.0020
World Cup λ = 15.266 p = 0.836, r = 3 1.2198 0.0051

Table 3.5: MLE Parameters and Goodness of Fit for modeling the logs

The estimated MLE parameters and the goodness of fit are shown in Table 3.5.

The goodness of fit is measured using the KLD. From these results we can conclude

that the negative binomial distribution is a better approximation than the Poisson

distribution. This means that the data is overdispersed, i.e., the variance is larger

than the mean.

Some daily and weekly trends in the logs can be observed in Figure 3.3. Our

method ignores them and considers R as a stationary sequence. Also, it can be seen

that the peak is only one-sample wide. Therefore, the requests can be considered

uncorrelated.

Chapter 3. Fingerprinting Log Files 54

−10 −5 0 5 10
−0.1

0

0.1

0.2

0.3

0.4

0.5

T (days)

A
ut

oc
or

re
la

tio
n

Figure 3.3: Autocorrelation of ClarkNet Log

We note that adding negative binomial distributed random variables with the

same p results in another negative binomial distributed random variable whose pa-

rameter r is the sum of the respective r’s [107]. In our problem we assume R to be a

sequence of i.i.d. negative binomial random variables with parameters pR and w · rR.

3.5 Fingerprinting Method

This section describes our algorithms to create and detect fingerprints.

3.5.1 Creating the Fingerprint

Ideally, we would like our fingerprint to be very difficult to detect by any other than

its originator. Additionally, fingerprinting should be as fast as possible, in order to

be able to read the fingerprint from a small fragment of the log file. We compute

the rate of departures of our requests as λFP = d · λ̂S, where d is the detectability

factor, i.e., the increase in the number of requests the server will receive due to our

Chapter 3. Fingerprinting Log Files 55

fingerprint (reasonable values are 0.01, 0.05, 0.1), and λ̂S is a rough prediction of the

rate of requests that the server receives.

When we want to fingerprint a server, we generate n − 1 samples from an ex-

ponential distribution with rate λFP . These values are our IPDs, and the HTTP

requests are sent to the server according to them. Therefore, the expected time to

fingerprint the server is (n− 1)λFP seconds.

Note that we need to store the HTTP response “date fields” of the correct re-

sponses (status code 200), since this information will be later needed to recover the

fingerprint. We denote the number of successful responses as n′.

3.5.2 Detecting the fingerprint

Detecting the fingerprint consists in deciding whether the log file contains the fin-

gerprint. We propose two detectors: simple, that for each request decides if the

fingerprint is present or not based on the number of requests inside the window, and

the optimal likelihood-ratio test constrained to first-order statistics of the distribu-

tions.

3.6 Simple Detector

When it comes to deciding whether the ith request appears in the log or not, we look

inside a window Wi containing Ŷxi .

In Table 3.2 we observe that ε is always greater or equal to zero. We can conclude

that Wi is reasonably given by Wi = [Ŷxi , Ŷxi+w], for some integer w ≥ 0. We define:

PT (Yxj ,Wi)
.
= Pr(Yxj ∈ Wi) = Pr(Yxj − Ŷxi ≤ w), (3.5)

Chapter 3. Fingerprinting Log Files 56

where PT (Yxj ,Wi) can be interpreted as the probability that the log time of the jth

request falls within the reference window of the ith request.

The detector considers the ith request from our fingerprint is present in the log

when at least ci entries in the log fall inside the window Wi. This can be mathe-

matically expressed as Fi =
∑

j∈Wi
(Ej ≥ ci), where ci =

∑n′

j=1 1Wi
(Ŷj). We denote

the number of detected requests as A =
∑n′

m=1 Fi. We consider that a fingerprint is

present in the log when we find at least Θ requests, i.e., T ≥ Θ

We note that this is not the optimal decoder, as the distribution of ε is not used.

However, when ε is small, as it is the case considered in this problem (see Sect. 3.3),

the proposed decoder is nearly optimal.

3.7 Analysis of the simple detector

In this section we calculate the theoretical probabilities of detection and false posi-

tives for the simple detector. Afterwards, we carry out some experiments to validate

the results.

3.7.1 Probability of Detection

We recall that the number of requests per unit of time, Sj, is the sum of our (i.e.,

Ej) and other users’ (i.e., Rj) requests. Furthermore, in Section 3.4 we showed that

Rl can be modeled as an i.i.d. sequence distributed according to a negative binomial

distribution with parameters pR and w · rR.

Before delving into the analysis, we must model EWi
=
∑n′

j=1 1Wi
(Yxj), that

represents the number of fingerprint entries on the log that appear inside Wi.

We know that the jth request has a probability of PT (Yj,Wi) of appearing inside

Chapter 3. Fingerprinting Log Files 57

Wi. Since EWi
is the sum of Bernoulli random variables we can approximate it by a

binomial distribution [109] with parameters:

nk =

(∑n′

j=1 PT (Yxj ,Wi)
)2

∑n′

j=1 PT (Yxj ,Wi)2
+ 0.5

 , and pk =

∑n′

j=1 PT (Yxj ,Wi)

nk
. (3.6)

General Case

Here we study the probability of detection without making any assumption concern-

ing λFP .

First, we study PDi that represents the probability that we correctly detect the

ith request of our fingerprint in the log. Given that our detection algorithm is such

that this event happens when we have at least ci entries inside Wi, this probability

is:

PDi = Pr(
∑
j∈Wi

Ej +Rj ≥ ci)

=

ci−1∑
k=0

Pr(
∑
j∈Wi

Ej ≥ ci − k)Pr(Rm = k) + Pr(
∑
j∈Wi

Rj ≥ ci)

'
ci−1∑
k=0

(1− I1−pk(nk − ci + k + 1, ci − k)) (1− pR)rR(w+1)

·
(
l + rR(w + 1)− 1

l

)
· plR + IpR(ci, rR(w + 1)),

where Ix(a, b) is the regularized incomplete beta function:

Ix(a, b) =
a+b−1∑
j=a

(
(a+ b− 1)

j

)
xj(1− x)a+b−1−j.

Now we want to compute the probability that the number T of fingerprint entries

found in the log is above the threshold Θ, which is when we declare the fingerprint

Chapter 3. Fingerprinting Log Files 58

as detected. The random variable A is a sum of n′ non-homogeneous dependent

Bernoulli random variables, which we approximate by a binomial distribution [109]

with parameters:

nd =

⌊
(
∑n′

i=1 PDi)
2∑n′

i=1 P
2
Di

+ 1/2

⌋
, and pd =

∑n′

i=1 PDi
nd

.

Now we can give an approximation of the probability of detection:

PD = P (A ≥ Θ) ' 1− I1−pd(nd −Θ + 1,Θ).

Low λFP approximation

When the probability that two successive requests from the desired user fall in the

same window is very small, i.e., Pr(Ŷi+1−Ŷi ≤ w) ' 0, we can assume that ci ≈ 1 ∀i.

This simplifies the resulting equations. This happens when λFP is several orders of

magnitude smaller than 1/w requests per second. In this case PDi takes the value:

PDi = PT (Yxi ,Wi) + (1− PT (Yxi ,Wi)) · IpR(1, rR(w + 1)),

and A becomes a sum of n′ homogeneous independent Bernoulli random variables.

Therefore, A is binomially-distributed and the probability of detection becomes:

PD = P (A ≥ Θ) = 1− I(1−PDi)(n
′ −Θ + 1,Θ).

3.7.2 Probability of false positives

In this subsection, we calculate theoretically the probability of false positives, first

without any assumption, and then assuming that the rate of requests is small.

General Case

Here we study the probability of false positives without making any assumption.

Chapter 3. Fingerprinting Log Files 59

The probability that ci entries in the log appear in an interval of size w when no

fingerprint is actually present is

PFi = Pr(
∑
j∈Wi

Rj ≥ ci) = IpR(ci, rR(w + 1)).

Again, A is the sum of n′ non-homogeneous dependent Bernoulli random vari-

ables, which can be approximated by a binomial distribution [109] with parameters

nf =

⌊
(
∑n′

i=1 PFi)
2∑n′

i=1 P
2
Fi

+ 1/2

⌋
, and pf =

∑n′

i=1 PFi
nf

.

Now we can give an approximation to the false positive probability:

PF = P (A ≥ Θ) ' 1− I1−pf (nf −Θ + 1,Θ).

Low λFP approximation

As before, when the rate of requests is small, we can approximate ci ≈ 1, ∀i. This

implies that PFi takes the value:

PFi = IpR(1, rR(w + 1)).

Again A becomes the sum of n′ homogeneous independent Bernoulli random

variables, which means it is binomially-distributed and the false positive probability

becomes:

PF = P (A ≥ Θ) = 1− I(1−PFi)(n
′ −Θ + 1,Θ).

3.7.3 Simple Detector Results

In order to validate our theoretical analysis we created a scenario where we can

measure PD and PF . We implemented a simulator which gives us the probabilities

Chapter 3. Fingerprinting Log Files 60

10
−6

10
−4

10
−2

10
0

10
−6

10
−4

10
−2

10
0

Probability of False Positive (PF)

P
ro

ba
bi

lit
y

of
 M

is
de

te
ct

io
n

(1
−P

D
)

N=5, w=0
N=7. w=0
N=5, w=1
N=7, w=1

Figure 3.4: ROC of the simulations for Signal Processing in Communications research
group’s web server at the University of Vigo using the simple detector. Analytical
(solid line), ideal conditions (dotted) and real conditions (dashed).

of detection and of false positives in two situations. The first is ideal conditions (i.e.,

Rn is a sequence of i.i.d. negative binomial random variables and εn is a sequence

of i.i.d. random variables distributed according to Figure 3.2); the second is real

conditions, where the log is taken from a web server and εn comes from the data of

the last experiment in Section 3.3, preserving any existing autocorrelation.

Each experiment is carried out 10,000,000 times. We run this simulator for two

different cases. The first one is the Signal Processing in Communications research

group’s web server at the University of Vigo where fingerprints are built by n=5 and

n=7 entries. We consider two window sizes, w=0 and w=1 seconds. The second

case is the web server at NASA’s Kennedy Space Center. As it is a busier server, we

make n = 10 to bring the false positive rates to acceptable levels, and we also use

windows of size w = 0 and w = 1 seconds.

The results are shown in Figures 3.4 and 3.5, where we can see that the analytical

Chapter 3. Fingerprinting Log Files 61

10
−6

10
−4

10
−2

10
0

10
−6

10
−4

10
−2

10
0

Probability of False Positive (PF)

P
ro

ba
bi

lit
y

of
 M

is
de

te
ct

io
n

(1
−P

D
)

N=10, w=0
N=10, w=1

Figure 3.5: ROC of the simulations for the web server at NASA’s Kennedy Space
Center using the simple detector. Analytical (solid line), ideal conditions (dotted)
and real conditions (dashed).

results closely match the simulated ideal conditions. This supports our theoretical

analysis. We also see that only a discrete set of points (i.e., those marked with

circles) are generated; this is due to the threshold Θ only taking integer values from

1 to n. Note that in some cases some points are missing, because it is not possible to

measure those false positive probabilities (since we have run 10,000,000 experiments,

probabilities under 10−7 could not be measured).

We can also see the performance loss due to non-ideal conditions. This is the

gap between the dashed and the solid lines in Figures 3.4 and 3.5. The horizontal

shift comes from assuming i.i.d. entries on the log and ignoring the trends, while the

vertical shift comes from assuming independence on εn.

Chapter 3. Fingerprinting Log Files 62

3.8 Optimal Detector

The detector previously proposed is suboptimal, as it uses neither the distribution

of the error nor the distribution of other users’ requests. We use the likelihood ratio

test, that is proven to be optimal. However, for feasibility reasons, we have to restrict

it to use only first order statistics.

This detector does not use a window, but the whole sequence Sl, as follows:

Λ(sl, Ŷxn) =
Pr(Sl = sl|H1, Ŷxn)

Pr(Sl = sl|H0)
=

∑
el Pr(E

l = el|Ŷxn)Pr(Rl = sl − el)
Pr(Rl = sl)

> η.

(3.7)

Assuming that Rl is an i.i.d. sequence the detector becomes:

Λ(sl, Ŷxn) =

∑
el Pr(E

l = el|Ŷxn)
∏l

j=1 Pr(Rj = sj − ej)∏l
j=1 Pr(Rj = sj)

> η. (3.8)

When we calculate Pr(El = el|Ŷxn), for feasibility reasons we use first order

statistics on εn, which is equivalent to assuming that εn is an i.i.d. sequence with

pdf shown in Table 3.2.

3.8.1 Optimal Detector Results

We extend our simulator to use both detectors so we can compare their results. As

the optimal detector is computationally more expensive, we run each experiment only

100,000 times. We run this simulator for two different cases previously presented:

Scenario 1, the research group’s web server at the University of Vigo with 5 requests,

and Scenario 2, the web server at NASA’s Kennedy Space Center with 10 requests.

In both experiments, we use λFP = 0.1 requests per second.

The results are shown in Figures 3.6 and 3.7, where we can see that in the

ideal case the optimal detector is expected to perform always better than the simple

Chapter 3. Fingerprinting Log Files 63

10−4 10−3 10−2 10−1 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
FP

P
D

Opt. Real
Opt. Ideal
Simple w=0 Real
Simple w=1 Real
Simple w=0 Ideal
Simple w=1 Ideal

Figure 3.6: ROC comparison of both detectors for Signal Processing Group’s web
server at the University of Vigo n = 5.

detector, but in the real case, where some correlation exists, the optimal performs

better in most of the situations, except at some points, where it is the opposite. This

is due to the fact that the optimal detector considers only first order statistics in the

prediction error as well as in other users’ requests.

3.8.2 Computational Cost

Not only the performance is important for the detector but also the computational

cost, to ensure that the algorithm is scalable and can be implemented in a real

situation.

The complexity of the simple detector is linear, i.e. O(n), but the optimal al-

gorithm without any further assumption, has a complexity of O(nl) in the worst

Chapter 3. Fingerprinting Log Files 64

10−5 10−4 10−3 10−2 10−1 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
FP

P
D

Opt. Real
Opt. Ideal
Simple w=0 Real
Simple w=1 Real
Simple w=0 Ideal
Simple w=1 Ideal

Figure 3.7: ROC comparison of both detectors for the web server at NASA’s Kennedy
Space Center n = 10.

case. This means that the optimal algorithm is not scalable at all, and it becomes

infeasible for fingerprints with a length greater than 4. This algorithm can be sim-

plified when the distribution of ε has a finite domain of width b. In this situation the

optimal detector can be calculated in polynomial time of order b, i.e. O(nb). The

results of the previous section where calculated truncating the distribution such that

Pr(ε > 3) = 0, i.e., b = 3.

With the aim of comparing the computational cost of both detectors, we show

in Table 3.6 their average running time to take a decision for the two scenarios of

Section 3.8.1. The machine where this experiments were carried out is an 8-core Intel

Core i7-3632QM CPU @ 2.20GHz with 8 GBytes of RAM.

Chapter 3. Fingerprinting Log Files 65

Log Simple Detector Optimal Detector
University of Vigo 1653 µs 17654 µs
NASA’s Kennedy Space Center 4725 µs 299437 µs

Table 3.6: Average Computational Time of simple detector and optimal detector

3.9 Conclusions

This chapter proposes a method to leave a timing fingerprint in the log of a hidden

server. This fingerprint can be used as evidence that the server indeed hosted a par-

ticular content even after this content has been deleted. We note that, although our

experiments have been carried out on a Tor hidden server, the underlying principles

of the attack are valid for any web server.

Our approach is based on sending HTTP requests to the hidden server and storing

the “date field” of the responses we get. We proposed two detectors: the first one

checks whether there is a logged entry in a time window centered at the time that

appears in the responses. Then, if the number of entries goes above a pre-defined

threshold it decides that there is a fingerprint in the log. The second one is the

optimal detector, which constructs a likelihood test based on first-order statistics.

We showed that the performance improvement is small comparing to the increase

in the computational complexity, indicating that the theoretical optimal detector

may not always be the best alternative, especially when the resources are limited or

a scalable method is needed.

66

Chapter 4

Prediction-based Flow Correlation

4.1 Introduction

In this chapter we propose a first method to solve the problem set out in Section 2.3,

i.e., deciding if an eavesdropped flow contains the flow of which we have the timing

information. This first method assumes that an estimator of the arrival time of each

packet or request is available.

In the proposed scenario, the traffic analyst (TA) tries to locate a hidden service

from Tor network. We assume that the TA has access to the encrypted flow from

the suspected machine to the Tor network. This adversary model has been shown

to be realistic, as some organizations or governments have access to ISP (Internet

Service Provider) data [110]. For that matter, the ISP itself or an AS (Autonomous

System) on the path can become the TA.

The attack is done in the following way: the TA, that we call Alice, sends appli-

cation requests to the server, that we call Bob, disguised as a common user’s pattern.

Alice has no problem to eavesdrop the flow as she is the source. Alice predicts the

time that her packets will appear at Bob’s side, but in order not to depend on Bob’s

Chapter 4. Prediction-based Flow Correlation 67

Alice
Bob

...

Eavesdrop

...

Figure 4.1: System Model

information, as in the previous chapter, she relies on the RTT (round-trip time).

This prevents Bob from modifying this information. Finally, Alice makes a decision

based on the likelihood-ratio test. This yields an excellent performance, for example

Alice can identify a hidden service using the real traffic corresponding to the Signal

Processing Group of the University of Vigo web server with just 8 requests achieving

a detection probability 0.9 given a probability of false positive of 10−6. Our flow-

correlation attack can be considered as a passive analysis technique as we assume

that Alice behaves exactly as a common user, thus making it impossible to detect

using watermarking detection algorithms.

4.2 Description of the Problem

In this section, we formally describe the problem and recall the notation presented

in Chapter 2.

4.2.1 Problem

Figure 4.1 shows the proposed application. Alice sends her traffic and has to decide

whether the traffic she eavesdrops contains her flow or not. We also assume that

the network can encrypt the traffic and repacketize the flow. This means that Alice

cannot identify her packets by their size or contents.

Chapter 4. Prediction-based Flow Correlation 68

Alice sends a fixed number of application messages following a pattern that could

belong to a normal client, saving the time when she sends each request and the

instant she receives the response. This is the interval considered for each request.

Recall the definition of ith interval as the period of time from (2.7):

Pi = (bi, ei) = (bi, bi + Ti), i = 0, . . . , n− 1, (4.1)

in this application n is the number of messages that conform our flow. bi is the

instant that the ith request is sent and ei is the instant that the response is received.

To make intervals independent, Alice only sends a request when there are no other

pending requests, i.e. (2.8) holds.

Alice predicts the value when she expects to see the message that carries her

request at Bob’s side. We denote as Yxi the time when the message xi is received by

Bob and Ŷxi the prediction of this time. The goal of Alice is to be able to correctly

decide if the eavesdropped link contains the known flow based on the messages seen

on this link.

We can define the following hypotheses:

H0: The eavesdropped link does not carry Alice’s flow.

H1: The eavesdropped link carries Alice’s flow.

In addition to obtaining a good performance, Alice wants to avoid that Bob or

any other party different than Alice notices that she is trying to identify the flow, i.e.,

the sequence should have low detectability. As we have mentioned, our algorithm

does not delay any packet and the sequence of requests follows a typical user pattern.

Hence, the only possibility of being detected is due to an anomalous increment of

traffic to Bob. We will measure the detectability with the KLD between the requests

that the anonymous server receives with and without Alice’s flow.

Chapter 4. Prediction-based Flow Correlation 69

4.2.2 Proposed detector

The proposed detector is based on the likelihood-ratio test, Λ(yn2 , ŷxn), as follows:

Λ(yn2 , ŷxn) =
fY n2 |Ŷxn ,H1

(tn2|ŷxn)

fY n2 |H0(y
n2)

, (4.2)

and Alice decides the eavesdropped link contains her flow if this ratio is larger than

η, a threshold that we fix to achieve a certain probability of false positive.

We assume that messages coming from other users that fall inside an interval are

uniformly distributed inside it (see [91]) and independent from Alice’s message. In

this case, the ratio can be simplified to

Λ(yn2 , ŷxn) =
n∏
i=1

fε(yxi − ŷxi)
1
Ti

(4.3)

where fε is the pdf of the prediction error. However, we find the problem that if Bob

receives multiple messages in the interval we cannot identify a unique candidate to

be the target message, that is, correctly measure the value of yxi .

We consider that the prior probability that any given message is the desired one

to be equal for all messages. Hence, Alice decides that H1 holds if

Λ(yn2 , ŷxn) =
n∏
i=1

∑
yj∈Pi

1

si
fε(yj − ŷxi) · Ti > η. (4.4)

where si is the number of messages that fall inside Pi. Note that since si
Ti

is the rate

of requests, the larger this is, the less weight it is given in the decoding.

4.3 Application: Locating a Tor Hidden Service

In order to show the feasibility and usefulness of our algorithm we apply it to locate

a hidden service. We assume a client, Alice, who sends a flow of messages to a

hidden service, Bob, and eavesdrops the communication channel at Bob’s side trying

Chapter 4. Prediction-based Flow Correlation 70

Alice Bob
Relay{Begin :80}

Relay {Connected}

Relay {Data, "HTTP GET..."}

Relay {Data, Response}

Tor Network

Figure 4.2: Cells in a Tor Request

to detect if it contains her flow. Figure 4.2 shows the packet exchange for just one

request and the considered interval.

4.3.1 Predictor

Our algorithm benefits from a prediction of the time when a cell reaches the hidden

service. The estimation is done based on the information available to Alice, that is,

the RTT. Therefore, Ŷxi = f(Ti) + bi where f is the prediction function.

Measured delays

In order to measure the delays, we created a toy client-server application to measure

packet delays in Tor. Traffic is captured and matched to the packets shown in Figure

4.2. We used 50,000 samples that were taken every 10 seconds. As it is customary,

we separate these data into two subsets: a training set that includes 80% of the

samples, and the remaining 20% as test set.

Chapter 4. Prediction-based Flow Correlation 71

0 2 4 6 8 10 12 14 16 18 20
0.23

0.232

0.234

0.236

0.238

0.24

0.242

0.244

0.246

0.248

0.25

Number of hidden nodes / Order of polynomial

R
M

S
E

 (
s)

MLP Training Data
MLP Test Data
Polynomial Training Data
Polynomial Test Data

Figure 4.3: Performance of the MLP predictor and polynomial predictor

Predictors and performance

We propose two different predictors. The first one is based on polynomial regression

and the second one a Multilayer Perceptron (MLP) [111]. The first model is simpler,

but limits the range of available functions to predict, compared to the second one

that can approximate any function [111].

We compare in Figure 4.3 the root mean square error (RMSE), as it is a measure

of the accuracy of a predictor, for both cases. Results show that a MLP does not

give any advantage and increasing the order of the polynomial produces negligible

improvements. Hence our predictor is an affine function of Ti, that is, Ŷxi = 0.46 ·

Ti + 0.02 + bi with Ti measured in seconds. That is close enough to the expected

Ŷxi i = 0.5 · Ti + bi, as the paths of the request and response are essentially identical.

Chapter 4. Prediction-based Flow Correlation 72

Distribution pdf

Normal f(x|µ,σ) = 1
σ
√

2π
exp

(
− (x−µ)2

2σ2

)
Cauchy f(x|µ,σ) = 1

πσ(1+(x−µ
σ

)2)

Laplace f(x|µ,σ) = 1
2σ

exp
(
− |x−µ|

σ

)
Logistic f(x|µ,σ) =

exp(−x−µσ)
σ(1+exp(−x−µσ))

2

Gumbel f(x|µ,σ) = 1
σ

exp
(
−x−µ

σ
− exp

(
−x−µ

σ

))
Table 4.1: Distribution candidates for the prediction error

Characterizing the prediction error

We saw previously that the decoder needs to model the error function. To this end,

we use the errors produced by the affine predictor given above. Errors are normalized

dividing by their corresponding Ti.

We select some candidate distributions and estimate their parameters using MLE,

as this method chooses the value of the parameters that produce a distribution that

gives the observed data with the greatest probability. Afterwards, we evaluate the

goodness-of-fit using different metrics: the KLD, the χ2 , the Kolmogorov-Smirnov

(KS) and the Anderson-Darling (AD). The smaller the value the better is the fit in

all of them.

The candidate distributions were selected among the most common continuous

distributions that have support at least on the range of our data, i.e (−1, 1). The

chosen distributions are Normal, Cauchy, Laplace, Logistic and Gumbel. Their pdfs

can be seen in Table 4.1.

Table 4.2 shows the parameters obtained by MLE. Table 4.3 shows the goodness-

of-fit test results, where it is shown that the Laplace distribution best models our

data.

We also denormalize the intervals, hence we get the distribution of the error

Chapter 4. Prediction-based Flow Correlation 73

Distribution Parameters
Normal µ = 0.0023, σ = 0.1474
Cauchy µ = 0.00048, σ = 0.0809
Laplace µ = 0.00014, σ = 0.1107
Logistic µ = 0.00013, σ = 0.0797
Gumbel µ = −0.0791, σ = 0.1983

Table 4.2: MLE Parameters

Test Filtered Data
Distribution KLD χ2 KS AD
Normal 0.1608 801057 0.1005 1090
Cauchy 0.0846 586019 0.0763 197
Laplace 0.0315 592904 0.0310 176
Logistic 0.0888 600276 0.06545 514
Gumbel 0.3043 1540593 0.1561 17761

Table 4.3: Goodness of Fit

given the measured RTT, Ti, and we make the simplification µ ≈ 0 (cf. Table 4.2).

Therefore, we can write

fεi|Ti(εi|ti) =
1

2σti
exp

(
−|εi|
σti

)
, (4.5)

where the value of σ is shown in Table 4.2.

4.4 Analysis and Results

4.4.1 Mathematical analysis

In this section we want to calculate the threshold η for a given probability of false

positive, and the probability of detection that is achieved with such threshold. First,

we statistically model the number of cells per unit of time si/Ti and the round-trip

time for a cell, Ti. Afterwards, we derive the expressions for η and PD.

Chapter 4. Prediction-based Flow Correlation 74

Distribution pdf

Gen. Poisson f(x|λ,θ) =

{
λ(λ+θx)x−1 exp(−λ−θx)

x!
x = 0, 1, . . .

0 x > d− θ
λ
e if θ < 0

Gen. Neg. Bin. f(x|p,β,r) = r
r+βx

(
r+βx
x

)
px(1− p)r+βx−x

Table 4.4: Distribution candidates for the number of cells per unit of time

Modelling the number of cells per unit of time

We consider four possible models: the usual ones of chapter 3, Poisson and Negative

Binomial, and their generalizations: Generalized Poisson and Generalized Negative

Binomial. We show the formal pdfs in Tables 3.4 and 4.4 and we refer the reader

to [112] for properties and parameter estimation.

To validate each model we use seven different World Wide Web server logs from

the Internet Traffic Archive and UVigo. We estimate the parameters by MLE [112].

Results (cf. Table 4.5) show that both the Generalized Poisson and the Generalized

Negative Binomial can model the number of requests. We choose to use the General

Poisson Approximation as it has one degree less of freedom than the General Negative

Binomial.

Log
Poisson NB Gen. Poisson Gen. NB

K-L Div. K-L Div. K-L Div. K-L Div.
Calgary 0.0121 0.0076 0.0001 0.0001
UVigo 0.0845 0.0504 0.0012 0.0012

Saskatchewan 0.0246 0.0066 0.0014 0.0017
EPA 0.0979 0.0025 0.0003 0.0001
Nasa 0.0882 0.0002 0.0001 0.00005

Clarknet 0.2534 0.0028 0.0009 0.0009
World Cup 1.9701 0.0074 0.0059 0.0056

Table 4.5: Goodness of Fit for the number of requests

Chapter 4. Prediction-based Flow Correlation 75

Modelling a cell round trip delay

A characterization of the pdf of the round-trip time is needed. Our measurements

confirm the result by Loesing et al. that the delays can be modeled as a Fréchet

distribution [104].

Theoretical probabilities

Recalling from previous sections, we decide that the eavesdropped flow contains

Alice’s if the random variable W defined as

W =
n∏
i=1

1

si

∑
Yj∈Pi

exp

(
−|Yj − Ŷxi |

σTi

)
︸ ︷︷ ︸

Uj︸ ︷︷ ︸
Vi

(4.6)

is larger than η. Also notice that in (4.6) we have defined the auxiliary random

variables Uj and Vi.

Recall that Yxi represents the message coming from Alice’s flow if it exists, while

Yj, j 6= xi corresponds to messages from any other source, then, for the latter kind

of messages:

fUj |Ti(uj|ti) =

σ
uj

uj ∈ (a, b)

2σ
uj

uj ∈ (b, 1)
, j 6= xi (4.7)

where

a = min

{
exp

(
−0.46ti + 0.02

σti

)
, exp

(
−0.54ti − 0.02

σti

)}
b = max

{
exp

(
−0.46ti + 0.02

σti

)
, exp

(
−0.54ti − 0.02

σti

)}
.

For the case j = xi, we have fUxi |Ti(uxi |ti) ∼ Uniform(0, 1).

Chapter 4. Prediction-based Flow Correlation 76

We characterize Vi as

fVi(vi) =

∫ ∞
0

∞∑
si=0

fVi(vi|si, ti)fS|T (si|ti)fTi(ti)dti, (4.8)

where f(si|ti) and fTi(ti) have been characterized in previous sections as Generalized

Poisson and Fréchet distributions, respectively. The pdf fVi(vi|si, ti) can be computed

by convolving the distributions of Vj|Ti, for j = 1, . . . , ni. Formally,

fV (vi|si, ti) =

δ(vi) si = 0

si
(
fU0|Ti ∗ fV1|Ti ∗ · · · ∗ fVni |Ti

)
(visi) si > 0

. (4.9)

Note that the case si = 0 is not possible when H1 holds because the cell from Alice’s

flow must arrive inside the interval Pi. Also note that the convolution is evaluated

at visi, this fact comes from (4.6) where the sum is multiplied by 1/si.

Lastly, we characterize W , as f(w) = fv1·v2···vn(w), where the density of the

product of two independent random variables can be obtained as

fv1·v2(v) =

∫ 1

v

1

x
fv1(x)fv2(

v

x
)dx. (4.10)

So we calculate the value of the threshold, η, as the (1− PF)th quantile of fw|H0

and the probability of detection as PD = 1− Fw|H1(η), where Fw denotes the cdf of

fw. As an example, Figure 4.4 shows the theoretical PD as a function of L for Uvigo

traffic and PF = 10−6.

4.5 Results

We have created a simulator to show how close real results are from our predictions,

and to compare with other existing approaches. Then we implement the proposed

flow correlation scheme in the live Tor network against a hidden service.

Chapter 4. Prediction-based Flow Correlation 77

1 2 3 4 5 6 7 8 9 10
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

L

p d

Figure 4.4: Theoretical PD for UVigo log for PF = 10−6

4.5.1 Simulator

We created a simulator to validate our theoretical analysis and to compare with

other existing approaches: RAINBOW [88], SWIRL [89] and Interval-based [90]. We

simulate the following scenario. We send an HTTP request every 10 seconds, each

request generates two cells (cf. Figure 4.2). Those flows are watermarked with each

scheme. Each cell is delayed by an amount selected from the dataset so that the

time correlation is preserved. To model the behavior of other users, we send HTTP

requests mimicking the pattern that was measured in one of the logs.

Each experiment is simulated 10 million times. We run this simulator in two

different scenarios. The first case assumes that the other users’ requests are the same

as for UVigo with 3 HTTP requests. The second scenario simulates the traffic of the

web server at NASA’s Kennedy Space Center. This second server is considerably

Chapter 4. Prediction-based Flow Correlation 78

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
FP

P
D

Our Fingerprint simulated
Our Fingerprint theoretical
Rainbow
SWIRL
Inverval−based flow watermark

Figure 4.5: Simulator Results for UVigo web server with 3 requests

busier than the first one, so we increase the number of HTTP requests to 20.

Results are shown in figures 4.5 and 4.6. We see that this small number of requests

is enough to achieve a very good performance. The performance of our algorithm,

measured by the PD for a given PF is several orders of magnitude better than other

watermarking schemes for the same number of messages. We also see that simulation

results give a better performance than the analysis. This is due to the fact that in our

analysis we assumed no autocorrelation in the log and in the delays, an assumption

that does not hold in reality.

4.5.2 Real Implementation

Obviously, simulations are not fully realistic. For instance, our simulator assumes

that no cells reach the hidden service other than the two generated by each request,

which may lead to overestimating performance. This means that we can filter off

Chapter 4. Prediction-based Flow Correlation 79

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
FP

P
D

Our simulated fingerprint
Rainbow
SWIRL
Inverval−based flow watermark

Figure 4.6: Simulator Results for NASA web server with 20 requests

all the control cells (i.e. padding, create and destroy [33]) and keep only those relay

cells that carry actual information.

The real implementation was done using three computers connected to live Tor:

a hidden service and two clients, one that tries to correlate the flow and another that

sends requests according to the log of the simulated machine. We do not perform

any kind of filtering, keeping all the control cells.

In our experiment, Alice sends one request 10 seconds after she receives the re-

sponse. The gap between two different flow-correlation attacks is fixed to 30 seconds.

We repeat 1,000 times the flow-correlation attack for each experiment. The exper-

iment uses the UVigo log with n = 1, 2 requests. Results are shown in Figure 4.7.

We see that the lack of filtering reduces the performance of the real implementation

compared to the simulator and gives very similar results to the theoretical ones.

Chapter 4. Prediction-based Flow Correlation 80

10−4 10−3 10−2 10−1 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PF

P D

Real L=1
Theor. L=1
Simul. L=1
Real L=2
Theor. L=2
Simul. L=2

Figure 4.7: Real Implementation, Simulation and Theoretical Results for Uvigo web
server

4.5.3 Detectability

We have mentioned that our scheme is completely undetectable through the TCP’s

intrinsic features as they are not modified, i.e. we do not add any extra delay to

any message. Therefore, actual watermark detection algorithms from 2.4.3 cannot

detect our flow-correlation attack as they rely on those characteristics. This also

makes impossible that an intermediate node detects that Alice is trying to correlate

the flows.

We also want to prevent that Bob can detect the flow-correlation attack, i.e. we

want a low detectability. There are two ways Bob could detect our watermark: the

first, due to the modification of the pdf of the number of received messages, and the

second, due to the uncommonness of the messages pattern. We do not consider the

second, as we have assumed that Alice’s messages follow a normal user’s pattern.

Chapter 4. Prediction-based Flow Correlation 81

0 50 100 150 200 250 300
10

−4

10
−3

10
−2

10
−1

10
0

Time between requests(s)

D
K

L(b
its

)

Figure 4.8: Detectability using the KLD

We measure the detectability using the KLD of the distributions of requests

including Alice’s flow and in its absence. Note that the detectability decreases with

the time between requests, Treq, as seen in Figure 4.8, but we also want that the

flow-correlation attack is done in a reasonable time.

Notice that the anonymous server may try to detect the watermark using higher-

order statistics. Specifically, an increment of the autocorrelation periodically in Treq+

E[Ti] indicates the presence of this watermark as shown in Figure 4.9. This problem

can be easily solved by making the time between requests pseudorandom as seen in

Figure 4.10.

4.6 Conclusions

This chapter proposes a non-blind fingerprint for a flow created by the client. Our

proposed scheme outperforms existing methods. This is due to two reasons: first,

Chapter 4. Prediction-based Flow Correlation 82

−100 −80 −60 −40 −20 0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time(s)

A
ut

oc
or

re
la

tio
n

Figure 4.9: Autocorrelation of the number of requests per second with time between
requests fixed to 30

information generated during the creation of the fingerprint is used in the detection,

and second, the use of an optimal decoder.

The fingerprint is constructed by sending requests, each request determines one

interval. A prediction of the time of arrival is done for each request. The perfor-

mance is studied theoretically and empirically, through both a simulator and a real

implementation of the algorithm. Results show that we can create a fingerprint with

very few requests: less than 10 for a server with little traffic and of a few tens for a

busier web server.

An implementation of the attack against a real hidden server connected to the

Tor network has been carried out, showing a performance greater than the theoretical

results.

We also study the detectability of the algorithm, and see that the larger the

average time between requests, the less detectable our algorithm is, and that we

Chapter 4. Prediction-based Flow Correlation 83

−100 −80 −60 −40 −20 0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time(s)

A
ut

oc
or

re
la

tio
n

Figure 4.10: Autocorrelation of the number of requests per second distributed uni-
formly between 0 and 60

need the time between intervals to be pseudorandom to avoid detection through

higher order statistics.

84

Chapter 5

Interval-count-based Flow

Correlation

5.1 Introduction

In this chapter we deal with the same problem as in Chapter 4, i.e., deciding if an

eavesdropped flow is carrying a flow of interest. This second method is based on

detecting an increment of the number of packets that fall inside certain intervals

with respect to the expected when the flow of interest is not present.

We use the same scenario as in Chapter 4, locating a hidden service from Tor

network with the attacker having access to the encrypted flow from the suspected

machine to the Tor network.

The attacker sends requests to the hidden service and the decision is made by de-

tecting the increment of traffic in the eavesdropped link. Time is divided in intervals

and the test considers those in which the cells of the request are predicted to reach

the hidden service. Results show that we can identify a hidden service in a reliable

way with just a couple of requests.

Chapter 5. Interval-count-based Flow Correlation 85

Alice

RP

RP

RP

Bob

Other Users

EG

Figure 5.1: System Model

5.2 Model Problem

In this section, we formally describe the problem and recall the notation presented

in Chapter 2.

The system model is shown in Figure 5.1, where Alice connects to Bob through a

one-hop Tor circuit to the rendezvous point, to reduce the latency variability. Alice

is also able to obtain the time and size of the packets from the flow between the

suspected Bob and his entry guard. Alice wants to correctly decide whether that

flow belongs to Bob or not.

Our application deals with two bidirectional cell flows: the flow that Alice sends to

Bob through its rendezvous point with timing information Xn, and the eavesdropped

flow (suspected to belong to Bob) with timing information Y n2 . As the flows are

bidirectional, we add a subscript I or B to differentiate the direction: I for the flow

that goes from Alice to Bob and B for the opposite direction. In the case that the

expression is valid for both directions, we drop this subscript to keep the notation

simpler.

We consider the following intervals at Bob’s side:

Pi = (bi, ei) = (b0 + i · T, b0 + (i+ 1) · T), i = 0, . . . , L− 1, (5.1)

Chapter 5. Interval-count-based Flow Correlation 86

where bi is the beginning of each interval, ei is the end, T is the interval length and

L is the number of considered intervals. Alice chooses b0 = X1, i.e., the first interval

starts at the moment Alice sends her first cell to Bob, and intervals are contiguous.

Alice makes her decision based on the number of cells that fall inside Pi, denoting

this random variable by Si, hence:

Si =

n2∑
j=1

1Pi(Yj). (5.2)

where 1A(x) is the indicator function of x ∈ A.

The flow at the alleged Bob can have either one of two sources: the cells from

Alice’s flow or a different source, i.e., other users’ flows. We represent this as SL =

EL +RL, where EL is the number of cells that come from Alice and RL denotes the

remaining cells. Formally,

Ei =
n∑
j=1

1Pi(Yxj). (5.3)

where Yxj indicates the value of Y that corresponds to the same cell as Xj, if it

exists.

Formally, we can express this problem via classical hypothesis testing with the

following hypotheses:

H0: The suspected flow does not contain Alice’s flow.

H1: The suspected flow contains Alice’s flow.

5.3 Basic Detector

In this section we derive our detector and model the distributions of the number of

packets from other sources and the network delay.

Chapter 5. Interval-count-based Flow Correlation 87

5.3.1 Detector construction

As in previous chapters, we use the likelihood ratio test for constructing our detector

in order to get the maximum probability of detection for a given probability of false

positive. Hence, our detector chooses H1 when

Λ(sL|xn) =
L(H1|SL, Xn)

L(H0|SL)
=
f(sLB|xnB, H1)

f(sLB|H0)

f(sLI |xnI , H1)

f(sLI |H0)

=

∑
eL fELB(eL|xnB)fRLB(sLB − eL)

fRLB(sLB)

·
∑

eL fELI (eL|xnI)fRLI (sLI − eL)

fRLI (sLI)
> η (5.4)

and H0 in the opposite case. Recall that L represents the likelihood function and η

is a threshold that we fix to achieve a certain probability of false positive. Note that

R has to be greater or equal to 0, hence ei can never be larger than si.

For feasibility reasons, we constraint the detector to use first-order statistics,

discarding the information carried by higher-order statistics. We also assume that

the amount of traffic from other sources, RL, is independent of Bob’s flow.

Hence the likelihood ratio becomes

Λ(sL|xn) =
L∏
i=1

∑sB,i
ei=0 fEB,i|Xn

B
(ei|xnB)fRB(sB,i − ei)
fRB(sB,i)

·
∑sI,i

ei=0 fEI,i|Xn
I
(ei|xnI)fRI (sI,i − ei)
fRI (sI,i)

> η. (5.5)

From (5.5), we notice that we need to model the number of cells a hidden service

receives from other sources (i.e., other clients and control cells) and the number

of cells we will receive in each interval from Alice’s flow, i.e. determine fR(r) and

fEi|Xn(ei|xn) for both directions I and B.

Chapter 5. Interval-count-based Flow Correlation 88

5.3.2 Modelling the number of cells per unit of time

To model the distribution of the number of cells a hidden service receives per unit of

time, we first measure them in several real connections, then fit these data to some

candidate distributions and select the distribution that matches best.

Alice does not know the distribution of R so she uses the flow prior to sending

her request as training set. We denote by Ttr the length of this training set. Since

Alice uses the traffic just before sending her request, she minimizes the effects of the

non-stationary traffic to Bob.

We used two hidden web servers that replicate two real ones: the old hidden

service Silk Road (SR), and the search engine DuckDuckGo (DDG). We request

each web page according to a Poisson model with rates 58.75 requests per hour for

SR and 2.75 requests per hour for DDG. These vaues are chosen so the total number

of requests is the measured in the original hidden service according to [113]. The

data were captured during 24 hours.

To construct the model, we assume an i.i.d. (independent and identically dis-

tributed) sequence. We use the following models: the empirical distribution; the ker-

nel density estimation (KDE), a non-parametric probability density function (pdf)

estimator also called Parzen-Rosenblatt window; Poisson; Negative Binomial, and

Generalized Poisson [112]. The pmfs of the parametric models, i.e., those that have

a closed-form pmf, are shown in previous chapters in Tables 3.4 and 4.4.

To calculate the KDE we use a Gaussian kernel as shown in [114]. For the

parametric distributions, i.e. Poisson, Negative Binomial and Generalized Poisson,

we estimate the parameters through MLE.

We measure the goodness of fit between the test sequence and the model using

the square root of the Jensen-Shannon divergence (JSD).

We depict the results in Figures 5.2, 5.3 for the SR hidden service and in Figures

Chapter 5. Interval-count-based Flow Correlation 89

5.4 and 5.5 for the DDG hidden service. First, we see that the Poisson model is

not adequate for cells even when the users requests follow a Poisson distribution,

which is consistent with the results of [115]: users’ requests can be well-modelled as

a Poisson process but packets cannot due to their burstiness. Second, it is clear that

Ttr=5 minutes is enough to model R properly.

Although the empirical distribution gives the best fit, we decide not to use it

because of its lack of robustness, for instance, if a certain value, r, does not appear

in Alice’s training set, then the empirical model would imply fR(r) = 0. Among the

rest we decide to use the Negative Binomial model as its performance is better than

the other parametric models for both directions, I and B, and the KDE performs

well in some situations but not always. Hence, we consider

fR(r|t, q) =

(
t+ r − 1

r

)
qt(1− q)r (5.6)

where t and q are the parameters that Alice obtains through MLE using the previous

300 seconds before sending her request, as previously indicated.

5.3.3 Modelling the number of cells from Alice’s flow in each

interval

In order to characterize the number of cells from Alice that appear in Pi, i.e., fEi|Xn ,

we fist predict the moment when a cell appears at Bob’s side (Ŷx), then we charac-

terize the prediction error with the aim of obtaining the probability of a concrete cell

appearing in each interval, and finally we obtain a model for fEi|Xn .

Predicting cell time at the hidden service

Traffic from hidden services is bursty in most of the cases, such as the response of

HTTP. This implies that the cell delay depends on the position inside the burst,

Chapter 5. Interval-count-based Flow Correlation 90

0 5 10 15 20 25 30

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
tr
(min)

D
J
S

Empirical

KDE

Poisson

Neg. Bin

Gen. Poi.

Figure 5.2: Goodness of fit for the different models for flow B to SR Hidden Service
(TB=100 ms).

thus we cannot consider cell delays to be identically distributed. To overcome this

problem, we predict the cell delay, Ŷxj , with information from Alice’s flow including

the position inside its burst.

Figure 5.6 shows the sequence of cells sent after the rendezvous connects the

circuits from Alice and Bob, where besides the RELAY DATA cells (shown in black)

we plot the RELAY SENDME (shown in red), that are used for stream-level flow control

(Onion Proxy to Onion Proxy) and circuit-level flow control (Onion Router to Onion

Proxy). These are sent in a deterministic way (in general, every 50 cells for stream-

level flow control and every 100 cells for circuit-level flow control). Note that the cells

in the B direction tend to scatter, in the sense that the Tor delay tends to increase.

We predict the values of ŶXB,j as a function of RTT0 (Round Trip Time with a

burst of only 1 cell), RTTn (Round Trip Time corresponding to the cell to predict)

Chapter 5. Interval-count-based Flow Correlation 91

0 5 10 15 20 25 30
0.04

0.06

0.08

0.1

0.12

0.14

0.16

T
tr
(min)

D
J
S

Empirical

KDE

Poisson

Neg. Bin

Gen. Poi.

Figure 5.3: Goodness of fit for the different models for flow I to SR Hidden Service
(TI=100 ms).

and n (number of cells inside the burst). We show in Figure 5.6 how Alice measures

these values. The values of ŶXI,j are obtained as a function of only the RTT0 as they

do not have a bursty nature.

First, we deploy a hidden service that returns an object of the requested size and

capture the traffic at both ends, i.e. Alice and Bob. We request objects of 1 KB,

10 KB, 100 KB and 500KB for a total of 500 of each kind using different circuits

for each request. As it is customary, we separate these data into three subsets: a

training set, an evaluation set and a test set, using 350 requests for the training set

and 75 requests of each size for both the evaluation and test sets. We remove the

circuit flow-control cells as they do not reach the other end.

For the flow I we use the predictor from Chapter 4, that is, ŶXI,j = 0.46 ·RTT0 +

0.02 +XI,j.

Chapter 5. Interval-count-based Flow Correlation 92

0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

T
tr
(min)

D
J
S

Empirical

KDE

Poisson

Neg. Bin

Gen. Poi.

Figure 5.4: Goodness of fit for the different models for flow B to DDG hidden service
(TB=250 ms).

We compare in Figure 5.7 the accuracy of the predictor for flow B ŶXB,j measured

by the mean-square error (MSE). We decide to use a MLP with 5 neurons in the

hidden layer as increasing the number of nodes above this value produces negligible

improvements. Polynomial predictors of 6 and higher order give a larger MSE due

to precision errors.

Characterizing the prediction error

We want to obtain the probability that a cell appears at Bob’s side within a partic-

ular interval. The first step is characterizing the prediction error. This is done by

fitting the errors made by the predictor of the previous section to some candidate

distributions and selecting the distribution that matches best.

The candidate distributions are Cauchy, Gumbel, Laplace, Logistic and Nor-

Chapter 5. Interval-count-based Flow Correlation 93

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

T
tr
(min)

D
J
S

Empirical

KDE

Poisson

Neg. Bin

Gen. Poi.

Figure 5.5: Goodness of fit for the different models for flow I to DDG hidden service
(TI=250 ms).

mal.Their pdfs are shown in Table 4.1 . We estimate the respective parameters using

robust statistics to prevent that outliers coming from wrong cell identification affect

the measurements, as explained in [116, Chapter 3].

Results from Table 5.1 show the estimated parameters and the goodness of fit

using the JSD, being the Cauchy distribution the best fit.

Table 5.1: Goodness of fit of the candidate distributions for Prediction Error and its
parameters

Cauchy Gumbel Laplace Logistic Normal

Flow I
DJS 0.1117 0.1784 0.1475 0.1793 0.1999
µI −0.0100 −0.0227 −0.0100 −0.0100 −0.0100
σI 0.0266 0.0347 0.0384 0.0243 0.0395

Flow B
DJS 0.1224 0.1937 0.1238 0.1568 0.1910
µO 0.0135 −0.0164 0.0135 0.0135 0.0135
σO 0.0627 0.0817 0.0904 0.0570 0.0929

Chapter 5. Interval-count-based Flow Correlation 94

AT RP EG HS
Relay{Begin :80}

Relay {Connected}

Relay {Data, "HTTP GET..."}

Relay {Data, Response}

Figure 5.6: Cell Sequence of an HTTP request-response to a HS

0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Number of hidden nodes

M
S

E

MLP Training

MLP Validation

MLP Test

Polinomial Regression

Figure 5.7: Performance of the MLP predictor and polynomial regression

Chapter 5. Interval-count-based Flow Correlation 95

Therefore, we can calculate the probability that the cell Xj leaves (B) or reaches

(I) Bob’s interval Pi as follows:

Pr(Yxj ∈ Pi) =
1

π

(
arctan

(
bi + T − Ŷxj − µ

σ

)

− arctan

(
bi − Ŷxj − µ

σ

))
. (5.7)

Model for the number of cells Bob receives from Alice in each interval

After obtaining the probability that the cell Xj appears at Bob’s link within the

interval Pi, we can determine fEi|Xn(ei|xn) as a sum of n non-homogeneous dependent

Bernoulli random variables. Formally, Ei =
∑n

i=1 Bernoulli(Pr(Yxj ∈ Pi)), which we

can approximate by a binomial distribution [109] with parameters:

mi =

(∑n

j=1 Pr(Yxj ∈ Pi)
)2∑n

i=1 Pr(Yxj ∈ Pi)2
+ 1/2

 and

oi =

∑n
i=1 Pr(Yxj ∈ Pi)

mi

. (5.8)

Therefore,

fEi|Xn(ei|xn) =

(
mi

ei

)
oi
ei(1− oi)mi−ei (5.9)

5.3.4 Detector

Hence, from (5.5) we obtain the likelihood-ratio test as:

Λ(sL|xn) =
L∏
k=1

f(NB(tI ,qI)∗Bin(m(k,I),o(k,I))(s(k,I))

f(NB(tI ,qI))(s(k,I))

·
f(NB(tB ,qB)∗Bin(m(k,B),o(k,B))(s(k,B))

f(NB(tB ,qB))(s(k,B))
> η (5.10)

Chapter 5. Interval-count-based Flow Correlation 96

where ∗ denotes the convolution operation that can be expressed as:

f(NB(t,q)∗Bin(m,o))(x) =

min(m,x)∑
j=0

fNB(t,q)(x− j) · fBin(m,o)(j) (5.11)

where fNB(t,q) and fBin(m,o) denote the pdfs of a negative binomial and binomial

distribution, respectively. These distributions are shown in Table 3.4.

5.3.5 Calculating the threshold to achieve a certain proba-

bility of false positive

We first show how the threshold can be obtained theoretically, but in a real im-

plementation we suggest to use a Monte Carlo simulation due to the fact that this

theoretical calculation is not practical when L grows.

From the previous section, the Test (5.10) can be expressed as

Λ(sL|xn) =

W︷ ︸︸ ︷
L∏
k=1

gI(sk,I)︸ ︷︷ ︸
UI

·gB(sk,B)︸ ︷︷ ︸
UB

> η (5.12)

where the function g is the ratio of the two likelihood functions in (5.10), i.e., fNB∗B

and fNB, but once the parameters m, o, t and q are fixed, it becomes deterministic.

Hence, the distribution of U |H0 can be obtained as fU |H0(u) =
∑

s∈g−1(u) f(NB(t,q))(s).

Finally, we characterize W as f(w) = fUI,1·UO,1···UI,L·UO,L(w), where the density

of the product of two independent random variables can be obtained as fU1·U2(w) =∑
u1,u2:u1u2=w fU1(u1)fU2(u2). So we can calculate the value of the threshold, η, as

the (1− PF)th quantile of fw|H0 .

This method has the drawback that its complexity grows exponentially with L,

so in a practical scenario we use a Monte Carlo method, assuming the model for R

is accurate.

Chapter 5. Interval-count-based Flow Correlation 97

5.4 Results

In order to validate our proposal, we carried out an experiment on the live Tor

network. We used the two hidden web services discussed in Section 5.3.2, i.e. DDG

and SR. Besides Alice, 10 different machines are requesting the web page as explained

in Section 5.3.2 so the total number of requests from those clients is the same as in

the original hidden service measured by [113], that is, 27.5 and 587.5 requests per

hour for DDG and SR, respectively. We captured the traffic on both ends with

tcpdump and we repeated the experiment 1000 times.

5.4.1 Interval size

We first analyze the influence of T , the interval size, on the performance, using

thresholds calculated with Monte Carlo methods as mentioned in the previous sec-

tion.

In the case that our data would perfectly fit the model, the smaller the interval

the best results we would expect to obtain. In practice, this may not be true; for

instance the prediction error is likely to be correlated for two contiguous cells. This

information cannot be inferred from first order statistics.

In order to measure the performance we use different values of T . We depict the

result for the DDG hidden service in Figure 5.8 and in Figure 5.9 for the SR hidden

service. For the DDG hidden service the detector performs better in a neighborhood

of T = 0.5 s, but for SR it seems that the smaller the interval, the better. Recall

that the the threshold is calculated assuming that R comes from an i.i.d negative

binomial whose parameters are obtained through MLE using the previous 5 minutes

of the suspected flow, as explained above.

Chapter 5. Interval-count-based Flow Correlation 98

0 0.5 1 1.5 2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T (s)

P
D

P
F
=10

−3

P
F
=10

−4

P
F
=10

−5

P
F
=10

−6

Figure 5.8: Performance depending on the interval size for DDG hidden service for
one request

5.4.2 Results

Obviously, the assumption used to calculate the theoretical result does not completely

hold in a real application, as R is not an independent sequence because the cells from

one request can fall in several intervals. In order to evaluate this assumption, we

duplicate both hidden services, naming ”Carol” to the second hidden service. We

send requests to each hidden service from 10 different machines according to a Poisson

model, as explained before, and Alice only makes requests to Bob but never to Carol.

We use the Test (5.10) for Bob’s flow, Λ(sL|H1, x
n) and Λ(sL|H0, x

n) for Carol’s flow.

For different values of η we obtain PD as the rate of Λ(sL|H1, x
n) > η, and PF as the

rate of Λ(sL|H0, x
n) > η. We repeat the experiments 1000 times.

Figure 5.10 depicts the ROC for the DDG hidden service using T = 0.5, 1 and

1.5 s and Figure 5.11 depicts the ROC for SR hidden service using T = 0.2, 0.5 and

Chapter 5. Interval-count-based Flow Correlation 99

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T (s)

P
D

P
F
=10

−1

P
F
=10

−2

P
F
=10

−3

P
F
=10

−4

Figure 5.9: Performance depending on the interval size for SR hidden service for one
request

1 s. We can see that in the real implementation the parameter T affects less than

when R is chosen according to the model, i.e., an i.i.d. negative binomial sequence,

and as we could expect, correlation between intervals decreases the performance.

5.4.3 Comparison with prediction-based technique

In this section, we compare the performance for this technique with the one developed

in Chapter 4. For this purpose we use the the SR hidden service, but we increase the

number of requests from other machines so that the hidden service receives requests

according to a Poisson model at rate 6000 requests per hour. We make 2000 requests

to the server and 1000000 different combinations of 10 requests. We decode using

two methods: the one described in Chapter 4 and the one described previously in

this chapter, depicting the results in Figure 5.12. We can see that for this scenario,

Chapter 5. Interval-count-based Flow Correlation 100

10
−3

10
−2

10
−1

10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F

P
D

T=0.5 s, 1 request

T=1 s, 1 request

T=1.5 s, 1 request

T=0.5 s, 2 requests

T=1 s, 2 requests

T=1.5 s, 2 requests

Figure 5.10: ROC for DDG hidden service

locating a Tor hidden service, the method presented in the previous chapter gives

better results. This is due to using the whole timing information instead of just

interval information, and even though the prediction-based method only uses the

information of cells from client to the hidden service, I, discarding the information

of B cells, those cells are the ones that carry more information for the test as they

can be predicted more accurately.

5.5 Conclusions

This chapter presents a non-blind fingerprint for a flow created by the client. This

method is based on counting the number of packets in certain intervals. To improve

performance, we predict the time that the packet should be at the eavesdropping

place and we use an optimal decoder.

Chapter 5. Interval-count-based Flow Correlation 101

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F

P
D

T=0.2 s, 1 request

T=0.5 s, 1 request

T=1 s, 1 request

T=0.2 s, 3 requests

T=0.5 s, 3 requests

T=1 s, 3 requests

Figure 5.11: ROC for SR hidden service

The performance is studied empirically in the live Tor network to locate a hid-

den service. We also compare the results with the previous method, showing that

performance is not as good as with the method presented in Chapter 4, but we also

claim that under certain conditions, for instance where I and B flows are similar,

this method could perform better than the pediction-based one.

Chapter 5. Interval-count-based Flow Correlation 102

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F

P
D

Count−based, 10 requests T=0.25 s (0.997949)

Prediction−based, 10 requests (0.999421)

Figure 5.12: Performance for SR hidden service with 6000 requests per hour using
10 requests

103

Chapter 6

Inter-packet-delays-based Flow

Correlation

6.1 Introduction

In this chapter we propose a second method to solve the problem set out in Chapter

2, i.e., deciding if the eavesdropped traffic is carrying a flow of which we have the

timing information. Contrary to the approach of Chapter 4, this second method does

not need an estimator of the time that packets arrive to the TA detector, hence this

method can be applied even when the network in the middle is unknown.

The proposed method saves the Inter-packet delays (IPDs) of the flow and uses a

detector based on the likelihood ratio test (Neyman-Pearson lemma). This method

outperforms any of the state-of-the-art traffic watermarking schemes even using pas-

sive traffic analysis. For instance, 21 packets separated at least 10 ms are enough to

correlate two flows, one in Virginia, the other in California, correctly with probability

0.9861 when the false positive probability is fixed to 10−5 and no countermeasures

are exerted.

Chapter 6. Inter-packet-delays-based Flow Correlation 104

As IPDs are not robust against the insertion and drop of packets, we develop

a modification which is robust against chaff packets, repacketization, flow splitting,

and attacks that add or remove packets from the flow. We also make it robust against

random delays under a maximum delay constraint.

6.2 Proposed Scheme

This section recalls the notation we use and explains how we correlate the flows to

decide whether they are linked or not.

Figure 2.1 illustrates our system model. A flow of length n packets, that we are

interested in tracking, goes through a certain link, termed “creator”, where we can

measure its packet timing information, Xn. The ith IPD at the creator is defined

as ∆Xi = Xi+1 − Xi, i = 1, . . . n − 1, and these values are saved for later use in

detection. This flow continues through the network without any modification.

The “detector” is another link in which we can measure the timing information,

Y n = xn +Dn, where Di is the network delay suffered by the ith packet. Then, the

IPDs at the detector are

∆Yi = Yi+1 − Yi = Xi+1 −Xi +Di+1 −Di = ∆Xi + ∆Di, i = 1, . . . , n− 1 (6.1)

where ∆D represents the PDV, also known as jitter. Note that we have assumed

that there are no packets added or dropped to the flow, this assumption allow us to

simplify the notation from Chapter 2 using Yi instead of Yxi .

By using the information of the actual values ∆Xn and ∆Y n, the detector has

to decide correctly if the two flows are linked. Two flows are linked if they follow a

common timing pattern due to sharing the same source (i.e. the unencrypted payload

is the same). Formally, we can express this problem via classical hypothesis testing

Chapter 6. Inter-packet-delays-based Flow Correlation 105

with the following hypotheses:

H0: The flows are not linked.

H1: The flows are linked.

6.3 Basic Detector

In this section we derive our detector and model the distributions of PDVs and IPDs

as needed.

6.3.1 Detector construction

In order to obtain the best possible performance, we construct the optimal detector,

which is the likelihood ratio test. Neyman-Pearson lemma proves that this test is the

most efficient one between two simple hypotheses [83]. Hence, our detector chooses

H1 when

Λ(∆Y n,∆Xn) =
L(H1|∆Y n,∆Xn)

L(H0|∆Y n,∆Xn)
=
f(∆Y n|∆Xn, H1)

f(∆Y n|∆Xn, H0)
> η. (6.2)

and H0 in the opposite case. L represents the likelihood function and η is a threshold

that we fix to achieve a certain probability of false positive.

Recall from (6.1) that if H1 holds, then ∆Y n = ∆Xn + Jn−1. Conversely, if H0

holds, ∆Y n is a sequence with joint pdf f∆Y n(∆yn).

For feasibility reasons, we constrain the detector to use first-order statistics, dis-

carding the information carried by higher-order statistics. This is equivalent to as-

suming sample-wise independence in the sequences ∆Dn and ∆Y n.

In fact, independence in ∆Dn does not hold as both ∆di and ∆di−1 depend on

the value of the network delay di. We show this in Figure 6.1. The assumption of

Chapter 6. Inter-packet-delays-based Flow Correlation 106

−30 −20 −10 0 10 20 30

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 6.1: Autocorrelation of the PDV

independence in ∆Y n is more reasonable as shown in Figure 6.2. In Section 6.4.2 we

quantify the impact of this assumption on performance comparing the real results

with those that would be obtained for independent and identically distributed (i.i.d.)

sequences.

Under these assumptions, the likelihood ratio becomes

Λ(∆Y n,∆Xn) =
n−1∏
i=1

f∆D(∆yi −∆xi)

f∆Y (∆yi)
. (6.3)

Therefore, we need to model the PDVs and the IPDs, i.e., determine f∆D(∆d)

and f∆Y (∆y).

Chapter 6. Inter-packet-delays-based Flow Correlation 107

−100 −80 −60 −40 −20 0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.2: Autocorrelation of the IPD

6.3.2 Modeling the packet delay variation

To model the distribution of the PDVs, we first measure them in several real connec-

tions, then fit these data to some candidate distributions and select the distribution

that matches best.

The measured delays are reported in [117]. This dataset contains the delays

between two hosts during 72 hours, and for 11 different scenarios. As it is customary,

we separate these data into three subsets: training, validation and test, using 24 hours

of data for each.

Scenarios 1 to 9 measure common Internet connections between two hosts. Sce-

nario 10 models the delays of a stepping-stone scenario, where a host in Oregon is

retransmitting to a host in California the flow coming from a host in Virginia. Sce-

nario 11 measures the delays associated with one instance of the Tor network [33].

Chapter 6. Inter-packet-delays-based Flow Correlation 108

Source Dest. n̄ [ms] Var. [s2] PNL
Sc1 CA-US NM-US 15 8 · 10−5 2 · 10−4

Sc2 OR-US NM-US 27 1 · 10−5 6 · 10−4

Sc3 VA-US NM-US 41 1 · 10−3 2 · 10−3

Sc4 ES NM-US 94 7 · 10−6 0
Sc5 IE NM-US 74 5 · 10−5 1 · 10−4

Sc6 JP NM-US 69 6 · 10−5 1 · 10−4

Sc7 AU NM-US 109 1 · 10−4 1 · 10−3

Sc8 BR NM-US 80 0.029 1 · 10−3

Sc9 SG NM-US 110 8 · 10−5 1 · 10−1

Sc10 VA-US CA-US 63 0.006 5 · 10−3

Sc11 NM-US NM-US 3117 0.265 0.16

Table 6.1: Basic Statistics of the measured delays

In order to get a general idea about the connection scenarios, we show some basic

information of the hosts and the connections in Table 6.1, where PNL is the proba-

bility of packet loss and the source and destination are represented with ISO 3166

codes [118].

From these measured delays we calculate the measured PDV as ji = di+1 − di.

The basic statistics from Table 6.2 imply a nearly symmetric (i.e., small skewness)

and leptokurtotic distribution (i.e., sharp peak and heavy tail).

To construct the model, we make the same assumptions as to build the test,

i.e., an i.i.d. sequence. The candidate distributions were selected among the ones

that have support on R and possess the mentioned characteristics. The chosen

distributions are Cauchy, Gumbel, Laplace, Logistic and Normal. Their pdfs are

summarized in Table 6.3. Recall that 1[a,b](x) is the indicator function that takes

the value 1 when x ∈ [a, b], and is 0 otherwise.

We estimate the respective parameters using robust statistics, to prevent that

outliers affect the measurements. These estimators are based on the median and me-

dian absolute deviation and calculated as explained in [116, Chapter 3]. Afterwards,

we measure the goodness of fit between the validation sequence and the model using

Chapter 6. Inter-packet-delays-based Flow Correlation 109

∆̄d [s] Var. [s2] Skew. Kurtosis
Sc1 1 · 10−10 1 · 10−4 0.02 83185
Sc2 −2 · 10−10 1 · 10−5 5.84 408
Sc3 −2 · 10−10 2 · 10−3 0.003 85187
Sc4 1 · 10−9 1 · 10−6 17.1 81139
Sc5 −7 · 10−9 3 · 10−6 3.81 622
Sc6 −2 · 10−9 6 · 10−5 0.78 71212
Sc7 2 · 10−8 2 · 10−5 −0.01 78821
Sc8 9 · 10−9 6 · 10−3 −10−5 19893
Sc9 2 · 10−8 4 · 10−6 4.41 620
Sc10 −8 · 10−9 3 · 10−4 2.37 22789
Sc11 −1 · 10−6 6 · 10−3 2.97 410

Table 6.2: Basic Statistics of the measured PDV.

the square root of the JSD (Jensen-Shannon Divergence), DJS [82]. Recall from

Chapter2, that JSD is a metric for two probability densities P,Q, which is based on

the KLD as follows:

DJS(P,Q) =

√
1

2
(D(P ||M) +D(Q ||M)) (6.4)

where M = 1
2
(P +Q) is the mid-point measure, and D(·||·) is the KLD.

Distrib. pdf
Cauchy f(x|µ, σ) = 1

πσ(1+(x−µ
σ

)2)
Gumbel f(x|µ, σ) = 1

σ
exp

(
−x−µ

σ
− exp

(
−x−µ

σ

))
Laplace f(x|µ, σ) = 1

2σ
exp− |x−µ|

σ

Logistic f(x|µ, σ) =
exp(−x−µσ)

σ(1+exp(−x−µσ))
2

Normal f(x|µ, σ) = 1
σ
√

2π
exp

(
− (x−µ)2

2σ2

)
Exp. f(x|λ) = λ exp(−λx)1[0,∞)(x)

Pareto f(x|α, xm) = αxαm
xα+11[xm,∞)(x)

LogNor. f(x|µ, σ2) = 1

x
√

2πσ2
exp

(
− (log x−µ)2

2σ2

)
LogLog. f(x|α, β) = (β/α)(x/α)β−1

(1+(x/α)β)
2 1[0,∞)(x)

Weibull f(x|γ, β) = γ
β
xγ−1 exp

(
−xγ

β

)
1[0,∞)(x)

Table 6.3: Pdfs of the candidate distributions for PDV and IPD.

Chapter 6. Inter-packet-delays-based Flow Correlation 110

Scenario Cau. Gum. Lap. Log. Nor.
Sc. 1 0.168 0.218 0.101 0.123 0.159
Sc. 2 0.156 0.201 0.157 0.150 0.171
Sc. 3 0.135 0.211 0.163 0.167 0.192
Sc. 4 0.294 0.369 0.252 0.270 0.296
Sc. 5 0.153 0.193 0.139 0.135 0.159
Sc. 6 0.203 0.174 0.152 0.120 0.130
Sc. 7 0.136 0.300 0.231 0.267 0.298
Sc. 8 0.168 0.307 0.195 0.261 0.308
Sc. 9 0.183 0.185 0.171 0.141 0.146
Sc. 10 0.227 0.384 0.340 0.364 0.384
Sc. 11 0.251 0.201 0.194 0.228 0.253

Table 6.4: Goodness of fit of the candidate distributions for PDV.

Results from Table 6.4 show that no distribution stands out above the rest, being

the Laplace and the Cauchy distributions the best fits.

The Laplacian is the most commonly used model for the jitter, but an alpha-stable

distribution models it better [119]. Note that a Cauchy distribution is a particular

case of an alpha-stable distribution, but we do not generalize it further, as we are

interested in a close-form pdf model.

The performance of the two possible detectors, based on Laplace and Cauchy

distributions, respectively, is evaluated in Section 6.4.2.

6.3.3 Modeling the Inter-Packet Delays

In many works it is assumed a Poisson model for the traffic because of its desir-

able theoretical properties [120]. This model implies that IPD times are an i.i.d.

exponentially-distributed sequence, but Paxson et al. [115] have shown that this

model is not accurate in interactive applications.

We model the IPDs on both SSH and HTTP protocols. As done in [115], we only

take into account packets that are separated at least by 10 ms, considering that if

Chapter 6. Inter-packet-delays-based Flow Correlation 111

Set Flows Packets
SSH Train. 6447 14442323
SSH Val. 1128 2594550
SSH Sim. 714 16595655
HTTP Train. 1108909 356620487
HTTP Val. 208896 63982082
HTTP Sim. 1007545 322853437

Table 6.5: Characteristics of the IPD sets.

Distribution
SSH HTTP

Error Parameters Error Parameters
Exponential 0.756 λ = 5.46 0.758 λ = 12.69
Pareto 0.149 α = 0.86, xm = 10−2 0.247 α = 0.53, xm = 10−2

Log-Normal 0.627 µ = −1.14, σ2 = 1.43 0.723 µ = −0.40, σ2 = 4.02
Log-Logistic 0.343 α = 0.27, β = 1.77 0.508 α = 0.47, β = 0.95
Weibull 0.554 γ = 0.49, β = 0.81 0.591 γ = 0.40, β = 1.33

Table 6.6: MLE Estimator and goodness of fit of the candidate distributions for IPD.

two packets are separated by less than 10 ms they are subpackets of the same packet.

Therefore, the considered IPDs are lower bounded by 10 ms. We use the captures

from Dartmouth College [121], using the traces from Fall 03 as training set, Spring

02 as validation set and Fall 01 as test set for the simulator. The basic characteristics

of these sets are shown in Table 6.5.

We estimate the parameters through MLE and measure the goodness of fit using

the square root of the JSD. The candidate distributions are: Exponential, Pareto,

Log-Normal, Log-Logistic, and Weibull. Their pdfs can be seen in Table 6.3.

Results shown in Table 6.6 confirm the findings of Paxson et al., i.e., that the

Pareto distribution is a better model for interactive traffic. In non-interactive traffic

such as HTTP, this model also gives acceptable results. Therefore, we will assume

that

f∆Y (∆y) = αxαm∆y−α−1
1[xm,∞)(∆y). (6.5)

Chapter 6. Inter-packet-delays-based Flow Correlation 112

6.3.4 Detector

Once we have a model for the IPD and PDV sequences, we derive the likelihood test.

If Cauchy-distributed PDVs are assumed, the test chooses H1 when

Λ(∆yn,∆xn) =
n−1∏
i=1

(∆yi)
α+1

πσαxαm

(
1 +

(
∆yi−∆xi

σ

)2
) > η (6.6)

and H0 otherwise.

In the case that a Laplace model for PDV is adopted, then

Λ(∆yn,∆xn) = exp

(
−
∑n−1

i=1 |(∆yi −∆xi|
σ

) (∏n−1
i=1 ∆yi

)α+1

(2σαxαm)n−1
. (6.7)

When it comes to finding η and obtaining the theoretical probabilities of detection

and false positives, we use the Monte Carlo method as the derivation of closed-form

expressions is infeasible in most cases, as shown in Appendix A, where we obtain the

theoretical η and PD for tests (6.6) and (6.7).

6.4 Performance

In this section we construct a simulator and present the scenarios we use in the

remaining of the paper. Afterwards, we test the model assumptions and measure the

performance with different sequence lengths.

6.4.1 Simulator and Scenarios

.

Simulations are carried out in the following way. First, we generate timing infor-

mation at the creator using the IPD test set, Xn
1 . The purpose of this sequence is to

Chapter 6. Inter-packet-delays-based Flow Correlation 113

Creator Detector

Stepping
Stone

Figure 6.3: Simulated Scenario A.

TOR

Client Web Server

Figure 6.4: Simulated Scenario B.

evaluate the performance when H1 holds. A delay is added to each packet using the

measured delays from the test set (as explained in the following paragraphs), obtain-

ing Y n
1 . We generate a second sequence Y n

0 , using the IPD test set; this sequence has

the purpose of evaluating the performance under H0. Finally, we use the Test from

(6.6) or (6.7), to obtain both Λ(dn0 , c
n
1) and Λ(dn1 , c

n
1). This experiment is repeated

106 times, and for different values of η we obtain PD as the rate of Λ(dn1 , c
n
1) > η, and

PF as the rate of Λ(dn0 , c
n
1) > η. Note that due to the number of runs, PF < 10−5

cannot be measured and results of this order are not accurate.

The sequences are generated in the following way: we place all the IPDs from the

test set in an order-preserving list. The starting point is randomly selected from the

list and the generated IPDs are the following n− 1 values.

For generating the delays, we used the test set as a list with the delay every 50

ms. We select one value randomly from the list that will be considered time 0 ms; the

following values will represent the delay at times 50 ms, 100 ms, and so on. To obtain

Chapter 6. Inter-packet-delays-based Flow Correlation 114

the delays at times where we do not have a measure, we use linear interpolation.

The performance is evaluated in the two scenarios depicted in Figures 6.3 and

6.4. Scenario A represents a stepping stone that forwards SSH traffic inside the

Amazon Web Services [122] network. The creator, stepping stone and detector are

EC2 instances located in Virginia, Oregon and California, respectively. This example

corresponds to tracing the source of an attack that was launched from a compromised

Amazon instance. The simulated delays correspond to those of Scenario 10 in Section

6.3.2, where the standard deviation of the network delay is 4 ms.

Scenario B simulates a web page accessed from Tor network whose real origin is

to be found, and where the creator will be the web page and the detector the client.

For instance, this case can correspond to a company in whose forum an anonymous

insulting post has been placed using Tor and it is to be known whether the source

comes from an employee within the company. The simulated delays correspond to

the measurements of Scenario 11 in Table 6.4, where the standard deviation of the

network delay is 340 ms.

6.4.2 Impact of our assumptions

In this section, we wish to quantify the impact of the assumptions we have made,

that is, the PDVs form an i.i.d. Cauchy or Laplace sequence. To this end, we extend

our simulator to create 3 types of delays: first, according to the model (Cauchy

or Laplace), second as a random sample from the data, and last, from the data

maintaining the time correlation. n = 4 is used for Scenario A and n = 21 for

Scenario B. Results are shown in Figures 6.5 and 6.6. We notice two details: first, that

the Cauchy-based detector gives slightly better performance than the Laplace under

real data, and second, that the independence of the PDVs previously assumed slightly

reduces the performance. In the sequel, we just derive the expressions for a Cauchy-

based detector. The modification for a Laplace detector is rather straightforward.

Chapter 6. Inter-packet-delays-based Flow Correlation 115

10−6 10−5 10−4 10−3 10−2 10−1 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F

P
D

Cauchy Model (0.999565)
IID Cauchy−Based Detector (0.999847)
Real Cauchy−Based Detector (0.992742)
Laplace Model (0.999996)
IID Laplace−Based Detector (0.998054)
Real Laplace−Based Detector (0.991501)

Figure 6.5: Impact of assumptions in Scenario A with n = 4.

6.4.3 Performance dependence on n

We want to evaluate how much performance is improved when longer sequences are

used. The result is depicted in Figures 6.7 and 6.8. We can see that Scenario B,

whose IPDs have a larger variance because of the Tor network, needs much longer

sequences to achieve the same performance. For instance, with fixed PF = 10−4, in

Scenario A for n = 6 we obtain PD = 0.8926. However, in Scenario B the n needed

for a comparable result is around 250, with which we obtain PD = 0.8947. If we

compare the AUCs (Area Under the ROC Curve), in Scenario A with n = 6 we

obtain 0.9955 while a similar result in Scenario B requires a value of n between 10

and 25.

Chapter 6. Inter-packet-delays-based Flow Correlation 116

10−6 10−5 10−4 10−3 10−2 10−1 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F

P
D

Cauchy Model (0.999845)
IID Cauchy−Based Detector (0.994646)
Real Cauchy−Based Detector (0.997503)
Laplace Model (0.999946)
IID Laplace−Based Detector (0.997523)
Real Laplace−Based Detector (0.996124)

Figure 6.6: Impact of assumptions in Scenario B with n = 21.

6.5 Robust detector

The previous test does not take the existence of any countermeasure into account.

Attacks to timing correlation can be exerted by introducing uncorrelated random

delays, adding chaff traffic or splitting the flow, making the Test in (6.6) ineffective.

In this section, we build a test that is robust to these attacks. First, we deal with

adding or removing packets from the flow, and then with random delays.

6.5.1 Matching packets

Hitherto, we have assumed that there is a one-to-one relation between the flows at

the creator and the detector; i.e., no packets are added or removed. This assumption

is not necessarily valid for every situation, not only due to the presence of an active

attacker, but also as a result of many applications that repacketize flows, changing

Chapter 6. Inter-packet-delays-based Flow Correlation 117

10−6 10−5 10−4 10−3 10−2 10−1 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F

P
D

n=2 (0.9834)
n=4 (0.9930)
n=6 (0.9955)
n=11(0.9981)
n=16 (0.9987)
n=21 (0.9990)

Figure 6.7: Performance dependence with n in Scenario A.

the number of packets, for instance, SSH tunneling [123].

To deal with packet addition and removal, we first choose the most likely packet

at the detector for each packet at the creator. In the case that there is no packet

likely enough, we consider the creator packet as lost.

Given the ith packet at the creator, we match it with the most likely jth packet

at the detector, denoting this as i → j. Consequently, if ρ is a synchronization

constant to be discussed in Section 6.5.3, and γ is the threshold for which a packet

is considered lost, the condition for a match in the ith packet is

|xi − (yj − ρ)| < |xi − (yk − ρ)|, ∀k 6= j, (6.8)

and to avoid considering it lost,

|xi − (yj − ρ)| < γ. (6.9)

Threshold γ should be large enough so that the probability PM that a packet is

Chapter 6. Inter-packet-delays-based Flow Correlation 118

10−6 10−5 10−4 10−3 10−2 10−1 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F

P
D

 n=11 (0.9946)
n=26 (0.9969)
n=51 (0.9980)
n=101 (0.9988)
n=251 (0.9996)

Figure 6.8: Performance dependence with n in Scenario B.

wrongly considered lost is very small, for instance, 10−6. Although this can lead to

incorrectly matching with another packet when the packet is indeed lost, the impact

on Test (6.10) of this mismatch is very small. Empirically, the best performance we

obtained for Scenario A is when γ ≈ 75 ms, and when γ ≈ 7 s for Scenario B.

In practice, the standard deviation of the network delay can be larger than some

of the IPDs, especially in Scenario 2, in which case the matching is likely to fail.

The impact of these matching errors is evaluated in Section 6.5.5. In the case that

most of the IPDs are smaller than the standard deviation of the network delay, a

better matching function is the one proposed in Chapter 7. This corresponds to

the injective function that minimizes the mean square error between xn and ym− ρ,

which has the drawback of a higher computational cost.

The matching process modifies the timing sequences to xm and ym, where m ≤ n,

as the lost packets are removed. Formally, we can define the new sequences as

xm = {xi | ∃ j : i→ j}, and ym = {yj | ∃ i : i→ j}.

Chapter 6. Inter-packet-delays-based Flow Correlation 119

6.5.2 Test robust to chaff and flow splitting

From (6.6), we can obtain a test robust to packet removal and insertion as

Λ(∆xm,∆ym) = PL
n−m ·

m−1∏
i=1

PL + (1− PL) · (∆yi)
α+1

πσαxαm

(
1 +

(
∆yi−∆xi

σ

)2
)
 , (6.10)

where PL is the probability that a packet at the creator cannot be matched at the

detector. This can be due to three reasons: network loss with a probability PNL,

lack of matching when the packet appears, and flow splitting into S subflows by the

stepping stone, i.e., 1/S of the original packets are seen by the detector, as only one

of the subflows traverses this link. Therefore,

PL = 1− (1− PNL)(1− PM)

S
=
S − 1 + PNL

S
+
PM − PNLPM

S

≈ S − 1 + PNL + PM
S

(6.11)

6.5.3 Self-Synchronization

We have mentioned that ρ is a synchronization constant. The detector can perform

detection maximizing the value of Λ(∆xm,∆ym) with respect to ρ through an ex-

haustive search. For instance, Figure 6.9 shows a detector trying values of ρ using

steps of 1 ms in the interval [0, 0.5] s. We can see that the maximum Λ(∆xm,∆ym)

occurs when ρ ≈ n̄, as expected. Recall that n̄ is the sample mean of the network

delays.

In a real situation, calculating PL with (6.11) may not be feasible due to S being

unknown for the detector, and PNL can be difficult to estimate as packets may go

through several stepping stones. In that case, we propose to use also exhaustive

search. Figure 6.10 shows a detector trying different values for PL in steps of 0.01.

We can see that the maximum Λ(∆xm,∆ym) occurs at a value in a neighborhood of

the real PL = 0.75. We can also see that the peak of Λ(∆xm,∆ym) is fairly wide, so

not such small step is needed for the search in practice.

Chapter 6. Inter-packet-delays-based Flow Correlation 120

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 1062

(a) Linked flows

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5

3

3.5
x 10−14

(b) Non linked flows

Figure 6.9: Synchronization in Scenario A with n = 6.

6.5.4 Robust test against random delays

So far the situation where an attacker can inject random delays has not been consid-

ered. Random delay injection is a well-known technique for covert channel prevention

and can be easily implemented via buffering by attackers across their step stones.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18
x 10

12

P
L

Λ
(d

M
,c

M
)

(a) Linked flows

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
L

Λ
(d

M
,c

M
)

(b) Non linked flows

Figure 6.10: Exhaustive search for PL in Scenario A with n = 21 and real value of
PL = 0.75.

Chapter 6. Inter-packet-delays-based Flow Correlation 121

We assume that the attacker has the constraint of not being able to delay any

packet more than Amax seconds. Hence, she can modify the PDV by a quantity

A that falls in the interval [−Amax, Amax]. As we do not know the distribution of

the attacker’s random delay, the detector assumes a uniform distribution. Thus, the

PDV at the decoder is ∆D′m = ∆Dm + Am, and

f∆D′(j) =
1

2Amaxπ

(
(arctan

(
j + Amax

σ

)
− arctan

(
j − Amax

σ

))
(6.12)

Consequently, the likelihood ratio becomes

Λ(∆ym,∆xm) = PL
n−m ·

m−1∏
i=1

(
PL + (1− PL) · (∆yi)

α+1f∆D′(∆yi −∆xi)

αxαm

)
(6.13)

A game-theoretic approach to this problem is taken in Chapter 7, where the de-

tector is first constrained to estimating and compensating the attack and then the

optimal detector for the same game is derived. Results show that a nearly determin-

istic attack impairs the detector performance more than a uniform distribution even

if the detector knows the attack distribution.

6.5.5 Performance

To evaluate the proposed robust algorithms, the functionalities of adding chaff traf-

fic, splitting the flow, and delaying the packets randomly are implemented in our

simulator. This is done as follows: each packet is delayed by a certain quantity.

We implement two different delay strategies: a) the value is picked from a uniform

distribution in the range [0, Amax], and b) the values are taken to minimize (6.10),

i.e. the values are chosen by an intelligent adversary who knows both the test and its

parameters. Then, the simulator adds traffic according to a Poisson process with a

fixed rate proportional to the rate of the original traffic. Afterwards, it simulates the

flow split, which is implemented by discarding packets as a Bernoulli process with a

probability equal to 1 − 1
S

. Recall that S is the number of subflows we divide the

flow into.

Chapter 6. Inter-packet-delays-based Flow Correlation 122

10−6 10−5 10−4 10−3 10−2 10−1 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F

P
D

No Attack (0.9979)
Attack 1 (0.9970)
Attack 2 (0.9812)
Attack 3a (0.9976)
Attack 3b (0.9973)
Attack 4a (0.9935)
Attack 4b (0.9883)
Attack 5a (0.8735)
Attack 5b (0.8413)

Figure 6.11: Performance under different traffic modifications in Scenario A, n=21.

We created five different attacks. In the first three, we evaluate each traffic

modification strategy separately, namely, Attack 1 adds 500% of chaff traffic; Attack

2 splits the flow into 4 subflows; Attack 3 adds delays with Amax = 50 ms; Attack

4 combines 500% of chaff traffic with delays constrained to Amax = 50 ms, and

Attack 5 is a complex attack where a combination of Attack 4 with splitting the

flow into 2 subflows takes place. For Attacks 3 to 5, we consider the two delay

strategies specified above: with Z indicating the attack number, we denote by Za

the case where the delays are chosen randomly, and by Zb where they are chosen

by an intelligent attacker. We simulate these situations using sequences of length

n = 21 in Scenario A and n = 251 in Scenario B. Results are depicted in Figures

6.11 and 6.12.

Comparing these figures under no attacks with the corresponding plots for the

case of no mismatches of Figs. 6.7 and 6.8, we can evaluate the impact of mismatched

Chapter 6. Inter-packet-delays-based Flow Correlation 123

10−6 10−5 10−4 10−3 10−2 10−1 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F

P
D

No Attack (0.9982)
Attack 1 (0.9960)
Attack 2 (0.9821)
Attack 3a (0.9982)
Attack 3b (0.9968)
Attack 4a (0.9959)
Attack 4b (0.9944)
Attack 5a (0.9754)
Attack 5b (0.9699)

Figure 6.12: Performance under different traffic modifications in Scenario B, n=251.

packets, as the AUC drops from 0.9990 to 0.9979 in Scenario 1 and from 0.9996 to

0.9982 in Scenario 2.

In low jitter situations, namely Scenario A, chaff traffic by itself has little impact,

but the effect when combined with random delays is significantly increased. The

reason behind this is that in the first case the matching process chooses the real

packets with a very low probability of error but when a random delay is added the

probability of a mismatch increases. We also see that the flow splitting attack has a

considerable impact as the received sequence length is reduced.

In high jitter situations, i.e. Scenario B, random delays have considerably smaller

influence, because the standard deviation of the network delay is larger than the

attack delay. In fact, due to the high network-delay variability, chaff traffic alone

has a significant impact on performance without the need of an attacker injecting

random delays.

Chapter 6. Inter-packet-delays-based Flow Correlation 124

6.6 Comparison with an active watermark

We want to analyze how much performance can be improved by sacrificing unde-

tectability. For this purpose, we create an active watermark designed with invisibility

as a goal, and we study the trade off between performance and detectability.

We measure the latter as the KLD between the covertext, i.e., the sequence

without watermark, and the stegotext, i.e., watermarked. Cachin [103] defines a

stegosystem to be ε-secure against passive adversaries if D(fC ||fS) < ε, where fC is

the distribution of the covertext and fS is the distribution of the stegotext. Hence,

we measure the detectability as the minimum ε for which our system is ε-secure.

The watermark is embedded adding a random uniform delay between [0,Wmax].

Thus, the watermarked flow is xn = un + wn, hence ∆W n is triangular-distributed

between [−Wmax,Wmax] as it is the difference of two delays uniformly distributed.

As the saved IPDs are the ones after embedding the watermark, the detector remains

(6.13).

We assume that the attacker knows the original traffic as done in [102, 99] and

wants to test for the existence of a watermark. Therefore, the attacker’s goal is to

differentiate between ∆(W n +Dn) and ∆Dn.

We simulate Scenario A with n = 6 and Scenario B with n = 26 under no traffic

modification, where we evaluate the trade-off between the detectability and PD when

PF is fixed. Results are depicted in Figures 6.13 and 6.14, where we can see that wa-

termarking schemes give a significant improvement under low-jitter conditions even

with Wmax = 2 ms, (where DKL(∆D||∆W n + ∆Dn) = 0.486), but this improvement

is significantly lower on large-jitter conditions, e.g. the Tor network, even of very

large Wmax , for instance, for Wmax = 250 ms (where DKL(∆D||∆W n + ∆Dn) =

0.679).

Chapter 6. Inter-packet-delays-based Flow Correlation 125

0 0.5 1 1.5 2 2.5
0.4

0.5

0.6

0.7

0.8

0.9

1

P
F
=10−5

P
F
=10−4

P
F
=10−3

Figure 6.13: PD vs the detectability for fixed PF in Scenario A with n = 6.

6.7 Comparison with other schemes

We want to compare our passive analysis with four other state-of-the-art traffic water-

marking schemes: IBW (Interval Based Watermark) [90], ICBW (Interval-Centroid-

Based Watermark) [91] , RAINBOW (Robust And Invisible Non-Blind Watermark)

[88] and SWIRL (Scalable Watermark that is Invisible and Resilient to packet Losses)

[89] that where described in Chapter 2. To this end, we extend our simulator to be

able to embed the mentioned watermarks and to detect them.

The presented results have been obtained with the following parameters: IBW,

ICBW and SWIRL use a time interval of 500 ms; this is the value used in the

original ICBW experiments reported in [91].The experiments for SWIRL in [89] use

2 s, but with short sequences this implies that many flows cannot be watermarked

as the whole flow falls into one interval. We compensate this shorter interval by

Chapter 6. Inter-packet-delays-based Flow Correlation 126

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F
=10−5

P
F
=10−4

P
F
=10−3

Figure 6.14: PD vs the detectability for fixed PF in Scenario B with n = 26.

dividing it into less subintervals (5 instead of 20). In our experiments RAINBOW

can modify the IPD up to 20 ms, which is the largest watermark amplitude used in

the simulations in [88].

We first compare the performance in both scenarios when the flows do not suffer

any addition or removal of packets, for this we use (6.6). We take n = 6 in Scenario

A and n = 51 in Scenario B. Figure 6.15 shows the results for Scenario A, where

our scheme and RAINBOW outperform the rest by a significant amount. This is

due to the fact that both are non-blind and perform well with short sequences if

the PDV has small variance. The other watermarking schemes do not perform well

with short sequences. Figure 6.16 shows the results in Scenario B. We see that with

longer sequences IBW and ICBW despite of the larger PDV sequence improve their

performance.

We also compare the performance under traffic modification using Attack 5a,

Chapter 6. Inter-packet-delays-based Flow Correlation 127

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F

P
D

Our Scheme
(0.9953)
Rainbow
(0.9837)

Swirl
(0.7134)

IB (0.8218)

ICB (0.7734)

Figure 6.15: Comparison of algorithms on Scenario A with n = 6.

i.e., 500% chaff traffic added, S = 2 and random delays with Amax = 50 ms. As

before, we fix n = 51 in Scenario A and n = 251 in Scenario B. Results are shown

in Figures 6.17 and 6.18. Note that RAINBOW or SWIRL are not designed to be

robust against an active attacker.

Our algorithm is more robust to the considered traffic modifications than the

rest of schemes, for example, in Scenario B, we achieve AUC = 0.9828, while IBW

achieves AUC = 0.8842, ICBW AUC = 0.8350, and for both RAINBOW and

SWIRL AUC < 0.6. Recall also that we do not modify the flow, while the rest

do.

Our scheme performs better than RAINBOW, which is also a non-blind detection,

although it does not modify the IPDs. The improvement in performance is due to

using a likelihood test (optimal) instead of a normalized correlation. Recall also that

the IPDs have been restricted to be larger than 10 ms. Lifting this restriction would

Chapter 6. Inter-packet-delays-based Flow Correlation 128

10−6 10−5 10−4 10−3 10−2 10−1 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F

P
D

Our Scheme (0.9987)
Rainbow (0.9165)
Swirl (0.7155)
IBW (0.9568)
ICBW (0.9225)

Figure 6.16: Comparison of algorithms on Scenario B with n = 51.

have a bigger impact on passive analysis than on a watermarking scheme.

6.8 Real Implementation

Obviously, simulations are not fully realistic. To check if simulator results are appli-

cable to real networks, we carry out a real implementation of the proposed passive

analysis scheme, the watermark modification proposed in Section 6.6 and the water-

mark schemes with which we compared in Section 6.7 for scenarios A and B.

For the first experiment, we launched three EC2 [122] instances. We used replayed

SSH connections from real traces taken at University of Vigo and the stepping stone

was created by forwarding the traffic with the socat command. For the second

experiment, we replay connections from real HTTP traces also from University of

Vigo. We use n = 6 packets and n = 51 for Scenarios A and B, respectively. The

Chapter 6. Inter-packet-delays-based Flow Correlation 129

10−6 10−5 10−4 10−3 10−2 10−1 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F

P
D

Passive Scheme (0.9322)
Rainbow (0.5748)
Swirl (0.5389)
IBW (0.8067)
ICBW (0.6991)

Figure 6.17: Comparison of algorithms on Scenario A under flow modification with
n = 51.

experiment is repeated 1000 times in each case. In order to obtain values of the test

under H0, we use the saved timing information from the previous sequence in the

non-blind cases, i.e., our proposed method and RAINBOW, while for the blind cases,

i.e., IBW, ICBW and SWIRL, we use a different random key.

The chosen parameters are the maximum IPD variation for RAINBOW and a

watermark modification of 5 ms in Scenario A and 20 ms in Scenario B, that are

the median and maximum amplitudes in the experiments presented in [88]. For the

blind-watermark, IBW and ICBW use an interval size of 500 ms, and SWIRL uses

an interval length of 250 ms and 1000 ms for Scenarios A and B, respectively, divided

into 5 subintervals of 3 slots each. These values have been chosen to maximize the

AUC in each scenario.

Experiments are carried out in a non-active-attack scenario, this means that

Chapter 6. Inter-packet-delays-based Flow Correlation 130

10−6 10−5 10−4 10−3 10−2 10−1 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F

P
D

Our Scheme (0.9828)
Rainbow (0.5980)
Swirl (0.5808)
IBW (0.8842)
ICBW (0.8350)

Figure 6.18: Comparison of algorithms on Scenario B under flow modification with
n = 251.

insertions and losses are only due to repacketization. As the detector from(6.10)

needs a value for PL, we use PNL from Table 6.1.

Results in Scenario A are similar to the simulator results: AUC=0.9987 for Real

Scenario vs AUC=0.9983 for the Simulator. However, Scenario B shows a decrease

in performance for the Real Scenario compared to the simulator results. This loss of

performance affects all schemes, being for ours less severe.

6.9 Conclusions

In this chapter we have presented a highly-optimized traffic analysis method for

deciding if two flows are linked which can be used as passive analysis. We also present

a watermarking scheme based on this scheme. We develop an optimal decoder, i.e.,

Chapter 6. Inter-packet-delays-based Flow Correlation 131

10−3 10−2 10−1 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F

P
D

Passive Scheme (0.9987)
Watermark Version (0.9983)
Rainbow (0.9650)
Swirl (0.7159)
IBW (0.9242)
ICBW (0.8353)

Figure 6.19: Real Implementation on Scenario A with n = 6.

the likelihood-ratio test, that allows to achieve a very good performance under a

passive analysis scheme. For example, with 21 packets separated at least 10 ms we

can correlate two flows, obtaining PD = 0.9861, given a false alarm probability equal

to 10−5, without flow modifications.

A more robust detector is created that can deal with chaff traffic, flow splitting

and random delays added by an attacker. To this end, packet matching is carried

out by removing the packets that do not have a correspondent in the other flow.

Then, a new likelihood-ratio test that considers losses and the maximum delay that

an attacker can add is derived.

Afterwards, we study the trade-off between improvement and detectability of a

watermarking scheme based on our algorithm. We also show a comparison with

four state-of-the-art traffic watermarking schemes. Finally, a real implementation is

carried out to show that the simulator results can be extended to real networks.

Chapter 6. Inter-packet-delays-based Flow Correlation 132

10−3 10−2 10−1 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F

P
D

Passive Scheme (0.9796)
Watermark Version (0.9861)
Rainbow (0.5911)
Swirl (0.5574)
IBW (0.6604)
ICBW (0.6623)

Figure 6.20: Real Implementation on Scenario B with n = 51.

The obtained results show that when dealing with independent flows, passive

analysis schemes with an optimal detector can compete with and even outperform

state-of-the-art traffic watermarking schemes, giving the advantages of being unde-

tectable, which decreases the risk of a traffic modification attack, and that they can

be carried out ex-post, in addition to in real-time. This makes it possible to use our

schemes in forensic analysis applications as well as in intrusion detection.

133

Chapter 7

Flow-Correlation with an

adversary

7.1 Introduction

We have seen in Chapter 6 how to correlate flows based on the IPDs, and we discussed

the possibility that an adversary, such as a stepping stone or an anonymous network

relay, may modify the flow to prevent the correlation by introducing delays or adding

dummy packets to such flow. There, we dealt with an adversary that chooses its

attack randomly instead of selecting the optimal attack. In this chapter, we deal

with an adversary that has the largest impact on the correlation.

The aim of this chapter is to study the limits of passive traffic-analysis and

flow fingerprinting in an adversarial environment. To achieve this goal, we propose

a game-theoretic framework and look for the optimum strategies that the players

should adopt. A similar game-theoretic framework has been used in other contexts

such as Information Hiding [124], and Source Identification [125].

This game involves two players: the traffic analyst (TA) that tries to correlate

Chapter 7. Flow-Correlation with an adversary 134

flows and the adversary (AD) whose goal is to impair this correlation.

We propose two different games depending on the characteristics of the flows we

deal with: independent flows and correlated flows. In the first case, the TA wants

to differentiate if the received flow is linked with a known flow or is a different flow

without any relation with the known flow but coming from the same IPD distribution.

For instance, a real scenario for this game is to differentiate between different SSH

sessions. In the second game, the TA wants to decide between a fingerprinted flow and

the same flow with no fingerprinted, an application can be to differentiate between

clients that access the same web page.

7.2 Player order and equilibria

Recall from Section 2.2 that in sequential games, where players choose their actions

in a given order, the subgame perfect equilibrium (SPE) is a refinement of the Nash

Equilibrium that eliminates non-credible threats.

The SPE solution varies with the order in which players choose their actions,

as a given player at the SPE knows which actions have taken place before his own

(otherwise the player could improve his/her utility given this information). Hence,

the solution to the game depends on the order in which the players choose their

actions.

As the players choose their actions in a given order, an intuitive approach for a

player (A) is to assume that the other player (B) will find out their action pattern and

B decides his next action according to it, for instance this situation seems realistic

when the detection is done off-line. Hence, the equilibrium of the game is:

u∗ = max
wn

min
AAD

max
Λ1

u(ATA, AAD), (7.1)

that we represent with the superscript *. In the graphs the solution of this game is

Chapter 7. Flow-Correlation with an adversary 135

AD

TA
Detector

TA
Fingerprinter

Figure 7.1: Model of the Flow Fingerprinting Game: independent flows

plotted with a solid line.

A more conservative approach for the TA is to assume that he is unable to know

AAD but the adversary is able to know TA’s action pattern. Under this situation,

the equilibrium is:

u = max
wn,Λ1

min
AAD

u(ATA, AAD), (7.2)

which is represented with an underline. This scenario would model a real-time detec-

tion of stepping stones where the adversary knows the intrusion detection techniques

used by the TA.

The most optimistic scenario for the TA is when the adversary behavior is known,

in this case the equilibrium is:

u = min
AAD

max
wn,Λ1

u(ATA, AAD), (7.3)

which is denoted using an overline. For instance, a real situation can be when the

adversary is a Tor relay whose behavior is public.

As u ≤ u∗ ≤ u, equality holds only when a saddle-point strategy exists. In a

zero-sum a saddle-point is always a Nash equilibrium (NE) [126].

Chapter 7. Flow-Correlation with an adversary 136

7.3 Flow fingerprinting game: independent flows

The flow fingerprinting game for independent flows is represented in Figure 7.1. In

this game, the TA has to correctly decide whether the candidate flow (yn2) is the

known flow (un) or a different one. This is the problem dealt with in Chapter 6.

Formally, the task of the TA is to accept or reject the hypothesis that yn2 is indeed

the same flow as un.

To improve the efficiency, the TA can modify the flow by embedding a fingerprint

wn. Due to the nature of the problem, the modification must be additive, i.e.,

xn = un + wn. We constrain the fingerprint to delay any packet at most Wmax

seconds. This flow will suffer a network delay of dn1 before reaching the adversary.

We denote by rn the flow received by the adversary.

The goal of the adversary is to modify the flow, producing zn2 , in such a way

that the detector decides that this sequence is not related with un. In order to do

this, the adversary can modify the flow by adding delays and dummy packets. We

denote by zn2 the output flow of the adversary. This flow suffers an additional delay

dn2
2 due to the network between the adversary and the detector.

We represent by D the delay suffered by a packet in the whole path, i.e., D =

D1 +D2. Recall that ∆D is the PDV or jitter.

We assume that f∆U(∆u) is known by both players and define the hypotheses:

H0 : yn2 and unare not linked

H1 : yn2 and unare linked.

We define the flow fingerprinting game for independent flows as follows:

Definition 1. The FFGI(ATA;AAD;u) is a zero-sum game played by the TA and

the adversary, where

Chapter 7. Flow-Correlation with an adversary 137

• The set of actions the TA can choose from, i.e. ATA, is the duple of possible

fingerprint sequences wn and acceptance regions Λ1:

ATA = {wn × Λ1 : 0 ≤ wi ≤ Wmax, i ∈ [1, n]} (7.4)

• The set of possible attacks that the adversary can choose from AAD = {f(zn2

|rn)}. As we will study two different adversaries, we will formally define this

function in each section.

• We use two different utility functions. The first utility function, uD is the

probability of detection, PD, for which the probability of false positive, PF , is

below a certain threshold η:

uD(ATA, AAD) = Pr(Y n2 ∈ Λ1|H1) ∧ Pr(Y n2 ∈ Λ1|H0) < η. (7.5)

The second utility function we use, denoted by uA, is the AUC:

uA(ATA, AAD) =

∫ 1

0

Pr(Y n2 ∈ Λ1|H1)dη, where η = Pr(Y n2 ∈ Λ1|H0). (7.6)

7.3.1 Optimal Detector

As for directly correlating timing sequences a precise estimate of fD is required, and

this is in some cases difficult to obtain, the use of the difference timing sequence,

that is, IPDs, seems more reasonable.

The optimal detector, according to Neyman-Pearson Lemma, is the likelihood

ratio test:

Λ1(yn2 , xn, f̂(zn2|rn)) =

∫
R+n

∫
R+n2

f∆D
n2
2

(∆(yn2 − zn2))f̂(zn2|rn)

f∆Un2 (∆yn2)

· f∆Dn1
(∆(rn − xn))dzn2drn (7.7)

where f̂(zn2|rn) is the assumed distribution of f(zn2|rn) by the detector. If we are

under condition 7.1 and 7.3, then f̂(zn2|rn) = f(zn2 |rn).

Chapter 7. Flow-Correlation with an adversary 138

7.4 Delaying adversary

In this section we derive the detector for the case when the adversary is limited to

delaying the packets up to Amax seconds, without adding or removing any packets

from the flow. Under this condition, there exists a one-to-one correspondence be-

tween xn and yn2 , i.e., n2 = n. Formally, the adversary’s actions can be defined

as:

AAD = {f(an|rn) : 0 ≤ ai ≤ Amax, i ∈ [1, n]}, (7.8)

where an = zn − rn is the sequence of delays added by the adversary.

From (7.7), the likelihood ratio test under this adversary becomes:

Λ1(yn, xn, f̂An|Xn) =

∫
Rn

f∆Dn(∆(yn − xn − an))f̂An|Xn(an|xn)

f∆Un(∆yn)
dan. (7.9)

Restricting the detector (7.9) to first order statistics, we obtain

Λ1(yn, xn, f̂An|Xn) =
n−1∏
i=1

∫
R f∆D(∆di + z))f̂Ai+1−Ai|Xn(z|xn)dz

f∆U(∆yi)
(7.10)

where f̂Ai+1−Ai|Xn(x) =
∫ Amax

0
f̂Ai+1

(y)f̂Ai(y − x)dy.

The solutions of the different games are:

u∗D = max
wn

min
fAn|xn

Pr(Λ1(xn + An +Dn, xn, fAn|xn) > ε) (7.11)

uD = max
wn,f̂An|xn

min
fAn|xn

Pr(Λ1(xn + An +Dn, xn, f̂An|xn) > ε) (7.12)

uD = min
fAn|un

max
wn

Pr(Λ1(xn + An +Dn, xn, fAn|un) > ε) (7.13)

Unfortunately, calculating the solutions given by (7.11), (7.12) or (7.13) are still

intractable problems if we allow any kind of delay distribution.

Chapter 7. Flow-Correlation with an adversary 139

7.4.1 Deterministic Attack

The simplest adversary we can imagine is one that acts in a deterministic way. This

means that if he receives two identical sequences the output will be the same, i.e

an = f(rn). Hence, fAn|∆rn(xn) =
∏n

i=1 δ(xi− ai) and f̂An|∆rn(xn) =
∏n

i=1 δ(xi− âi).

The solutions of this game are:

u∗ = max
wn

min
an

Pr

(
n−1∏
i=1

f∆D(∆id
n)

f∆U(∆i(un + wn + an + dn))
> ε

)
(7.14)

u = max
wn,ân

min
an

Pr

(
n−1∏
i=1

f∆D(∆i(d
n + an − ân))

f∆U(∆i(un + wn + an + dn))
> ε

)
(7.15)

u = min
an

max
wn

Pr

(
n−1∏
i=1

f∆D(∆id
n)

f∆U(∆i(un + wn + an + dn))
> ε

)
(7.16)

Note that when ân = an (i.e., when the detector is chosen after the adversary) the

adversary delays are the ones that maximize the likelihood of xn+an+dn coming from

the distribution of Un, i.e., making the sequence as typical as possible. Conversely,

the fingerprint delays are the ones that minimize this likelihood.

Performance

We calculate the solution of the game for the same two scenarios studied in Section

6.4.1 using n = 5 and n = 10 for scenarios 1 and 2, respectively.

We evaluate 4 different conditions:

• A1: Passive analysis without attack (Amax = Wmax = 0 ms)

• A2: Passive analysis with attack (Amax = 150 ms and Wmax = 0 ms).

• A3: Passive analysis with attack (Amax = 250 ms and Wmax = 0 ms).

• A4: Fingerprint with attack (Amax = 250 ms and Wmax = 100 ms).

Chapter 7. Flow-Correlation with an adversary 140

Note that Amax −Wmax is identical in A2 and A4. Also we do not plot u in A2 and

A3 as it is identical to u∗ due to the lack of fingerprint.

Results are depicted in Figures 7.2 and 7.3 from which we can draw several

conclusions. First, if we focus on the case where both fingerprint and attack exist, i.e.,

A4 conditions, we see a different behavior for u∗ between both scenarios; in Scenario

1, the ROC for u∗ is nearer to u than to u, while in Scenario 2 the performance for

u∗ is very similar to u. The reason for this different behavior is that in Scenario 1 the

variation of the IPDs comes basically from the attack delay and not from the network

variability, then the detector knowing the attack becomes the predominant factor,

while in Scenario 2 the PDV is comparable to adversary’s delays so the knowledge

of the attack is not so important for the detector.

Second, comparing A2 and A4 we see that in Scenario 1 the A4 situation is

beneficial for the TA if the detector knows the attack, i.e., u∗ and u, but is beneficial

for the adversary if the attack is chosen knowing the detector actions, i.e., u. In

Scenario 2, the results of A2 and A4 are very similar unless the fingerprint is selected

knowing the attack function, i.e., u.

7.4.2 Truncated-Gaussian Attack

The previous model gives the chance to the other player to compensate it in the next

action. For this reason, players may be interested in randomizing their actions, i.e.,

given the same input, the output can vary.

We study the case when the distribution of delays follows a truncated Gaussian in

the allowed interval. Hence, ai ∼ N(µa,i, σ
2
a|0 ≤ ai ≤ Amax) and wi ∼ N(µw,i, σ

2
w|0 ≤

ai ≤ Wmax). Note that this model includes as extreme cases the deterministic attack

seen previously (i.e., σ2 → 0), and a uniform attack (i.e., σ2 → ∞). The detector

comes from (7.10) where the attack delays are a truncated Gaussian with guessed

Chapter 7. Flow-Correlation with an adversary 141

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
F

P
D

u∗

A1
= 0.998464

u∗

A2
= 0.997745

uA2
= 0.986115

u∗

A3
= 0.997553

uA3
= 0.974583

u∗

A4
= 0.997853

uA4
= 0.973592

uA4
= 0.998473

Figure 7.2: Solution of the constant games for Scenario 1 (n = 5).

parameters µ̂na and σ̂2
a.

Formally, the actions available to each player are:

ATA = {µnw × σ2
w × µ̂na × σ̂2

a} (7.17)

AAD = {µna × σ2
a} (7.18)

Since the simultaneous optimization with respect to all the variables is compu-

tationally unfeasible, we compute first the solution for the mean sequence assuming

zero variance, i.e. the solution of the constant game shown in equations (7.14), (7.15)

and (7.16) for u∗, u and u, respecitvely. Afterwards, we calculate the variance at the

SPE without modifying the mean sequence. We solve the two scenarios presented

previously for each of the proposed games. Tables 7.1, 7.2, 7.3, 7.4, 7.5, and 7.6 show

the uA depending on the parameters and we represent the solution of the game in

Chapter 7. Flow-Correlation with an adversary 142

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F

P
D

uA1
= 0.999431

u∗

A2
= 0.963900

uA2
= 0.962704

u∗

A3
= 0.936133

uA3
= 0.918088

u∗

A4
= 0.961786

uA4
= 0.956229

uA4
= 0.999596

Figure 7.3: Solution of the constant games for Scenario 2 (n = 10).

boldface.

The fingerprint variance, σ2
f , is very small in most of the cases and when it is

a bit larger the utility of choosing the smallest variance is reduced only by a small

quantity. This means that a deterministic fingerprint is optimal or quasi-optimal.

In the case that the fingerprint is chosen without knowing the attack distribution

parameters, i.e., u∗ and u conditions, the adversary should choose a variance in the

interval [10−3, 10−2] ·Amax. This small variance makes the attack virtually determin-

istic (i.e., σ → 0), implying that making the output sequence more typical prevails

over increasing the uncertainty of an for the detector. When the TA fingerprinter

knows the behavior of the adversary, i.e., u, then the latter is forced to increase his

variance to 10−1 to prevent the TA from choosing the fingerprint that is less affected

Chapter 7. Flow-Correlation with an adversary 143

Table 7.1: u∗A(σf , σa) for Scenario 1 (n = 5, Amax = 250ms and Wmax = 100ms).

σa/Amax

σf/Wmax 10−4 10−3 10−2 10−1 1

10−4 0.9978 0.9987 0.9963 0.9960 0.9968
10−3 0.9900 0.9891 0.9878 0.9873 0.9727
10−2 0.9418 0.9447 0.9428 0.9415 0.9319
10−1 0.9710 0.9733 0.9686 0.9721 0.9774

1 0.9977 0.9982 0.9972 0.9967 0.9981
10 0.9979 0.9985 0.9965 0.9977 0.9982

Table 7.2: u∗A(σf , σa) for Scenario 2 (n = 10, Amax = 250ms and Wmax = 100ms).

σa/Amax

σf/Wmax 10−4 10−3 10−2 10−1 1

10−4 0.9333 0.9396 0.9360 0.9252 0.9043
10−3 0.9131 0.9223 0.9181 0.9051 0.8843
10−2 0.9086 0.9129 0.9094 0.9001 0.8809
10−1 0.9487 0.9496 0.9454 0.9458 0.9465

1 0.9988 0.9991 0.9991 0.9988 0.9988
10 0.9990 0.9991 0.9990 0.9991 0.9989

by the attack.

We also see that when the detector does not know the parameter of the adversary,

i.e. u, the detector has to overestimate the variance chosen by the adversary, for

instance choosing σ̂a = 10−1 instead of 10−2, so that the adversary is not able to

impair the correlation by selecting a high variance attack.

Table 7.3: uA(σa, σ̂a) for Scenario 1 (n = 5, Amax = 250ms and Wmax = 100 ms).

σ̂/Amax

σ/Amax 10−4 10−3 10−2 10−1 1 10

10−4 0.9708 0.9389 0.8955 0.8936 0.8475 0.8448
10−3 0.9751 0.9481 0.9010 0.8958 0.8514 0.8532
10−2 0.9754 0.9581 0.9043 0.9047 0.8836 0.8816
10−1 0.9581 0.9532 0.9369 0.9641 0.9813 0.9773

1 0.9357 0.9414 0.9579 0.9949 0.9991 0.9987
10 0.9345 0.9429 0.9618 0.9954 0.9989 0.9987

Chapter 7. Flow-Correlation with an adversary 144

Table 7.4: uA(σa, σ̂a) for Scenario 2 (n = 10, Amax = 250ms and Wmax = 100ms).

σ̂a/Amax

σa/Amax 10−4 10−3 10−2 10−1 1 10

10−4 0.9236 0.9087 0.9061 0.9122 0.9435 0.9494
10−3 0.9231 0.9096 0.9085 0.9109 0.9421 0.9450
10−2 0.9215 0.9100 0.9076 0.9139 0.9473 0.9484
10−1 0.9138 0.9082 0.9118 0.9485 0.9856 0.9895

1 0.9032 0.9043 0.9277 0.9893 0.9989 0.9988
10 0.9027 0.9039 0.9259 0.9882 0.9988 0.9986

Table 7.5: uA(σf , σa) for Scenario 1 (n = 5, Amax = 250ms and Wmax = 100ms).

σa/Amax

σf/Wmax 10−4 10−3 10−2 10−1 1

10−4 0.9982 0.9990 0.9969 0.9968 0.9987
10−3 0.9983 0.9991 0.9970 0.9967 0.9988
10−2 0.9982 0.9989 0.9968 0.9965 0.9977
10−1 0.9960 0.9975 0.9950 0.9946 0.9931

1 0.9982 0.9985 0.9964 0.9968 0.9983
10 0.9980 0.9982 0.9962 0.9967 0.9983

Table 7.6: uA(σf , σa) for Scenario 2 (n = 10, Amax = 250ms and Wmax = 100ms).

σa/Amax

σf/Wmax 10−4 10−3 10−2 10−1 1

10−4 0.9989 0.9991 0.9994 0.9985 0.9990
10−3 0.9989 0.9991 0.9993 0.9983 0.9984
10−2 0.9984 0.9984 0.9986 0.9971 0.9963
10−1 0.9934 0.9949 0.9943 0.9922 0.9915

1 0.9989 0.9991 0.9991 0.9984 0.9989
10 0.9991 0.9993 0.9991 0.9988 0.9990

7.4.3 Other distribution attacks

In this section, we evaluate whether the game results change significantly when other

different distributions are used. Concretely, we evaluate the truncated Laplace and

the truncated Cauchy distributions. We solve the game in the same way as presented

in the previous section. We depict the ROC at the SPE for the proposed distribution

in Figures 7.4 and 7.5, and the scale parameter at the SPE in Tables 7.7 and 7.8.

Chapter 7. Flow-Correlation with an adversary 145

10
−4

10
−3

10
−2

10
−1

10
0

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
F

P
D

Gaussian (u∗=0.945538)
Gaussian (u=0.935437)
Gaussian (u = 0.996098)
Laplacian (u∗=0.943297)
Laplacian (u=0.943783)
Laplacian (u = 0.997182)
Cauchy (u∗=0.947499)
Cauchy (u=0.945135)
Cauchy (u = 0.997520)

Figure 7.4: Solution of the truncated Gaussian (blue), truncated Laplace (red) and
truncated Cauchy (green) games for Scenario 1 (n = 5, Amax = 250ms and Wmax =
100ms).

We see that the difference among the distributions is not significant, but in any case

the Gaussian distribution is the one that impairs slightly more the correlation based

on the AUC.

7.4.4 Distribution mismatch between the adversary and the

decoder

In this section, we evaluate the consequences of an adversary who not only chooses

the distribution parameters but also the distribution itself. Obviously, only differs

from the previous one under u, in which the adversary uses an attack distribution

different than that the assumed at the detector.

Chapter 7. Flow-Correlation with an adversary 146

10
−4

10
−3

10
−2

10
−1

10
0

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
F

P
D

Gaussian (u∗=0.905457)
Gaussian (u=0.903046)
Gaussian (u = 0.994911)
Laplacian (u∗=0.909824)
Laplacian (u=0.905793)
Laplacian (u = 0.996465)
Cauchy (u∗=0.918934)
Cauchy (u=0.901838)
Cauchy (u = 0.998029)

Figure 7.5: Solution of the truncated Gaussian (blue), truncated Laplace (red) and
truncated Cauchy (green) games for Scenario 2 (n = 20, Amax = 250ms and Wmax =
100ms).

Table 7.7: Scale parameter at the SPE for different distribution attacks for Scenario
1 (n = 5, Amax = 250ms and Wmax = 100ms).

u∗A uA uA

Truncated Gaussian
σF = 10−3 σF = 10−3 σF = 10−3

σA = 10−2 σA = 10−2 σA = 10−1

σ̂A = 10−2 σ̂A = 10−1 σ̂A = 10−1

Truncated Laplace
σF = 10−3 σF = 10−3 σF = 10−4

σA = 10−2 σA = 10−2 σA = 10−1

σ̂A = 10−2 σ̂A = 10−1 σ̂A = 10−1

Truncated Cauchy
σF = 10−3 σF = 10−3 σF = 10−3

σA = 10−2 σA = 10−3 σA = 10−1

σ̂A = 10−2 σ̂A = 10−1 σ̂A = 10−1

We assume that the detector is designed using a Gaussian-distributed attack as

it is the distribution that impairs slightly more the detector, and we evaluate the

Chapter 7. Flow-Correlation with an adversary 147

Table 7.8: Scale parameter at the SPE for different distribution attacks for Scenario
2 (n = 10, Amax = 250ms and Wmax = 100ms).

u∗A uA uA

Truncated Gaussian
σF = 10−3 σF = 10−3 σF = 10−3

σA = 10−2 σA = 10−3 σA = 10−1

σ̂A = 10−2 σ̂A = 10−1 σ̂A = 10−1

Truncated Laplace
σF = 10−2 σF = 10−3 σF = 10−4

σA = 10−2 σA = 10−3 σA = 10−1

σ̂A = 10−2 σ̂A = 10−1 σ̂A = 10−1

Truncated Cauchy
σF = 10−4 σF = 10−3 σF = 10−3

σA = 10−3 σA = 10−3 σA = 10−2

σ̂A = 10−3 σ̂A = 10−1 σ̂A = 10−2

performance of the other two attack distributions used in the previous section. We

simulate the same scenarios as in previous sections, and we depict the results in

Figures 7.6 and 7.7 for Scenario 1 and 2 respectively. We can see that even the TA

is known to decode assuming a truncated Gaussian the adversary does not increase

significantly the impairment to the correlation by choosing a different distribution

attack, allowing us to conclude that the location and scale parameters, i.e., mean

and variance, are the predominant factors in the detector rather than the assumed

attack distribution.

7.5 Chaff traffic adversary

In this section we derive the detector when the adversary not only can delay packets

as we have assumed so far but he can also add certain amount of chaff traffic, making

n2 ≥ n. Formally, the adversary actions can be defined as:

AAD ={f(zn2|rn) : ∃cnA | 0 ≤ ai ≤ Amax ∧
nA
n
≤ PA ∧ 0 ≤ cj ≤ rn + Amax

∧ zn2 = sort((rn + an)||cnA), i ∈ [1, n] and j ∈ [1, nA]}, (7.19)

where cnA is the sequence of chaff packets, PA is the maximum ratio between chaff and

real traffic, || represents the concatenation of sequences, and sort(xn) is a function

Chapter 7. Flow-Correlation with an adversary 148

10
−4

10
−3

10
−2

10
−1

10
0

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
F

P
D

Gaussian At., Gaussian Det. (u=0.935437)
Laplacian At., Laplacian Det. (u=0.943783)
Laplacian At., Gaussian Det. (u=0.932904)
Cauchy At., Cauchy Det. (u=0.945135)
Cauchy At., Gaussian Det. (u=0.941285)

Figure 7.6: ROC curves using Gaussian detector for Scenario 1 (n = 5, Amax = 250ms
and Wmax = 100ms).

that returns a sorted version of the input sequence.

A Neyman-Pearson detector when n2 6= n has to be based on the joint distribution

as shown in (7.7) and this test becomes intractactable. For this reason, we implement

the detector in two steps: first, a matching process takes place that outputs two

sequences of the same size, and then we use the same likelihood test constructed in

the previous section.

7.5.1 Matching Process

When dummy packets are added, i.e., PA > 0, there does not exist a one-to-one

relation between the flows xn and yn2 . To deal with this problem, we match each

Chapter 7. Flow-Correlation with an adversary 149

10
−4

10
−3

10
−2

10
−1

10
0

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
F

P
D

Gaussian At., Gaussian Det. (u=0.899887)
Laplacian At., Laplacian Det. (u=0.899076)
Laplacian At., Gaussian Det. (u=0.898171)
Cauchy At., Cauchy Det. (u=0.903040)
Cauchy At., Gaussian Det. (u=0.899834)

Figure 7.7: ROC curves using Gaussian detector for Scenario 2 (n = 10, Amax =
250ms and Wmax = 100ms).

packet of xn with the most likely from yn2 , later removing those packets of yn2 that

have no correspondence in xn.

We represent the fact that the ith packet from xn is paired with the jth packet

from yn2 by m(i) = j. LetM be the set of all injective functions fromN = {1, . . . , n}

to N2 = {1, . . . , n2}, i.e., ∀i1, i2 ∈ N , m(i1) = m(i2) =⇒ i1 = i2. Then the

matching function m(xn, yn2) is the function fromM that minimizes the mean square

error between xn and a shifted version of yn2 as follows:

m = arg min
M

n∑
i=1

(yp(i) − xi − ρ− E(ai))
2, (7.20)

where E(ai) is the expected value for the delay added by the adversary to the ith

packet, and ρ is a synchronization constant equal to the sample mean of the delays,

Chapter 7. Flow-Correlation with an adversary 150

i.e. ρ = 1
n

∑n
i=1 di. In a real implementation, where the sample mean is unknown,

ρ can be obtained through an exhaustive search (self-synchronization property) as

shown in Chapter 6.

7.5.2 Chaff traffic of the adversary

We assume that the matching process selects those packets that give a higher value for

the detector, i.e., Λ1(m(xn, yn2), xn, fAn|∆Xn) > Λ1(m′(xn, yn2), xn, fAn|∆Xn), ∀m′ ∈

M. Under this assumption, the adversary has to choose cnA so that these dummy

packets are removed in the matching process. On the other hand, the adversary

needs these packets to force the TA to consider longer possible sequences for yn+nA ,

as longer sequences of Y n2 will increase ε for a given PF .

7.5.3 Results

In this section, we obtain the solution of the proposed games when the adversary can

also add chaff traffic, so we extend the simulator to handle it. We use the truncated

Gaussian version of the game, as in the previous section we showed that among the

attack distributions there is not a significant difference on the performance.

We show the utility, uA, at the SPE for the proposed distribution in Tables 7.9

and 7.10, and the scale parameter at the SPE in Tables 7.11 and 7.12. As expected,

the utility decreases with the amount of chaff, but the amount of traffic that would

drop the correlation is very large, for instance in Scenario 2 u∗A only drops from 0.9810

to 0.9649 using 1000% of chaff traffic. We also notice that under larger amount of

chaff traffic the variance of the attack for u increases towards a uniform attack.

Chapter 7. Flow-Correlation with an adversary 151

Table 7.9: Comparison of the utility at the SPE for different amount of chaff traffic
for Scenario 1 (n = 5, Amax = 250ms and Wmax = 100ms).

u∗A uA uA
No Chaff 0.9732 0.9669 0.9990
PA = 1 0.9650 0.9555 0.9977
PA = 10 0.9328 0.9224 0.9880

Table 7.10: Comparison of the utility at the SPE for different amount of chaff traffic
for Scenario 2 (n = 10, Amax = 250ms and Wmax = 100ms).

u∗A uA uA
No Chaff 0.9810 0.9780 0.9988
PA = 1 0.9764 0.9739 0.9963
PA = 10 0.9649 0.9655 0.9926

Table 7.11: Scale parameter at the SPE for different amount of chaff traffic for
Scenario 1 (n = 10, Amax = 250ms and Wmax = 100ms).

u∗A uA uA

No chaff
σF = 10−4 σF = 10−3 σF = 10−3

σA = 10−2 σA = 10−2 σA = 10−1

σ̂A = 10−2 σ̂A = 10−1 σ̂A = 10−1

PA = 1
σF = 10−3 σF = 10−4 σF = 10−2

σA = 10−2 σA = 10−2 σA = 10−1

σ̂A = 10−1 σ̂A = 10−1 σ̂A = 10−1

PA = 10
σF = 10−4 σF = 10−3 σF = 10−3

σA = 10−2 σA = 10−2 σA = 10
σ̂A = 10−2 σ̂A = 10−1 σ̂A = 10

7.6 Flow Fingerprinting Game: correlated flows

We propose a second game, that is shown in Figure 7.8. In this game, the task of

the TA is to add a fingerprint to the flow in such a way that he can differentiate

between this flow and an identical flow that has not been fingerprinted. The goal of

the adversary is to modify the fingerprinted flow in such a way that the TA decides

that there is no fingerprint.

In this game, we also consider that the flows enter at a particular time in the

system, so we denote by δl to the sequence that represents the time difference between

Chapter 7. Flow-Correlation with an adversary 152

Table 7.12: Scale parameter at the SPE for different amount of chaff traffic for
Scenario 2 (n = 20, Amax = 250ms and Wmax = 100ms).

u∗A uA uA

No chaff
σF = 10−4 σF = 10−3 σF = 10−3

σA = 10−2 σA = 10−2 σA = 10−1

σ̂A = 10−2 σ̂A = 10−1 σ̂A = 10−1

PA = 1
σF = 10−4 σF = 10−3 σF = 10−3

σA = 10−2 σA = 10−2 σA = 10−1

σ̂A = 10−2 σ̂A = 10−1 σ̂A = 10−1

PA = 10
σF = 10−2 σF = 10−3 σF = 10−4

σA = 10−2 σA = 10−1 σA = 1
σ̂A = 10−2 σ̂A = 10−1 σ̂A = 1

AD

TA
Detector

TA
Fingerprinter

Figure 7.8: Model of the Flow Fingerprinting Game: correlated flows

the moment that the fingerprinted flow and an identical flow enter the system. The

rest of the conditions are identical to the previous game. Recall that Dn = Dn
1 +Dn

2

is the delay suffered by the flow and its distribution is identical for all the flows.

A real scenario for this game may correspond to a web page trying to fingerprint a

specific access so it can distinguish from other user’s accesses to the same web page.

We also assume that the adversary can only delay packets, with the same con-

straint as in the previous game, i.e., ∀i ai < Amax. In this game, chaff traffic is

not considered as it does not give any advantage to the adversary because the non-

fingerprinted flow is known to have n packets, so any modification to the number of

packets would identify it.

Chapter 7. Flow-Correlation with an adversary 153

We assume that the first order statistics of D and ∆D are known by both players

and define the hypotheses:

H0 : yn is a non-fingerprinted version of un

H1 : yn is a fingerprinted version of un.

We define the flow fingerprinting game for correlated flows as follows:

Definition 2. The FFGC(ATA;AAD;u) is a zero-sum game played by the TA and

the adversary, where

• The set of actions the TA can choose from, ATA, is the duple of possible

fingerprint distributions fWn and acceptance regions Λ1:

ATA = {fWn × Λ1 : 0 ≤ wi ≤ Wmax, i ∈ [1, n]} (7.21)

• The adversary actions are the possible attack distributions with range in [0,

Amax]:

AAD = {fAn : 0 ≤ ai ≤ Amax, i ∈ [1, n]} (7.22)

• We use two different utility functions, that are the same as previously.

7.6.1 Detector

In the detector for the uncorrelated game, we have assumed that both the TA and

the attacker have only knowledge of the first order statistics of the PDV, ∆D. In this

game, we assume that both players know the first order statistics of both the PDV

and the delay, D. Hence, the optimal detector under this condition can be derived

as

Λ1(yn, xn, un, f̂An|Xn) =

∫ Amax
0

fD(y1 − x1 − a)f̂A1(a)da

maxδL fD(y1 − u1 − δ)

·
n−1∏
i=1

∫
R f∆D(∆yi − xi + z))f̂ai+1−ai|Xn(z|xn)dz

f∆D(∆yi − ui)
(7.23)

Chapter 7. Flow-Correlation with an adversary 154

where f̂ai+1−ai|Xn(x) =
∫ Amax

0
f̂Ai+1

(x+ y)f̂Ai(y)dy.

We assume that both the TA and the attacker do not know the sequence δL, i.e.,

they do not know when non-fingerprinted flows traverse the network. As the TA has

to maximize over the range of possible δ, the term maxδ fD(y1 − u1 − δ) becomes a

constant equal to maxd fD(d) that we can include in the threshold. Hence, the test

becomes:

Λ1(yn, xn, un, f̂An|Xn) =

∫ Amax

0

fD(y1 − x1 − a)f̂A1(a)da

·
n−1∏
i=1

∫
R f∆D(yi+1 − y1 − xi+1 − xi − z)f̂ai+1−ai|Xn(z|xn)dz

f∆D(∆yi − ui)

(7.24)

7.6.2 Deterministic attack

As in the previous game, we start studying the case when the attack and the fin-

gerprint are deterministic. This means that they do not randomize with the aim of

confusing the other player. Under these conditions fAn|Rn(x) =
∏n

i=1 δ(x − ai) and

fÂn|Xn(x) =
∏n

i=1 δ(x− âi). The test becomes:

Λ1(yn, xn, un, ân) =fD(y1 − x1 − â1)
n−1∏
i=1

f∆D(∆i(y
n − xn − ân))

f∆D(∆(yn − un))
. (7.25)

The solutions of this game are:

u∗ = max
wn

min
an

Pr

(
fD(d1) ·

n−1∏
i=1

f∆D(∆id
n)

f∆D(∆i(wn + an + dn))
> ε

)
(7.26)

u = max
wn,ân

min
an

Pr

(
fD(d1 + a1 − â1) ·

n−1∏
i=1

f∆D(∆i(d
n + an − ân))

f∆D(∆i(wn + an + dn))
> ε

)
(7.27)

u = min
an

max
wn

Pr

(
fD(d1) ·

n−1∏
i=1

f∆D(∆id
n)

f∆D(∆i(wn + an + dn))
> ε

)
(7.28)

These solutions are obtained from equations (7.1),(7.2) and (7.3) using the test

(7.25).

Chapter 7. Flow-Correlation with an adversary 155

Note that an seems to be chosen to minimize ∆(an + wn), hence destroying the

watermark information in the IPD. This can be completely achieved when Amax ≥

Wmax, making the timing of the first packet the only available information for the

test.

Results

We keep the same two scenarios for simulation. As in this game results depend on

the time when identical flows enter the system, i.e., δl, we simulate those instants

using the NASA ’s and World Cup’s logs presented in Chapter 3. Recall from Table

3.3 that the NASA web server received an average of 0.66 requests per second and

the World Cup web server 14.97 requests per second.

We simulate the following situations:

1. No watermark

2. Watermark without attack

3. Watermark with attack Amax < Wmax

4. Watermark with attack Amax = Wmax

5. No attack, but watermark amplitude as Wmax − Amax of the third case.

In this game, we do not consider u since the attack cannot be chosen before the

fingerprint value.

Results are depicted in Figures 7.10 and 7.9 for Scenario 1 (Amazon cloud) and

in Figures 7.12 and 7.11 for Scenario 2 (Tor network). Recall that Scenario 2 has a

much larger delay variance and also its PDV is much more dispersed.

First, we notice that even when no fingerprint is added the fact that δ takes

specific values allows the TA to guess with some confidence when E[∆δ] is smaller

Chapter 7. Flow-Correlation with an adversary 156

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F

P
D

uA1
= 0.912636

uA2
= 0.995691

u∗

A3
= 0.971421

uA3
= 0.971421

u∗

A4
= 0.916633

uA4
= 0.910686

uA5
= 0.970577

Figure 7.9: Solution of the constant games for Scenario 1 with World Cup log and
n = 5, with game parameters: A1 : (Amax = 0, Fmax = 0), A2 : (Amax = 0, Fmax =
1ms), A3 : (Amax = 0.75ms, Fmax = 1ms), A4 : (Amax = 1ms, Fmax = 1ms) and
A5 : (Amax = 0ms, Fmax = 0.25ms).

than the standard deviation of the network delay. Second, when Amax ≥ Wmax the

attacker will destroy the watermark and the results are very similar to the non-

fingerprint situation. In Scenario 1, the presence of the attacker makes the perfor-

mance very similar to a fingerprint of amplitude Wmax − Amax but in Scenario 2

the attacker impairs the correlation performance more severely than what would be

obtained with no attack and a fingerprint amplitude of Wmax − Amax.

Chapter 7. Flow-Correlation with an adversary 157

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F

P
D

uA1
= 0.991543

uA2
= 0.999123

u∗

A3
= 0.996717

uA3
= 0.996717

u∗

A4
= 0.992179

uA4
= 0.991600

uA5
= 0.995953

Figure 7.10: Solution of the constant games for Scenario 1 with NASA’s log and
n = 5, with game parameters: A1 : (Amax = 0, Fmax = 0), A2 : (Amax = 0, Fmax =
1ms), A3 : (Amax = 0.75ms, Fmax = 1ms), A4 : (Amax = 1ms, Fmax = 1ms) and
A5 : (Amax = 0ms, Fmax = 0.25ms).

7.6.3 Truncated-Gaussian Attack

As in the previous game, we study the case when the attack is randomized using a

truncated Gaussian distribution. Afterwards, in the next section, we compare the

results with the other distribution attacks used previously, namely the truncated

Laplacian and the truncated Cauchy distributions. Finally, we study the case of the

attacker chooses a different model than that assumed by the test.

As mentioned, the adversary add delays following a truncated Gaussian in the

allowed interval so as the TA cannot guess its value and compensates it in the

test. Therefore, ai ∼ N(µa,i, σ
2
a|0 ≤ ai ≤ Amax). Recall that this game includes

Chapter 7. Flow-Correlation with an adversary 158

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F

P
D

uA1
= 0.500000

uA2
= 0.997190

u∗

A3
= 0.921259

uA3
= 0.914644

u∗

A4
= 0.525486

uA4
= 0.500000

uA5
= 0.966079

Figure 7.11: Solution of the constant games for Scenario 2 with World Cup’s log and
n = 10, with game parameters: A1 : (Amax = 0, Fmax = 0), A2 : (Amax = 0, Fmax =
100ms), A3 : (Amax = 75ms, Fmax = 100ms), A4 : (Amax = 100ms, Fmax = 100ms)
and A5 : (Amax = 0ms, Fmax = 25ms).

as extremes cases the deterministic attack seen previously (i.e., σ2 → 0), and a

uniform attack (i.e., σ2 →∞). In this game, i.e., correlated flows, the TA does not

achieve any advantage by randomizing the fingerprint as the attacker knows un, so

the fingerprint is still created in a deterministic way.

Formally, the actions available to each player are:

ATA = {wn × µ̂n × σ̂2} (7.29)

AAD = {µn × σ2} (7.30)

Chapter 7. Flow-Correlation with an adversary 159

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F

P
D

uA1
= 0.883418

uA2
= 0.998718

u∗

A3
= 0.974567

uA3
= 0.972702

u∗

A4
= 0.908612

uA4
= 0.891541

uA5
= 0.988335

Figure 7.12: Solution of the constant games for Scenario 2 with NASA’s log and
n = 10, with game parameters: A1 : (Amax = 0, Fmax = 0), A2 : (Amax = 0, Fmax =
100ms), A3 : (Amax = 75ms, Fmax = 100ms), A4 : (Amax = 100ms, Fmax = 100ms)
and A5 : (Amax = 0ms, Fmax = 25ms).

and the detector is:

Λ1(yn, xn, un, ân, σ̂2) =

∫ Amax

0

fD(y1 − x1 − a)fTG(a|â1, σ̂
2)da

·
n−1∏
i=1

∫
R f∆D(yi+1 − y1 − xi+1 − xi − z)f̂DTG(z|âi+1, âi, σ̂

2)dz

f∆D(∆yi − ui)
(7.31)

with

fTG(x|a, σ2) =
φ
(
x−a
σ

)
σ
(
Φ
(
Amax−a

σ

)
− Φ

(−a
σ

)) (7.32)

and

fDTG(x|a2, a1, σ
2) ==

∫ Amax

0

fTG(y|a2, σ
2)f̂TG(y − z|a1, σ

2)dy (7.33)

Chapter 7. Flow-Correlation with an adversary 160

Table 7.13: u∗A(σa) for Scenario 1 with WC’s log (n = 5, Amax = 0.75ms and
Wmax = 1ms).

σA/Amax 10−4 10−3 10−2 10−1 1 10
0.9833 0.9834 0.9843 0.9909 0.9977 0.9979

Table 7.14: uA(σa, σ̂a) for Scenario 1 (n = 5, Amax = 0.75ms and Wmax = 1 ms).

σ̂/Amax

σ/Amax 10−4 10−3 10−2 10−1 1 10

10−4 0.9833 0.9833 0.9841 0.9881 0.9842 0.9834
10−3 0.9833 0.9834 0.9841 0.9883 0.9843 0.9831
10−2 0.9835 0.9836 0.9843 0.9886 0.9853 0.9842
10−1 0.9841 0.9842 0.9853 0.9908 0.9915 0.9908

1 0.9708 0.9710 0.9731 0.9861 0.9978 0.9979
10 0.9696 0.9697 0.9714 0.9852 0.9978 0.9980

being φ and Φ respectively the pdf and the cdf of a standard normal distribution.

We simulate this game using the A4 conditions of the previous section, i.e. 0 <

Amax < Wmax, with World Cup’s log (WC) for Scenario 1 and NASA’s log for

Scenario 2. Results of u∗ and u are provided in Tables 7.13 and 7.14 for Scenario

1 and in Tables 7.15 and 7.16 for Scenario 2. We can see that the attacker chooses

σ ∈ [10−4, 10−3]·Amax, this small variance makes the attack virtually deterministic as

in the previous game. When the detector parameters are chosen without knowing the

attack ones, i.e. u, in a low variance delay, (Scenario 1), the TA has to overestimate

the attack variance, 10−1 ·Amax instead of [10−4, 10−3] ·Amax, so the adversary does

not have the chance to choose a higher variance attack to degrade the detector

performance. This does not happen in Scenario 2, as even though the detector is

known to consider a low variance attack the adversary’s best option is to use a small

variance, due to the high variance distributions of D and ∆D.

Table 7.15: u∗A(σa) for Scenario 2 with NASA’s log (n = 10, Amax = 75ms and
Wmax = 100ms).

σA/Amax 10−4 10−3 10−2 10−1 1 10
0.9930 0.9920 0.9932 0.9945 0.9977 0.9981

Chapter 7. Flow-Correlation with an adversary 161

Table 7.16: uA(σa, σ̂a) for Scenario 2 with NASA’s log(n = 10, Amax = 75ms and
Wmax = 100 ms).

σ̂/Amax

σ/Amax 10−4 10−3 10−2 10−1 1 10

10−4 0.9920 0.9921 0.9925 0.9942 0.9939 0.9939
10−3 0.9908 0.9908 0.9913 0.9938 0.9942 0.9941
10−2 0.9919 0.9920 0.9924 0.9943 0.9946 0.9944
10−1 0.9894 0.9895 0.9902 0.9943 0.9968 0.9969

1 0.9644 0.9646 0.9669 0.9838 0.9977 0.9980
10 0.9609 0.9612 0.9638 0.9821 0.9978 0.9981

7.6.4 Other distribution attacks

As in the previous game, we want to analyze if there are significant differences when

instead of choosing a truncated Gaussian the adversary chooses different distribu-

tions. We use the Laplace and Cauchy distributions truncated to [0, Amax]. Their

pdfs are shown in Table 6.3. We solve the game identically to the previous section

and we show the utility and the scale parameter at the SPE for the proposed distri-

butions in Tables 7.17 and 7.18, where we can see that the adversary impact does not

vary significantly depending on the distribution it follows. This fact can be better

seen in Figures 7.13 and 7.14 where we depict the ROC curve at the SPE. We see

that in Scenario 1 the adversary should choose a Gaussian model and in Scenario

2 even the AUC is smaller for a Laplace model, the figure shows that the Gaussian

model gives worse performance for PF < 10−2.

Table 7.17: Comparison of the utility at the SPE for different distribution attacks and
the scale parameters at the SPE in Scenario 1 with WC log (n = 5, Amax = 0.75ms
and Wmax = 1ms).

u∗A σ∗ uA σ, σ̂
Truncated Gaussian 0.9810 10−4 0.9817 10−4, 10−1

Truncated Laplace 0.9856 10−4 0.9850 10−4, 10−2

Truncated Cauchy 0.9840 10−4 0.9839 10−4, 10−2

Chapter 7. Flow-Correlation with an adversary 162

Table 7.18: Comparison of the utility at the SPE for different distribution attacks and
the scale parameters at the SPE in Scenario 2 with NASA’s log (n = 10, Amax = 75ms
and Wmax = 100ms).

u∗A σ∗ uA σ, σ̂
Truncated Gaussian 0.9928 10−3 0.9926 10−4, 10−4

Truncated Laplace 0.9915 10−3 0.9904 10−4, 10−4

Truncated Cauchy 0.9939 10−3 0.9939 10−4, 10−2

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F

P
D

Gaussian (u∗=0.983273)
Gaussian (u=0.984076)
Laplacian (u∗=0.984620)
Laplacian (u=0.985009)
Cauchy (u∗=0.983616)
Cauchy (u=0.984225)

Figure 7.13: Solution of the truncated Gaussian (blue), truncated Laplace (red) and
truncated Cauchy (green) correlated flow games for Scenario 1 with WC’s log(n = 5,
Amax = 0.75ms and Wmax = 1ms).

Chapter 7. Flow-Correlation with an adversary 163

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F

P
D

Gaussian (u∗=0.993042)
Gaussian (u=0.992033)
Laplacian (u∗=0.993125)
Laplacian (u=0.992092)
Cauchy (u∗=0.993115)
Cauchy (u=0.992276)

Figure 7.14: Solution of the truncated Gaussian (blue), truncated Laplace (red)
and truncated Cauchy (green) correlated flow games for Scenario 2 with NASA’s
log(n = 10, Amax = 75ms and Wmax = 100ms).

7.6.5 Distribution mismatch between the adversary and the

decoder

Finally, we study the consequences of the adversary choosing a different attack dis-

tribution than that the assumed by the detector. This situation only is possible in

u.

We assume a detector that assumes a truncated Gaussian attack as according to

the previous section the adversary should choose this model as it gives slightly smaller

utility. Given that the adversary knows this fact, we want to study whether the

adversary can choose a different distribution attack to impair the test in a more severe

Chapter 7. Flow-Correlation with an adversary 164

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F

P
D

Gaussian At., Gaussian Det. (u=0.984076)
Laplacian At., Laplacian Det. (u=0.985009)
Laplacian At., Gaussian Det. (u=0.984903)
Cauchy At., Cauchy Det. (u=0.984225)
Cauchy At., Gaussian Det. (u=0.984044)

Figure 7.15: ROC curves for Gaussian detector (σ̂ = 10−1) for Scenario 1 with WC’s
log(n = 5, Amax = 0.75ms and Wmax = 1ms).

way. We assume that the adversary can choose among the following distributions:

truncated Gaussian, truncated Laplacian and truncated Cauchy.

We simulate the same scenarios with the same parameters as in the previous

section, and we depict the results in Figures 7.15 and 7.16 for Scenarios 1 and 2,

respectively. We can see that even the TA is known to make a truncated Gaussian

assumption the adversary does not improve its utility significantly by selecting a

different distribution attack.

Chapter 7. Flow-Correlation with an adversary 165

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F

P
D

Gaussian At., Gaussian Det. (u=0.992033)
Laplacian At., Laplacian Det. (u=0.992068)
Laplacian At., Gaussian Det. (u=0.991982)
Cauchy At., Cauchy Det. (u=0.992276)
Cauchy At., Gaussian Det. (u=0.992141)

Figure 7.16: ROC curves for Gaussian detector (σ̂ = 10−4) for Scenario 2 with
NASA’s log(n = 10, Amax = 75ms and Wmax = 100ms).

7.7 Conclusion

In this chapter, we have analyzed two different flow fingerprinting games. In the first

one, the TA’s goal is to differentiate between a known flow or different flows where

the fingerprint is added to improve the performance. In the second game, the goal of

the TA is to differentiate between a fingerprinted flow and identical flows that have

not been fingerprinted. In both games, we assume a rational adversary who tries to

impair the correlation as much as possible. Results show that for both games, the

TA and the attacker should act in a virtually deterministic way in most of the cases.

166

Chapter 8

Conclusions and Future Work

This section briefly summarizes the conclusions that may be extracted from the

research work undertaken in the present thesis.

We started by proposing a method to leave a fingerprint in a log that stores the

timing of certain events that the fingerprinter can create. The trace is hidden in

the timing information in order to make it hard to be detected by the log owner or

any other party that does not have the creation timing. We applied this technique

to fingerprint Tor’s hidden web servers. We also showed that an optimal decoder,

i.e., a likelihood test, may not be the best solution for all the scenarios, as in some

circumstances a suboptimal decoder can achieve similar results, being much easier

to compute and calculate the theoretical performance.

We have proposed two methods for the forensic problem of tracing flows that are

involved in low-latency anonymous networks. These methods are designed to handle

a large amount of dummy or other users’ traffic without being able to differentiate

them. We use both flow correlation methods to locate Tor’s hidden services, but the

ideas behind these methods can be used in many other contexts such as deciding

whether a flow goes through a certain proxy, tracing VPN flows, etc.

Chapter 8. Conclusions and Future Work 167

Afterwards, we addressed the classical flow-correlation problem, showing that a

passive analysis technique can outperform the state-of-the-art watermarking tech-

niques, in the case of non-highly-correlated flows. This is achieved by using an

optimal decoder that includes statistical modelling. This method is designed to be

robust against an adversary that adds chaff traffic, splits the flows or adds random

delays. We also showed the performance of the non-blind watermark extension of

this algorithm.

Finally, we studied the limits of flow watermarking/fingerprinting under an ad-

versary that tries to destroy it. We showed that in most of the possible scenarios the

TA and the attacker should act in a virtually deterministic way making the flow the

most or least unique as possible, respectively, instead of confusing the other player.

We also showed that we need a huge amount of dummy packets in order to impair

the correlation significantly.

8.1 Future Research Lines

Traffic analysis in IP networks has many open hot topics that will be progressively

tackled in the near future. The ones most directly related to the research covered in

this thesis are briey highlighted in the following points:

1. A perfect invisible watermark against an attacker that knows only the first-

order distribution of the PDVs, i.e., ∆D, is feasible. Creating this watermark

and studying the improvement of performance against a passive analysis is a

problem to address. This watermark has to be the optimal watermark among

those which keep DKL(∆D||∆D + ∆W) = 0.

2. Creating a flow fingerprint is indeed the same problem as creating a covert

channel where the information is sent on the timing of packets. Analyzing the

Chapter 8. Conclusions and Future Work 168

trade-off of invisibility against the rate of information that can be reliably sent

is an important open problem that has not been addressed yet.

169

References

[1] W. Friedman and L. Callimahos, Military Cryptanalytics, ser. Cryptographic
series. Aegean Park Press, 1985, no. v. 1.

[2] D. A. Borrmann, W. T. Kvetkas, C. V. Brown, M. J. Flatley, and R. Hunt,
“The history of traffic analysis: World War I - Vietnam,” 2013.

[3] W. Friedman, L. Callimahos, and W. Barker, Military cryptanalytics, ser.
Cryptographic series. Aegean Park Press, 1985, no. pt. 1, v. 2; pt. 2, v.
1.

[4] Imperial War Museum Collections Photograph.

[5] E. Layton, R. Pineau, and J. Costello, And I Was There: Pearl Harbor and
Midway–Breaking the Secrets. Morrow, 1985.

[6] P. Beesly, J. Rohwer, and K. Knowles, “Ultra and the Battle of the Atlantic,”
Cryptologic Spectrum, vol. 8, no. 1, 1978, declasiffied: July 2010.

[7] R. Lewin, THE AMERICAN MAGIC: Codes, Cyphers and the Defeat of Japan.
Farrar Straus & Giroux, 1982.

[8] D. Kahn, Hitler’s spies : German military intelligence in World War II. Cam-
bridge, Mass: Da Capo Press, 2000.

[9] R. Kusaka, Rengo Kantai (Combined Fleet), ser. The Pearl Harbor Papers:
Inside The Japanese Plans, D. M. Goldstein and K. V. Dillon, Eds. Brasseys,
1993.

[10] A. Norman, Operation Overlord, design and reality; the Allied invasion of
Western Europe. Westport, Conn: Greenwood Press, 1970.

[11] National Security Agency, “The Origination and Evolution of Radio Traffic
Analysis: The World War I Era,” Cryptologic Quarterly, vol. 6, no. 1, pp.
21–40, Spring 1987.

References 170

[12] ——, “The Origination and Evolution of Radio Traffic Analysis: The Pe-
riod between the Wars,” Cryptologic Quarterly, vol. 6, no. 3-4, pp. 21–40,
Fall/Winter 1987-1988.

[13] J. T. Richelson, A Century of Spies : Intelligence in the Twentieth Century:
Intelligence in the Twentieth Century. Oxford University Press, USA, 1995.

[14] W. Grayson, Chicksands, a Millennium of History. Shefford Press, 1994.

[15] M. Herman and R. I. of International Affairs, Intelligence Power in Peace and
War. Cambridge University Press, 1996.

[16] S. Gorman and J. Valentino-Devries, “New details show broader nsa surveil-
lance reach,” The Wall Street Journal, Aug. 20, 2013.

[17] D. X. Song, D. Wagner, and X. Tian, “Timing analysis of keystrokes and timing
attacks on ssh,” in 10th USENIX Security Symposium, vol. 2, 2001, p. 3.

[18] F. Monrose, M. K. Reiter, and S. Wetzel, “Password hardening based on
keystroke dynamics,” International Journal of Information Security, vol. 1,
no. 2, pp. 69–83, 2002.

[19] D. Asonov and R. Agrawal, “Keyboard acoustic emanations,” in Security and
Privacy, 2004. Proceedings. 2004 IEEE Symposium on. IEEE, 2004, pp. 3–11.

[20] L. Zhuang, F. Zhou, and J. D. Tygar, “Keyboard acoustic emanations revis-
ited,” in Proceedings of the 12th ACM conference on Computer and communi-
cations security. ACM, 2005, pp. 373–382.

[21] M. Vuagnoux and S. Pasini, “Compromising electromagnetic emanations of
wired and wireless keyboards.” in USENIX Security Symposium, 2009, pp. 1–
16.

[22] K. Zhang and X. Wang, “Peeping Tom in the neighborhood: keystroke eaves-
dropping on multi-user systems,” analysis, vol. 20, p. 23, 2009.

[23] P. Marquardt, A. Verma, H. Carter, and P. Traynor, “(sp) iphone: decod-
ing vibrations from nearby keyboards using mobile phone accelerometers,” in
Proceedings of the 18th ACM conference on Computer and communications
security. ACM, 2011, pp. 551–562.

[24] L. Cai and H. Chen, “Touchlogger: inferring keystrokes on touch screen from
smartphone motion,” in Proceedings of the 6th USENIX conference on Hot
topics in security. USENIX Association, 2011, pp. 9–9.

References 171

[25] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get off of
my cloud: exploring information leakage in third-party compute clouds,” in
Proceedings of the 16th ACM conference on Computer and communications
security. ACM, 2009, pp. 199–212.

[26] S. Mistry and B. Raman, “Quantifying traffic analysis of encrypted web-
browsing.” December 1998.

[27] H. Cheng and R. Avnur, “”traffic analysis of ssl encrypted web
browsing”,” http://www.cs.berkeley.edu/∼daw/teaching/cs261-f98/projects/
final-reports/ronathan-heyning.ps, 1998.

[28] A. Hintz, “Fingerprinting websites using traffic analysis,” in Privacy Enhancing
Technologies. Springer, 2003, pp. 229–233.

[29] Q. Sun, D. R. Simon, Y.-M. Wang, W. Russell, V. N. Padmanabhan, and
L. Qiu, “Statistical identification of encrypted web browsing traffic,” in Security
and Privacy, 2002. Proceedings. 2002 IEEE Symposium on. IEEE, 2002, pp.
19–30.

[30] G. Bissias, M. Liberatore, D. Jensen, and B. Levine, “Privacy vulnerabilities in
encrypted http streams,” in Privacy Enhancing Technologies. Springer, 2006,
pp. 1–11.

[31] M. Liberatore and B. N. Levine, “Inferring the source of encrypted http con-
nections,” in Proceedings of the 13th ACM conference on Computer and com-
munications security. ACM, 2006, pp. 255–263.

[32] D. Herrmann, R. Wendolsky, and H. Federrath, “Website fingerprinting: at-
tacking popular privacy enhancing technologies with the multinomial näıve-
bayes classifier,” in Proceedings of the 2009 ACM workshop on Cloud computing
security. ACM, 2009, pp. 31–42.

[33] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: the second-generation
onion router,” in Proceedings of the 13th conference on USENIX Security Sym-
posium - Volume 13, ser. SSYM’04. Berkeley, CA, USA: USENIX Association,
2004, pp. 21–21.

[34] O. Berthold, H. Federrath, and M. Kóhntopp, “Project anonymity and unob-
servability in the internet,” in Proceedings of the tenth conference on Comput-
ers, freedom and privacy: challenging the assumptions, ser. CFP ’00. New
York, NY, USA: ACM, 2000, pp. 57–65.

[35] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website fingerprinting
in onion routing based anonymization networks,” in Proceedings of the 10th

http://www.cs.berkeley.edu/~daw/teaching/cs261-f98/projects/final-reports/ronathan-heyning.ps
http://www.cs.berkeley.edu/~daw/teaching/cs261-f98/projects/final-reports/ronathan-heyning.ps

References 172

annual ACM workshop on Privacy in the electronic society. ACM, 2011, pp.
103–114.

[36] S. E. Coull, M. P. Collins, C. V. Wright, F. Monrose, M. K. Reiter et al.,
“On web browsing privacy in anonymized netflows,” in Proceedings of the 16th
USENIX Security Symposium, 2007, pp. 339–352.

[37] S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-channel leaks in web appli-
cations: A reality today, a challenge tomorrow,” in Security and Privacy (SP),
2010 IEEE Symposium on. IEEE, 2010, pp. 191–206.

[38] E. W. Felten and M. A. Schneider, “Timing attacks on web privacy,” in Pro-
ceedings of the 7th ACM conference on Computer and communications security.
ACM, 2000, pp. 25–32.

[39] C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell, “Protecting browser state
from web privacy attacks,” in Proceedings of the 15th international conference
on World Wide Web, ser. WWW ’06. New York, NY, USA: ACM, 2006, pp.
737–744.

[40] D. Jang, R. Jhala, S. Lerner, and H. Shacham, “An empirical study of privacy-
violating information flows in javascript web applications,” in Proceedings of
the 17th ACM conference on Computer and communications security, ser. CCS
’10. New York, NY, USA: ACM, 2010, pp. 270–283.

[41] T. Kohno, A. Broido, and K. Claffy, “Remote physical device fingerprinting,”
IEEE Transactions on Dependable and Secure Computing, vol. 2, no. 2, pp.
93–108, May 2005.

[42] S. J. Murdoch, “Hot or not: Revealing hidden services by their clock skew,”
in Proceedings of the 13th ACM conference on Computer and communications
security. ACM, 2006, pp. 27–36.

[43] S. Zander and S. J. Murdoch, “An improved clock-skew measurement technique
for revealing hidden services.” in USENIX Security Symposium, 2008, pp. 211–
226.

[44] S. M. Bellovin, “A technique for counting natted hosts,” in Proceedings of the
2nd ACM SIGCOMM Workshop on Internet measurment. ACM, 2002, pp.
267–272.

[45] R. Beverly, “A robust classifier for passive tcp/ip fingerprinting,” in Passive
and Active Network Measurement. Springer, 2004, pp. 158–167.

References 173

[46] J. Franklin, D. McCoy, P. Tabriz, V. Neagoe, J. V. Randwyk, and D. Sicker,
“Passive data link layer 802.11 wireless device driver fingerprinting,” in Proc.
15th USENIX Security Symposium, 2006, pp. 167–178.

[47] D. Brockmann, L. Hufnagel, and T. Geisel, “The scaling laws of human travel,”
Nature, vol. 439, no. 7075, pp. 462–465, 2006.

[48] M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi, “Understanding individual
human mobility patterns,” Nature, vol. 453, no. 7196, pp. 779–782, 2008.

[49] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility: user movement
in location-based social networks,” in Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining, ser. KDD
’11. New York, NY, USA: ACM, 2011, pp. 1082–1090.

[50] C. Song, Z. Qu, N. Blumm, and A.-L. Barabási, “Limits of predictability in
human mobility,” Science, vol. 327, no. 5968, pp. 1018–1021, 2010.

[51] Y.-A. de Montjoye, C. A. Hidalgo, M. Verleysen, and V. D. Blondel, “Unique
in the crowd: The privacy bounds of human mobility,” Scientific reports, vol. 3,
2013.

[52] M. Kim, D. Kotz, and S. Kim, “Extracting a mobility model from real user
traces.” in INFOCOM, vol. 6, 2006, pp. 1–13.

[53] A. J. Nicholson and B. D. Noble, “Breadcrumbs: forecasting mobile connec-
tivity,” in Proceedings of the 14th ACM international conference on Mobile
computing and networking. ACM, 2008, pp. 46–57.

[54] N. Eagle, A. S. Pentland, and D. Lazer, “Inferring friendship network structure
by using mobile phone data,” Proceedings of the National Academy of Sciences,
vol. 106, no. 36, pp. 15 274–15 278, 2009.

[55] L. Humphreys, “Mobile social networks and social practice: A case study of
dodgeball,” Journal of Computer-Mediated Communication, vol. 13, no. 1, pp.
341–360, 2007.

[56] A. Noulas, S. Scellato, C. Mascolo, and M. Pontil, “An empirical study of
geographic user activity patterns in foursquare.” ICWSM, vol. 11, pp. 70–573,
2011.

[57] S. Scellato, A. Noulas, R. Lambiotte, and C. Mascolo, “Socio-spatial properties
of online location-based social networks.” ICWSM, vol. 11, pp. 329–336, 2011.

References 174

[58] A. Noulas, S. Scellato, R. Lambiotte, M. Pontil, and C. Mascolo, “A tale of
many cities: universal patterns in human urban mobility,” PloS one, vol. 7,
no. 5, p. e37027, 2012.

[59] A. Sadilek, H. Kautz, and J. P. Bigham, “Finding your friends and following
them to where you are,” in Proceedings of the fifth ACM international confer-
ence on Web search and data mining, ser. WSDM ’12. New York, NY, USA:
ACM, 2012, pp. 723 – 732.

[60] D. L. Chaum, “Untraceable electronic mail, return addresses, and digital
pseudonyms,” Communications of the ACM, vol. 24, no. 2, pp. 84–90, 1981.

[61] S. Parekh, “Prospects for remailers,” First Monday, vol. 1, no. 2, 1996.

[62] L. Cottrell, “Mixmaster & remailer attacks, 1995,” http:// www.obscura.com/
∼loki/ remailer/ remailer-essay.html .

[63] G. Danezis, R. Dingledine, and N. Mathewson, “Mixminion: Design of a type
iii anonymous remailer protocol,” in Security and Privacy, 2003. Proceedings.
2003 Symposium on. IEEE, 2003, pp. 2–15.

[64] D. M. Goldschlag, M. G. Reed, and P. F. Syverson, “Hiding routing informa-
tion,” in Information Hiding. Springer, 1996, pp. 137–150.

[65] M. G. Reed, P. F. Syverson, and D. M. Goldschlag, “Anonymous connec-
tions and onion routing,” Selected Areas in Communications, IEEE Journal
on, vol. 16, no. 4, pp. 482–494, 1998.

[66] D. Goldschlag, M. Reed, and P. Syverson, “Onion routing,” Communications
of the ACM, vol. 42, no. 2, pp. 39–41, 1999.

[67] P. Syverson, G. Tsudik, M. Reed, and C. Landwehr, “Towards an analy-
sis of onion routing security,” in Designing Privacy Enhancing Technologies.
Springer, 2001, pp. 96–114.

[68] J.-F. Raymond, “Traffic analysis: Protocols, attacks, design issues, and open
problems,” in Designing Privacy Enhancing Technologies. Springer, 2001, pp.
10–29.

[69] P. Boucher, A. Shostack, and I. Goldberg, “Freedom systems 2.0 architecture.
white paper, zero knowledge systems,” White Paper, Zero Knowledge Systems,
Inc.

[70] A. Back, I. Goldberg, and A. Shostack, “Freedom 2.1 security issues and anal-
ysis,” White Paper, Zero Knowledge Systems, Inc, 2001.

http://www.obscura.com/~loki/remailer/remailer-essay.html
http://www.obscura.com/~loki/remailer/remailer-essay.html

References 175

[71] O. Berthold, H. Federrath, and S. Köpsell, “Web mixes: A system for anony-
mous and unobservable internet access,” in Designing Privacy Enhancing Tech-
nologies. Springer, 2001, pp. 115–129.

[72] D. Chaum, “The dining cryptographers problem: Unconditional sender and
recipient untraceability,” Journal of cryptology, vol. 1, no. 1, pp. 65–75, 1988.

[73] S. Goel, M. Robson, M. Polte, and E. Sirer, “Herbivore: A scalable and efficient
protocol for anonymous communication,” Cornell University, Tech. Rep., 2003.

[74] H. Corrigan-Gibbs and B. Ford, “Dissent: accountable anonymous group mes-
saging,” in Proceedings of the 17th ACM conference on Computer and commu-
nications security. ACM, 2010, pp. 340–350.

[75] M. K. Reiter and A. D. Rubin, “Crowds: Anonymity for web transactions,”
ACM Transactions on Information and System Security (TISSEC), vol. 1,
no. 1, pp. 66–92, 1998.

[76] M. K. Wright, M. Adler, B. N. Levine, and C. Shields, “The predecessor at-
tack: An analysis of a threat to anonymous communications systems,” ACM
Transactions on Information and System Security (TISSEC), vol. 7, no. 4, pp.
489–522, 2004.

[77] A. Beimel and S. Dolev, “Buses for anonymous message delivery,” Journal of
Cryptology, vol. 16, no. 1, pp. 25–39, 2003.

[78] M. J. Freedman and R. Morris, “Tarzan: A peer-to-peer anonymizing network
layer,” in Proceedings of the 9th ACM conference on Computer and communi-
cations security. ACM, 2002, pp. 193–206.

[79] G. Danezis and R. Clayton, “Route fingerprinting in anonymous communica-
tions,” in Peer-to-Peer Computing, 2006. P2P 2006. Sixth IEEE International
Conference on. IEEE, 2006, pp. 69–72.

[80] M. Rennhard and B. Plattner, “Introducing morphmix: peer-to-peer based
anonymous internet usage with collusion detection,” in Proceedings of the 2002
ACM workshop on Privacy in the Electronic Society. ACM, 2002, pp. 91–102.

[81] P. Tabriz and N. Borisov, “Breaking the collusion detection mechanism of
morphmix,” in Privacy Enhancing Technologies. Springer, 2006, pp. 368–383.

[82] D. Endres and J. Schindelin, “A new metric for probability distributions,”
Information Theory, IEEE Transactions on, vol. 49, no. 7, pp. 1858 – 1860,
july 2003.

References 176

[83] J. Neyman and E. S. Pearson, “On the problem of the most efficient tests
of statistical hypotheses,” Philosophical Transactions of the Royal Society of
London Series A Containing Papers of a Mathematical or Physical Character,
vol. 231, no. 694-706, pp. 289–337, 1933.

[84] Y. Zhang and V. Paxson, “Detecting stepping stones,” in In Proceedings of the
9th USENIX Security Symposium, 2000, pp. 171–184.

[85] D. L. Donoho, A. G. Flesia, U. Shankar, V. Paxson, J. Coit, and S. Stan-
iford, “Multiscale stepping-stone detection: detecting pairs of jittered inter-
active streams by exploiting maximum tolerable delay,” in Proceedings of the
5th international conference on Recent advances in intrusion detection, ser.
RAID’02. Berlin, Heidelberg: Springer-Verlag, 2002, pp. 17–35.

[86] A. Blum, D. Song, and S. Venkataraman, “Detection of interactive stepping
stones: Algorithms and confidence bounds,” in Recent Advances in Intrusion
Detection, ser. Lecture Notes in Computer Science. Springer Berlin / Heidel-
berg, 2004, vol. 3224, pp. 258–277.

[87] X. Wang and D. S. Reeves, “Robust correlation of encrypted attack traffic
through stepping stones by manipulation of interpacket delays,” in Proceedings
of the 10th ACM conference on Computer and communications security, ser.
CCS ’03. New York, NY, USA: ACM, 2003, pp. 20–29.

[88] A. Houmansadr, N. Kiyavash, and N. Borisov, “RAINBOW: A robust and
invisible Non-Blind watermark for network flows,” in Network and Distributed
Systems Security Symposium. Internet Society, Feb. 2009.

[89] A. Houmansadr and N. Borisov, “SWIRL: A scalable watermark to detect
correlated network flows,” in NDSS, 2011.

[90] Y. J. Pyun, Y. Park, D. S. Reeves, X. Wang, and P. Ning, “Interval-based
flow watermarking for tracing interactive traffic,” Computer Networks, vol. 56,
no. 5, pp. 1646 – 1665, 2012.

[91] X. Wang, S. Chen, and S. Jajodia, “Network flow watermarking attack on low-
latency anonymous communication systems,” in Security and Privacy, 2007.
SP ’07. IEEE Symposium on, may 2007, pp. 116 –130.

[92] A. Serjantov and P. Sewell, “Passive-attack analysis for connection-based ano-
nymity systems,” International Journal of Information Security, vol. 4, pp.
172–180, 2005.

[93] B. Levine, M. Reiter, C. Wang, and M. Wright, “Timing attacks in low-latency
mix systems,” in Financial Cryptography, ser. Lecture Notes in Computer Sci-
ence, A. Juels, Ed. Springer Berlin / Heidelberg, 2004, vol. 3110, pp. 251–265.

References 177

[94] L. Øverlier and P. Syverson, “Locating hidden servers,” in Security and Pri-
vacy, 2006 IEEE Symposium on, may 2006, pp. 15 pp. –114.

[95] X. Wang, S. Chen, and S. Jajodia, “Tracking anonymous peer-to-peer voip calls
on the internet,” in Proceedings of the 12th ACM conference on Computer and
communications security. ACM, 2005, pp. 81–91.

[96] W. Yu, X. Fu, S. Graham, D. Xuan, and W. Zhao, “Dsss-based flow marking
technique for invisible traceback,” in Security and Privacy, 2007. SP ’07. IEEE
Symposium on, may 2007, pp. 18 –32.

[97] S. J. Murdoch and G. Danezis, “Low-cost traffic analysis of tor,” in Proceedings
of the 2005 IEEE Symposium on Security and Privacy. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 183–195.

[98] Z. Ling, J. Luo, W. Yu, X. Fu, D. Xuan, and W. Jia, “A new cell-counting-
based attack against tor,” Networking, IEEE/ACM Transactions on, vol. 20,
no. 4, pp. 1245–1261, 2012.

[99] P. Peng, P. Ning, and D. Reeves, “On the secrecy of timing-based active wa-
termarking trace-back techniques,” in Security and Privacy, 2006 IEEE Sym-
posium on, may 2006, pp. 15 pp. –349.

[100] N. Kiyavash, A. Houmansadr, and N. Borisov, “Multi-flow attacks against
network flow watermarking schemes,” in Proceedings of the 17th conference on
Security symposium, ser. SS’08. Berkeley, CA, USA: USENIX Association,
2008, pp. 307–320.

[101] X. Luo, P. Zhou, J. Zhang, R. Perdisci, W. Lee, and R. K. C. Chang, “Exposing
invisible timing-based traffic watermarks with BACKLIT,” in Proceedings of
the 27th Annual Computer Security Applications Conference. ACM, 2011, pp.
197–206.

[102] Z. Lin and N. Hopper, “New attacks on timing-based network flow water-
marks,” in USENIX Security Symposium. Bellevue,WA: USENIX Association,
Aug. 2012.

[103] C. Cachin, “An information-theoretic model for steganography,” in Informa-
tion Hiding. Springer, 1998, pp. 306–318.

[104] K. Loesing, W. Sandmann, C. Wilms, and G. Wirtz, “Performance measure-
ments and statistics of Tor hidden services,” in The 2008 International Sym-
posium on Applications and the Internet. Turku, Finland: IEEE, July 2008,
pp. 1 – 7.

References 178

[105] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, “Hypertext Transfer Protocol – HTTP/1.1,” RFC 2616 (Draft
Standard), Internet Engineering Task Force, Jun. 1999, updated by RFCs
2817, 5785. [Online]. Available: http://www.ietf.org/rfc/rfc2616.txt

[106] M. F. Arlitt and C. L. Williamson, “Web server workload characterization:
the search for invariants,” in Proceedings of the 1996 ACM SIGMETRICS
international conference on Measurement and modeling of computer systems,
ser. SIGMETRICS ’96, 1996, pp. 126–137.

[107] N. Johnson, A. Kemp, and S. Kotz, Univariate discrete distributions, ser. Wi-
ley series in probability and mathematical statistics. Applied probability and
statistics. Wiley, 2005.

[108] L. J. Simon, “Fitting negative binomial distributions by the method of maxi-
mum likelihood,” in Proceedings of the Casualty Actuarial Society, vol. XLVIII,
Arlington, VI, 1961, pp. 45–54.

[109] S. Y. T. Soon, “Binomial approximation for dependent indicators,” Statistica
Sinica, vol. 6, pp. 703–714, 1996.

[110] S. J. Murdoch and P. Zieliski, “Sampled traffic analysis by internet-exchange-
level adversaries,” in In Privacy Enhancing Technologies (PET), LNCS.
Springer, 2007.

[111] S. Haykin, Neural Networks: A Comprehensive Foundation (2nd Edition),
2nd ed. Prentice Hall, Jul. 1998.

[112] P. C. Consul and F. Famoye, Lagrangian probability distributions. Birkhauser
Boston, 2006.

[113] A. Biryukov, I. Pustogarov, and R.-P. Weinmann, “Content and popularity
analysis of tor hidden services,” arXiv preprint arXiv:1308.6768, 2013.

[114] Z. Botev, J. Grotowski, and D. Kroese, “Kernel density estimation via diffu-
sion,” The Annals of Statistics, vol. 38, no. 5, pp. 2916–2957, 2010.

[115] V. Paxson and S. Floyd, “Wide area traffic: the failure of poisson modeling,”
IEEE/ACM Trans. Netw., vol. 3, no. 3, pp. 226–244, Jun. 1995.

[116] D. J. Olive, Applied Robust Statistics. Southern Illinois University, 2008.
[Online]. Available: http://www.math.siu.edu/olive/ol-bookp.htm

[117] J. A. Elices and F. Pérez-González, “Measures to model delays on internet,”
http://www.unm.edu/∼elices/captures.html, Jan. 2013.

http://www.ietf.org/rfc/rfc2616.txt
http://www.math.siu.edu/olive/ol-bookp.htm
http://www.unm.edu/~elices/captures.html

References 179

[118] ISO, ISO 3166-2:1998 Codes for the representation of names of countries and
their subdivisions — Part 2: Country subdivision code, 1998.

[119] L. Rizo-Dominguez, D. Munoz-Rodriguez, D. Torres-Roman, and C. Vargas-
Rosales, “Packet variation delay distribution discrimination based on kullback-
leibler divergence,” in Communications (LATINCOM), 2010 IEEE Latin-
American Conference on, sept. 2010, pp. 1 –4.

[120] L. Kleinrock, Queueing Systems. Wiley Interscience, 1975, vol. I: Theory.

[121] D. Kotz, T. Henderson, I. Abyzov, and J. Yeo, “CRAWDAD trace set dart-
mouth/campus/tcpdump (v. 2004-11-09),” http://crawdad.cs.dartmouth.edu/
dartmouth/campus/tcpdump, Nov. 2004.

[122] Amazon Inc., “Amazon elastic compute cloud (amazon ec2),” http://aws.
amazon.com/ec2/.

[123] T. Ylonen and C. Lonvick, “The Secure Shell (SSH) Protocol Architecture,”
RFC 4251 (Proposed Standard), Internet Engineering Task Force, Jan. 2006.
[Online]. Available: http://www.ietf.org/rfc/rfc4251.txt

[124] P. Moulin and J. O’Sullivan, “Information-theoretic analysis of information
hiding,” Information Theory, IEEE Transactions on, vol. 49, no. 3, pp. 563–
593, 2003.

[125] M. Barni and B. Tondi, “The source identification game: An information-
theoretic perspective,” IEEE Transactions on Information Forensics and Se-
curity, vol. 8, no. 3, pp. 450–463, 2013.

[126] T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory (Classics
in Applied Mathematics), 2nd ed. Soc for Industrial & Applied Math, Jan.
1999.

[127] G. Casella and R. Berger, Statistical inference, ser. Duxbury advanced series
in statistics and decision sciences. Thomson Learning, 2002.

http://crawdad.cs.dartmouth.edu/dartmouth/campus/tcpdump
http://crawdad.cs.dartmouth.edu/dartmouth/campus/tcpdump
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://www.ietf.org/rfc/rfc4251.txt

180

Appendices

181

Appendix A

Theoretical Probabilities for

IPD-based without traffic

modification

A.1 Cauchy Test

Recall from (6.6) that we decide the flows are correlated if the random variable W

defined as

W =
n−1∏
i=1

Vi︷ ︸︸ ︷
(∆Yi)

α+1

πσαxαm

(
1 +

(
∆Yi −∆Xi

σ

)2
)

︸ ︷︷ ︸
Ui

(A.1)

is larger than η. Also notice that in (A.1) we have defined the auxiliary random

variables Ui and Vi.

As shown in Section 6.3, when the flows are uncorrelated the ∆Xi and ∆Yi

become independent Pareto-distributed random variables. Nevertheless, under the

Cauchy model assumption, ∆Yi−∆Xi follows a Cauchy distribution when flows are

Appendix A. Theoretical Probabilities for IPD-based without traffic modification182

correlated. Therefore the distribution of Ui can be obtained through a transformation

of random variables (see [127]) as follows:

fU |H0(u) =

∫ ∞
xm

σ

2
√
u− 1

αxαm
zα+1(

αxαm
(z + σ

√
u− 1)α+1

+
αxαm

(z − σ
√
u− 1)α+1

)
dz (A.2)

and

fU |H1(u) =
1

πu
√
u− 1

. (A.3)

V can be characterized as follows:

fV (v) =
1

v2πσ

∫ ∞
xm

fU

(
zα+1

vσπαxαm

)
dz. (A.4)

Lastly, we characterize W , as f(w) = fv1·v2···vn−1(w), where the density of the

product of two independent random variables can be obtained as

fV1·V2(v) =

∫ ∞
−∞

1

z
fV1(

v

z
)fV2(z)dz. (A.5)

So we calculate the value of the threshold, η, as the (1 − PF)th quantile of

fW |H0 and the probability of detection as PD = 1−FW |H1(η), where FW denotes the

cumulative distribution function of fW .

A.2 Laplace Test

Under Laplace assumption, the test (6.7) is

W =
n−1∏
i=1

Ui︷ ︸︸ ︷
exp

(
−|∆Yi −∆Xi|

σ

)
(∆Yi)

α+1

2σαxαm︸ ︷︷ ︸
Vi

(A.6)

in the case that W is larger than η we decided the flows are correlate. Similarly to

the Cauchy case, we have defined the auxiliary random variables Ui and Vi.

Appendix A. Theoretical Probabilities for IPD-based without traffic modification183

The only difference between the Cauchy model of the previous section is that

∆Yi −∆Xi follows a Laplace distribution when flows are correlated. Using a trans-

formation of random variables the distribution of Ui becomes

fU |H0(u) =

∫ ∞
xm

α2x2α
m

zα+1

(
1

(v − σ log u)α+1
+

1

(v + σ log u)α+1

)
dz (A.7)

and U |H1 becomes a uniform random variable in the interval [0, 1].

V can be characterized as follows:

fV (v) = 2σα2x2α
m

∫ ∞
xm

fU

(
2vσαxαm
zα+1

)
1

z2(α+1)
dz. (A.8)

As in previous section f(w) = fv1·v2···vn−1(w), where the density of the product

of two independent random variables can be obtained using (A.5). The threshold,

η, is (1 − PF)th quantile of fW |H0 and PD = 1 − FW |H1(η), where FW denotes the

cumulative distribution function of fW .

	List of Figures
	List of Tables
	Glossary
	Introduction
	Traffic analysis
	Origins in the military

	Traffic Analysis in the Internet
	Anonymous communications: Avoiding traffic analysis in Internet
	Mixnet-based schemes
	DC-net systems
	Network routing-based techniques
	Peer to peer anonymous communications systems

	Contributions and Publications
	Publications
	Contributions

	Organization of the rest of the dissertation

	Problem Description and Previous Approaches
	Notation
	Performance Metrics
	Neyman-Pearson Lemma

	Brief Introduction to Game Theory
	Problem Description
	Fingerprinting a hidden service log

	Previous Approaches
	Passive Analysis
	Active Watermarking
	Detecting Watermarks

	Discussion

	Fingerprinting Log Files
	Introduction
	Formal Problem Description
	HTTP Response Date Information
	Modeling the number of Log Entries
	Data Collection
	Results

	Fingerprinting Method
	Creating the Fingerprint
	Detecting the fingerprint

	Simple Detector
	Analysis of the simple detector
	Probability of Detection
	Probability of false positives
	Simple Detector Results

	Optimal Detector
	Optimal Detector Results
	Computational Cost

	Conclusions

	Prediction-based Flow Correlation
	Introduction
	Description of the Problem
	Problem
	Proposed detector

	Application: Locating a Tor Hidden Service
	Predictor

	Analysis and Results
	Mathematical analysis

	Results
	Simulator
	Real Implementation
	Detectability

	Conclusions

	Interval-count-based Flow Correlation
	Introduction
	Model Problem
	Basic Detector
	Detector construction
	Modelling the number of cells per unit of time
	Modelling the number of cells from Alice's flow in each interval
	Detector
	Calculating the threshold to achieve a certain probability of false positive

	Results
	Interval size
	Results
	Comparison with prediction-based technique

	Conclusions

	Inter-packet-delays-based Flow Correlation
	Introduction
	Proposed Scheme
	Basic Detector
	Detector construction
	Modeling the packet delay variation
	Modeling the Inter-Packet Delays
	Detector

	Performance
	Simulator and Scenarios
	Impact of our assumptions
	Performance dependence on n

	Robust detector
	Matching packets
	Test robust to chaff and flow splitting
	Self-Synchronization
	Robust test against random delays
	Performance

	Comparison with an active watermark
	Comparison with other schemes
	Real Implementation
	Conclusions

	Flow-Correlation with an adversary
	Introduction
	Player order and equilibria
	Flow fingerprinting game: independent flows
	Optimal Detector

	Delaying adversary
	Deterministic Attack
	Truncated-Gaussian Attack
	Other distribution attacks
	Distribution mismatch between the adversary and the decoder

	Chaff traffic adversary
	Matching Process
	Chaff traffic of the adversary
	Results

	Flow Fingerprinting Game: correlated flows
	Detector
	Deterministic attack
	Truncated-Gaussian Attack
	Other distribution attacks
	Distribution mismatch between the adversary and the decoder

	Conclusion

	Conclusions and Future Work
	Future Research Lines

	References
	Theoretical Probabilities for IPD-based without traffic modification
	Cauchy Test
	Laplace Test

