
Online EM-based distributed estimation in sensor networks with faulty nodes

Pere Giménez-Febrer∗, Alba Pagès-Zamora∗ and Roberto López-Valcarce†
∗SPCOM Group, Universitat Politècnica de Catalunya-Barcelona Tech, Spain

†GPSC, Universidade de Vigo, Spain

Abstract—This paper focuses on the problem of the distributed
estimation of a parameter vector based on noisy observations
regularly acquired by the nodes of a wireless sensor network and
assuming that some of the nodes have faulty sensors. We propose
two online schemes, both centralized and distributed, based on
the Expectation-Maximization (EM) algorithm. These algorithms
are able to identify and disregard the faulty nodes, and provide a
refined estimate of the parameters each time instant after a new
set of observations is acquired. Simulation results demonstrate
that the centralized versions of the proposed online algorithms
attain the same estimation error as the centralized batch EM,
whereas the distributed versions come very close to matching the
batch EM.

Index terms— online expectation-maximization algo-
rithms, distributed estimation, sensor networks.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) have become in-
creasingly popular in the recent years thanks to their

potential to be used in a wide range of applications and provide
robust solutions at a low cost. One common application of
WSNs is the estimation of parameters from observations ac-
quired by the sensors, which can be performed in a distributed
manner in order to reduce the overall power consumption and
increase the robustness of the system against node failures.

Besides a critical failure rendering the node unusable, a
malfunctioning sensor can also impact the performance of
the WSN since it corrupts the observations made at the node.
Thus, it is crucial to identify which nodes have faulty sensors
and discard their data. Sensor failures can be modelled as a
hidden variable that determines whether the node is sensing
the desired signal plus noise, or just noise [1]. One algorithm
that encompasses the estimation of a parameter and the esti-
mation of hidden variables is the Expectation-Maximization
(EM) algorithm. The EM algorithm iteratively maximizes
the likelihood of the data given the parameters, while at
the same time estimates the value of the hidden variables
that best fit the observed data. Distributed implementations
of the EM algorithm are especially well suited for sensor
networks and have been proposed in the literature. In [2],
the summary statistics required to calculate the parameters
are cycled through the network and updated at each node
with its local information. Other consensus-based approaches
have been proposed in [3], [4], [5], and [6] for the Gaussian
mixture problem. In these works, the nodes sought to identify

This work is supported by the “Ministerio de Economı́a y Competi-
tividad” of the Spanish Government and ERDF funds (TEC2013-41315-R
DISNET, TEC2013-47020-C2-1-R COMPASS and TEC2015-69648-REDC
Red COMONSENS), the Catalan Government (2014 SGR 60 AGAUR) and
the Galician Government (AtlantTIC, GRC2013/009, R2014/037).

and reach a network-wide consensus on the parameters of a
Gaussian Mixture by exchanging information only with their
close neighbors. Similarly, [1] proposes a distributed diffusion-
based EM algorithm for sensor networks with faulty nodes.

The EM algorithm operates in batch mode by processing
the complete dataset at each iteration to update the parameter
estimates, which can be computationally intensive for large
datasets. Moreover, when the dataset becomes slowly available
over time, such as when processing a data stream, operating
in batch mode requires waiting until all the data have been
collected before running the algorithm. In order to reduce
the latency and computational load, online EM algorithms
process a single data item, or a subset, and provide an updated
estimate of the parameters at each iteration. For instance, the
incremental EM proposed in [7] selects at each iteration one
observation at random from the complete dataset and updates
the estimates. However, even though it processes one item at
a time, this algorithm still requires the complete data to be
available. In [8], an online EM was proposed that replaces
the maximization step by a gradient step evaluated at the
newly acquired observation. Other online EM algorithms, such
as the ones proposed in [9] and [10], perform a stochastic
approximation by combining noisy observations of the log-
likelihood function via a Robbins-Monro procedure. While all
these works are centralized algorithms, a distributed version
of [10] was proposed in [11] for asynchronous WSNs.

Existing online EM algorithms in the literature build on the
assumption that observations are independent, which cannot
be assumed in our case of WSNs with faulty nodes since the
measurements taken by the same node depend on a single
hidden variable. In this paper, we propose two online EM
algorithms that take into account the dependence between
observations, and their distributed implementations for sensor
networks with faulty nodes.

The paper is organized as follows. Section I details the sig-
nal model for the WSN. Section II introduces the centralized
Batch EM algorithm. In Section III, we review the classical
online EM algorithms and present two new algorithms. Section
IV introduces the distributed versions of the two algorithms
and, finally, Section V includes the simulation results.

II. SIGNAL MODEL

Consider a sensor network formed by N nodes collecting
observations at each iteration time t denoted by

yi(t) = aix+ wi(t), i = 1, . . . , N, (1)

where yi(t) ∈ R, x is the parameter of interest, {ai,∀i} =
{0, 1} are independent identically distributed (iid) Bernoulli

random variables with probability p , Pr{ai = 1}, and
{wi(t),∀i∀t} are iid zero-mean Gaussian with variance σ2

and independent of {ai,∀i}. Thus, a value of ai = 1 indicates
that node i is sensing the parameter x corrupted by noise,
whereas a value of ai = 0 indicates a sensor failure such
that node i measures only noise. Rewriting (1) for the entire
network in vector form yields

y(t) =ax⊗ 1t+ω(t),

where 1t is an all-ones column vector with t components,

y(t) = [yT1 (t),yT2 (t), . . . ,yTN (t)]T , a = [a1, . . . , aN],

ω(t) = [ωT1 (t), . . . ,ωTN (t)]T ,

and {∀i,∀t} we have yi(t) = [yi(1), yi(2), . . . , yi(t)]
T , and

ωi(t) = [wi(1), wi(2), . . . , wi(t)]
T . Note that observations

from different nodes are iid but those from the same node
are dependent. The probability density function of y(t) is

f(y(t) |θ) =

N∏
i=1

[
p

(2πσ2)
t
2

t∏
l=1

exp (− (yi(l)− x)2

2σ2
)

+
1− p

(2πσ2)
t
2

t∏
l=1

exp (−y
2
i (l)

2σ2
)

]
,

where θ = [x, σ2]T . The parameter to be estimated is x,
whereas σ2 is regarded as an unknown nuisance parameter;
the a priori probability p is assumed known throughout. Since
closed-form maximization of f(y(t) |θ) is not possible, we
resort to the EM algorithm to determine which nodes are non-
faulty and estimate x.

III. CENTRALIZED BATCH EM

In this section we introduce the standard centralized EM
algorithm [12], to which we will refer as Batch EM, assuming
that each node acquires L observations and the NL observa-
tions are available at a central location. Provided that there
are enough observations, this iterative algorithm obtains the
maximum likelihood estimate of the parameters of interest
θ in the presence of unobserved data. We regard vector
y(L) = [y1(L), . . . ,yN (L)]T as the incomplete observation,
and {y(L),a} as the complete one. To simplify the notation,
we define the variable y = y(L). The Batch EM algorithm
calculates the estimates of θ by successively executing the
following two steps at each iteration k:

1) E-step: given an estimate θ̂k = [x̂k, σ̂
2
k]T , compute the

conditional expectation

Q(θ̃ ; θ̂k) = Ea{log f(y,a | θ̃) | θ̂k,y}

=

N∑
i

Eai{log f(yi, ai | θ̃) | θ̂k,yi}, (2)

where θ̃ = [x̃, σ̃2]T denotes a trial value of θ, and yi =
yi(L).

2) M-step: obtain the estimate for the next iteration as

θ̂k+1 = arg max
θ̃

Q(θ̃ ; θ̂k).

The E-step calculates the a posteriori conditional probability
âi(k),Pr

{
ai = 1 | θ̂k,yi

}
for each i as

âi(k) =
p
∏L
l=1 exp (− (yi(l)−x̂k)

2

2σ̂2
k

)

p
∏L
l=1 exp (− (yi(l)−x̂k)2

2σ̂2
k

) + (1− p)
∏L
l=1 exp (−y

2
i (l)

2σ̂2
k

)
.

After {âi(k) ∀i} are calculated, (2) becomes

Q(θ̃ ; θ̂k) = −NL
2

log 2πσ̃2 − 1

2σ̃2

N∑
i=1

L∑
l=1

âi(k)(yi(l)− x̃)2

− 1

2σ̃2

N∑
i=1

L∑
l=1

âi(k)y2i (l). (3)

The M-step then maximizes (3) with respect to θ and yields
the following estimates for iteration k + 1:

x̂k+1 =

∑N
i=1 âi(k)

∑L
l=1 yi(l)

L
∑N
i=1 âi(k)

, and

σ̂2
k+1 =

∑N
i=1

∑L
l=1(y2i (l)− 2âi(k)yi(l)x̂k+1 + âi(k)x̂2k+1)

NL
.

IV. CENTRALIZED ONLINE EM

In a centralized online setting, the nodes send their newly
acquired observations at iteration t to a central location where
they are immediately processed instead of waiting until all L
observations have been collected. In this section we propose
two online versions of the centralized Batch EM algorithm
which do not require the complete dataset to be available at
each iteration, and review the classical online EM algorithms
in the literature.

A. Recursive online EM

The recursive online EM (ROEM) algorithm we propose
takes into account the dependence between the observations,
and recalculates the conditional expectation for all the obser-
vations every time a new set of N observations is received.
Similar to Batch EM, ROEM executes the E-step and M-
Step, with the difference that N new observations are added
at each iteration instead of waiting until all the observations
are collected. The online steps are

1) E-step: given an estimate θ̂t = [x̂t, σ̂
2
t]T at iteration t,

compute the conditional expectation

Qt(θ̃ ; θ̂t) = Ea{log f(y(t),a | θ̃) | θ̂t,y(t)}. (4)

2) M-step: obtain the estimate for the next iteration as

θ̂t+1 = arg max
θ̃

Qt(θ̃ ; θ̂t).

The E-step calculates the a posteriori conditional probability
âi(t),Pr

{
ai = 1 | θ̂t,yi(t)

}
for each i as

âi(t) =
p
∏t
l=1 exp (− (yi(l)−x̂t)

2

2σ̂2
t

)

p
∏t
l=1 exp (− (yi(l)−x̂t)2

2σ̂2
t

) + (1− p)
∏t
l=1 exp (−y

2
i (l)

2σ̂2
t

)
.

(5)

Then, the M-step gives the estimation of the parameters as

x̂t+1 =

∑N
i=1 âi(t)

∑t
l=1 yi(l)

t
∑N
i=1 âi(t)

, and (6)

σ̂2
t+1 =

∑N
i=1

∑t
l=1(y2i (l)− 2âi(t)yi(l)x̂t+1 + âi(t)x̂

2
t+1)

Nt
.

(7)

The cost of computing (5), (6) and (7) can be easily reduced
by substituting the summations by cumulative intermediate
variables so that each observation is processed only once.
Thus, let us define the online variables

s1(t) = t
∑N

i=1
âi(t), (8)

s2(t) =
∑N

i=1
âi(t)d1,i(t), and (9)

s3(t) =
∑N

i=1
d2,i(t), (10)

where d1,i(t) = d1,i(t − 1) + yi(t) and d2,i(t) = d2,i(t −
1)+y2i (t). Then, we can rewrite (5)-(7) in terms of the online
variables as

âi(t) =
1

1 + 1−p
p exp (

−2d1,i(t)x̂t+tx̂t

2σ̂2
t

)
,

x̂t+1 =
s2(t)

s1(t)
, and

σ̂2
t+1 =

s3(t)− 2s2(t)x̂t+1 + s1(t)x̂2t+1

Nt
.

Indeed, one can see that at each iteration t the ROEM
algorithm executes the two steps of the Batch EM algorithm
with Nt measurements but using as initial estimate θ̂t the
one obtained in the previous iteration, when only N(t − 1)
measurements were available, and so on.

B. Online incremental Newton

An alternative formulation of the Batch EM algorithm which
substitutes the M-step by a Newton update was proposed
by Lange in [13]. By applying this approach to the ROEM
algorithm in Section II-A, we readily obtain the online in-
cremental Newton (OIN) algorithm. Thus, when a new set
of observations are received, the OIN algorithm performs the
E-step in (4) embedded in a gradient step. The estimates
calculated at iteration t for the next iteration are obtained as

θ̂t+1 = θ̂t + γtI
−1(θ̂t)Ea

{
∇θ̂t log f(y(t),a |θ) |y(t), θ̂t

}
,

where γt is the step size and I−1(θ̂t) is the inverse of Fisher’s
Information Matrix associated to a complete observation,
defined as I(θ̂t) = −Ey

{
∇2
θ̂t

log f(y(t),a;θ)
}

. After some
straightforward algebra, the compact expressions for x̂t+1 and
σ̂2
t+1 are

x̂t+1 = x̂t +
γt
Ntp

(s2(t)− s1(t)x̂t), and (11)

σ̂2
t+1 = σ̂2

t +
γt

2Nt

(
−σ̂2

tNt+ s3(t)− 2s2(t)x̂t + s1(t)x̂2t ,
)

(12)

with s1(t), s2(t) and s3(t) defined in equations (8)-(10).

C. Classical algorithms

Online EM algorithms in the literature are based on stochas-
tic approximation techniques [10], [9] or substitute the max-
imization step by a stochastic gradient step [8]. In these
approaches, it is assumed that there is a new realization of
a hidden variable for each new observation, and that the
observations are iid. Thus, the conditional expectation being
maximized is

Q(θ̃ ; θ̂) =
1

NL

NL∑
l

Ea(l){log f(y(l), a(l) | θ̃) | θ̂, y(l)},

(13)
where y(l) denotes the lth element of vector y(L), and a(l) is
the hidden variable associated with y(l).

The online algorithm introduced by Cappé in [10] aims to
finding a stationary point of (13) by solving the equation

Ey{Ea{log f(y, a | θ̃) | θ̄(Q(θ̃; θ̂)),y}} = Q(θ̃; θ̂), (14)

where θ̄(Q(θ̃ ; θ̂)) = arg maxθ̃ Q(θ̃ ; θ̂), by means of the
following Robbins-Monro procedure

Q̂t(θ̃) = Q̂t−1(θ̃) (15)

+ γt(Ea{log f(y(t), a | θ̃) | θ̄(Q̂t−1(θ̃)), y(t)} − Q̂t−1(θ̃)),

where γt is the step size and θ̄(Q̂t−1(θ̃)) = θ̂t.
The other classical approach to online EM algorithms was

proposed by Titterington in [8] and maximizes (13) with the
following recursion

θ̂t+1 = θ̂t + γtI
−1(θ̂t)Ea{∇θ̃t log f(y(t), a(t) | θ̃)|θ̂t, y(t)}.

It is important to remark that, since the observations are
assumed iid, both algorithms calculate the conditional expec-
tation only taking into account the tth observation. However,
in the signal model described in Section II the observations
made at a node are dependent and, hence, (2) cannot be
decomposed into a sum of conditional expectations over l
as in (13). Therefore, the Robbins-Monro procedure and the
stochastic gradient, proposed in [10] and [8] respectively, are
not adequate for our model. In order to be able to compare
Cappé and Titterington’s algorithms to our online EM in the
simulations, we adapt the algorithms to our signal model while
still maintaining the philosophy of the original versions. The
modified equations are

Q̂t(θ̃) = Q̂t−1(θ̃)

+ γt

N∑
i=1

Eai{log f(yi(t), ai | θ̃) |θ̄(Q̂t(θ̃)),yi(t)} − Q̂t−1(θ̃),

for Cappé’s algorithm, and

θ̂t+1 = θ̂t + γtI
−1(θ)

N∑
i=1

Eai{∇θ log f(yi(t), ai|θ)|θ̂t,yi(t)}

for Titterington’s. It must be noted that the two adapted
algorithms no longer perform a stochastic approximation that
solves (14), in the case of Cappe’s algorithm, nor a stochastic
gradient in the case of Titterington’s algorithm.

V. DISTRIBUTED ONLINE EM
In this section we introduce the distributed versions of the

ROEM and OIN algorithms. The distributed ROEM algorithm
is based on the diffusion-based distributed EM proposed in [1],
which enables the distributed computation of the parameters
whenever they are expressed as operations between summa-
tions over i of variables available at the nodes. The ROEM
fulfills this requirement since it is expressed in terms of the
online variables (8)-(10).

Consider a sensor network formed by N nodes in which
each node can only communicate with the neighbors within a
given radius. The nodes lie on a connected undirected graph
with weighted adjacency matrix W ∈ RN×N , in which an
entry Wij different from zero indicates that information flows
from node j to node i. We assume that the matrix W meets
the following conditions: W1 = 1, 1TW = 1T , and ρ(W−
11T

N) < 1, where ρ(·) is the spectral radius.
In the diffusion-based ROEM (DBROEM) algorithm, each

node keeps a local copy of the online variables, which are
updated when a new observation is taken at each iteration. The
nodes combine their local copies with those of their neighbors
so that the information is diffused through the network, and
the nodes obtain an estimate of the global online variables.
At each iteration, the nodes obtain the estimate of the global
online variables as

ŝ1,i(t) =
∑N

j=1
Wi,j [(1− αt)ŝ1,j(t− 1) + αttâj(t)] ,

ŝ2,i(t) =
∑N

j=1
Wi,j [(1− αt)ŝ2,j(t− 1) + αtâj(t)d1,j(t)] ,

ŝ3,i(t) =
∑N

j=1
Wi,j [(1− αt)ŝ3,j(t− 1) + αtd2,j(t)] ,

where αt is a vanishing control parameter that gradually
increases the weight of the memory term ŝj,i, which diffuses
the information throughout the network, while the weight of
the innovation is decreased. Thus, in the event that the nodes
stop acquiring new observations, or that αt = 0, the network
will reach a consensus on the value of the global online
variables. The local estimates of x and σ2 are calculated by
each node as

x̂i(t+ 1) =
ŝ2,i(t)

ŝ1,i(t)
, and

σ̂2
i (t+ 1) =

ŝ3,i(t)− 2ŝ2,i(t)x̂i(t+ 1) + ŝ1,i(t)x̂i(t+ 1)2

d3(t)
,

where d3(t) = d3(t− 1) + αt(t− d3(t− 1)).
The proposed distributed OIN (DOIN) algorithm relies on

the well-known adapt-then-combine (ATC) [14] scheme since
the gradient term in (11) and (12) is also a summation over
variables available at the nodes. In this approach, each node
performs a local gradient update and the result is combined
with the updates of its connected neighbors. The estimates at
node i are given by

x̂i(t+ 1) =
∑N

j=1
Wij

[
x̂j(t)−

γt
tp

(âj(t)(d1,j(t)− tx̂j(t)))
]
,

σ̂2
i (t+ 1) =

∑N

j=1
Wij

[
σ̂2
j (t)− γt

2
(−σ̂2

j (t) +
1

t
d2,j(t)

− 2

t
âj(t)x̂ij(t)d1,j(t) + âj(t)x̂j(t)

2)
]
.

Since every node is minimizing the same cost function,
the exchange of information between nodes accelerates the
convergence to the minimum. Moreover, a consensus would
also be reached if the nodes stopped acquiring new observa-
tions. The ATC scheme was also used in [11] to implement
Cappé’s algorithm in a distributed fashion. In this algorithm
the nodes perform the local update with (15), using a number
of sufficient statistics instead of the complete loglikelihood ,
and then average their updates with those of their neighbors.

VI. SIMULATION RESULTS

In this section we compare the performance of the following
variants of the EM algorithm: centralized Batch EM, ROEM,
the adapted versions of Cappé [10] (denoted by OEM1) and
Titterington [8] (OEM2), OIN, DBROEM, DOIN, and the
one given in [11] (DOEM1). We have simulated a sensor
network with N = 50 nodes with a connectivity radius r = 20
randomly deployed in a 100×100 square. The algorithms have
been run for L = 1700 iterations and R = 6000 realizations,
with x = 1, p = 0.6 and a signal-to-noise ratio (SNR),
defined as SNR = x2

σ2 , ranging from −15 to 15 dB. The step
sizes have been chosen so that each algorithm achieves the
lowest estimation error. Vector a and the noise are randomized
at each realization, whereas the position of the nodes and
weight matrix, which has been generated with the Metropolis
rule [15], remain static. As a performance metric we use the
mean square error (MSE), defined as

MSE(t) =
1

R

∑R

r=1

1

N

∑N

i=1
(x̂i,r(t)− x)2,

where x̂i,r(t) is the estimate of node i at iteration t and
realization r.

0 200 400 600 800 1,000 1,200 1,400 1,600

−30

−20

−10

0

10

t

M
S
E

(d
B
)

Batch EM

OEM1

OEM2

ROEM

OIN

DOEM1

DBROEM

DOIN

5 10 15 20

−10

0

10

Figure 1. MSE vs. t for SNR= −15 dB.

Figure 1 shows the evolution of the MSE for all the algo-
rithms over t for SNR=−15 dB. Note that, at each iteration,
the line marked ”Batch EM” shows the MSE of Batch EM
run with t observations until convergence. We observe in the

−15 −10 −5 0 5 10 15

−60

−50

−40

−30

SNR (dB)

M
S
E

(d
B
)

Batch EM

OEM1

OEM2

ROEM

OIN

DOEM1

DBROEM

DOIN

Figure 2. MSE vs. SNR after 1700 iterations.

magnified view that ROEM and Batch EM merge after a few
iterations. OIN also matches Batch EM, although it requires
more iterations. We also observe that OEM1 and OEM2
perform at the same level but worse than the two proposed
algorithms, which is due to the fact that the conditional
expectations calculated for earlier observations are not updated
with the information from the newly acquired observations.
Among the distributed algorithms, DOIN and DBROEM have
a very similar MSE through all the iterations, while the
DOEM1 algorithm has it higher. Note that the distributed
algorithms cannot converge to their centralized versions since
the nodes are continuously acquiring new observations, and
this new information requires several iterations to be diffused
throughout the network. Still if the nodes were to stop ac-
quiring new observations, DBROEM would be able to further
reduce the gap with ROEM since, eventually, the information
from all the observations would be globally available.

Figure 2 shows the final MSE after L = 1700 iterations
for all the algorithms at different SNR. We observe that both
ROEM and OIN coincide with Batch EM for the whole range
of SNR. Still, as seen in Figure 1, the OIN algorithm requires
more iterations to match Batch EM. Regarding the distributed
algorithms, DBROEM and DOIN have the same MSE, which
is below that of OEM1 and OEM2, and DOEM1 has the
highest MSE.

Figure 3 shows the iterations and observations that each
algorithm needs to reach an MSE of −30 dB at different SNR.
Since a larger number of observations would result in a lower
error for Batch EM, we see that the online algorithms need to
acquire more observations at lower SNR to offset the rise in
MSE due to the higher noise variance. We see that ROEM and
OIN need the least observations and iterations, with ROEM
having a slight edge for SNRs above 5 dB. On the other hand,
DBROEM is the fastest of the distributed algorithms, requiring
slightly fewer observations than DOIN for SNRs below 5 dB,
and showing a more noticeable difference for SNRs above.9

−15 −10 −5 0 5 10 15
0

500

1,000

1,500

SNR (dB)

It
e
ra

ti
o
n
s

OEM1

OEM2

ROEM

OIN

DOEM1

DBROEM

DOIN

Figure 3. Iterations needed to reach an MSE of 10−3 at different SNR.

REFERENCES

[1] S. S. Pereira, R. Lopez-Valcarce et al., “A diffusion-based em algo-
rithm for distributed estimation in unreliable sensor networks,” Signal
Processing Letters, IEEE, vol. 20, no. 6, pp. 595–598, 2013.

[2] R. D. Nowak, “Distributed em algorithms for density estimation and
clustering in sensor networks,” Signal Processing, IEEE Transactions
on, vol. 51, no. 8, pp. 2245–2253, 2003.

[3] D. Gu, “Distributed em algorithm for gaussian mixtures in sensor
networks,” Neural Networks, IEEE Transactions on, vol. 19, no. 7, pp.
1154–1166, 2008.

[4] P. Forero, A. Cano, G. B. Giannakis et al., “Consensus-based distributed
expectation-maximization algorithm for density estimation and classifi-
cation using wireless sensor networks,” in Acoustics, Speech and Signal
Processing, 2008. ICASSP 2008. IEEE International Conference on.
IEEE, 2008, pp. 1989–1992.

[5] Y. Weng, W. Xiao, and L. Xie, “Diffusion-based em algorithm for
distributed estimation of gaussian mixtures in wireless sensor networks,”
Sensors, vol. 11, no. 6, pp. 6297–6316, 2011.

[6] S. Silva Pereira, R. Lopez-Valcarce et al., “A diffusion-based distributed
em algorithm for density estimation in wireless sensor networks,” in
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE Inter-
national Conference on. IEEE, 2013, pp. 4449–4453.

[7] R. M. Neal and G. E. Hinton, “A view of the em algorithm that jus-
tifies incremental, sparse, and other variants,” in Learning in graphical
models. Springer, 1998, pp. 355–368.

[8] D. M. Titterington, “Recursive parameter estimation using incomplete
data,” Journal of the Royal Statistical Society. Series B (Methodological),
pp. 257–267, 1984.

[9] M.-A. Sato and S. Ishii, “On-line em algorithm for the normalized
gaussian network,” Neural computation, vol. 12, no. 2, 2000.

[10] O. Cappé and E. Moulines, “On-line expectation–maximization algo-
rithm for latent data models,” Journal of the Royal Statistical Society:
Series B (Statistical Methodology), vol. 71, no. 3, pp. 593–613, 2009.

[11] G. Morral, P. Bianchi, and J. Jakubowicz, “On-line gossip-based dis-
tributed expectation maximization algorithm,” in Statistical Signal Pro-
cessing Workshop (SSP), 2012 IEEE. IEEE, 2012, pp. 305–308.

[12] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the em algorithm,” Journal of the royal
statistical society. Series B (methodological), pp. 1–38, 1977.

[13] K. Lange, “A quasi-newton acceleration of the em algorithm,” Statistica
sinica, vol. 5, no. 1, pp. 1–18, 1995.

[14] J. Chen and A. H. Sayed, “Diffusion adaptation strategies for distributed
optimization and learning over networks,” Signal Processing, IEEE
Transactions on, vol. 60, no. 8, pp. 4289–4305, 2012.

[15] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor
fusion based on average consensus,” in Information Processing in Sensor
Networks, 2005. IPSN 2005. Fourth International Symposium on. IEEE,
2005, pp. 63–70.

	Introduction
	Signal model
	Centralized Batch EM
	Centralized Online EM
	Recursive online EM
	Online incremental Newton
	Classical algorithms

	Distributed online EM
	Simulation results
	References

