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Abstract—Full-duplex (FD) communication has the potential
for significant improvements in spectral efficiency, as long as the
problem of self-interference (SI) can be overcome. For millimeter
wave (mmWave) systems with large antenna arrays, beamforming
based SI mitigation is attractive because of the large number
of degrees of freedom available. Previously proposed precoder-
combiner designs, however, suffer from a large performance
loss under the hardware-constrained architectures required for
operation at mmWave. In this context, we develop a new
algorithm for the design of constant-amplitude analog precoders
and combiners of an FD mmWave single-stream bidirectional
link, significantly reducing the aforementioned performance loss.

Index Terms—Full-duplex, millimeter wave communications,
analog beamforming.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) systems operating
at millimeter wave (mmWave) frequencies enable applications
needing several Gbits/s data rates [1]. Some mmWave products
compliant with the IEEE 802.11ad standard are already in
the market. The first release of the 5G standard for cellular
networks has been recently approved [2], defining a system ca-
pable to operate at sub-6 GHz as well as mmWave frequencies.
Several challenges to practical mmWave communications,
such as analog beamforming or the design of hybrid precoders
[1], have been extensively studied in the last few years,
but many questions remain open. For example, preliminary
studies have considered the feasibility of transmitting on one
mmWave base station panel while simultaneously receiving
on an adjacent panel [3], [4]. In general, the design of such
full-duplex (FD) mmWave systems is an open problem.

FD wireless communication, by which a transceiver si-
multaneously transmits and receives on the same frequency
channel, has recently attracted the attention of researchers due
to its potential to double spectral efficiency with respect to
traditional half-duplex schemes [5], [6]. However, it brings
about the problem of self-interference (SI): an FD node’s own
transmission will be present at its receive side, typically with a
power level tens of dB above that of the signal of interest from
a remote node. Managing SI constitutes the main challenge for
the development of FD wireless communication.
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Significant SI mitigation has been demonstrated for a
microwave-band, single-antenna FD node [7], [8] by combin-
ing propagation domain methods (radiation pattern optimiza-
tion, antenna placement, etc.), analog-circuit domain methods
(which substract an SI estimate from the received signal before
the A/D converter to avoid its saturation), and digital domain
methods (which attempt to estimate and substract any residual
SI after A/D conversion). Direct extension to MIMO FD is
difficult, because analog-circuit domain methods do not scale
well with the number of antennas. Spatial suppression, i.e.,
exploiting the availability of multiple antennas to mitigate SI
in MIMO FD by means of digital precoding and combining,
has been proposed as an alternative [11]–[13], although such
approach results in lower data rates since some of the available
spatial degrees of freedom (DoF) are spent in mitigating SI.

In contrast with microwave-band systems, large antenna
arrays are generally required in mmWave communication. The
available DoF are substantially larger, making spatial suppres-
sion attractive for FD operation. For example, in [15] a method
with close to optimal performance was proposed for the design
of the (digital baseband) beamforming weights of an FD
mmWave single-stream bi-directional link. On the other hand,
to reduce power consumption and cost, hybrid architectures
[1], [14] are preferred in mmWave, by which a reduced number
of RF chains is used and the transmit/receive processing
is partitioned between the digital baseband and analog RF
domains. Analog precoders/combiners are then implemented
with low-cost phase shifters, resulting in additional design
constraints, i.e., it is not possible to alter the magnitude of the
RF signals. Spatial suppression methods for SI management
in FD mmWave systems must take such hardware-related,
constant-amplitude (CA) constraints into account. In partic-
ular, as shown in [16], it is not straightforward to incorporate
CA constraints into the quasi-optimal design from [15]: for
instance, merely projecting the optimal unconstrained weights
onto the manifold defined by the CA constraints incurs a large
performance loss, as recognized in [16]. Another approach
suggested in [16] is to constrain each beamforming weight
vector to the manifold of steering vectors (which comply
to the CA constraints), parameterized by a single steering
angle; a search over the (four-dimensional) steering angle
space then provides the sought beamformers. However, this
search may be prohibitively complex if fine angle resolution
is desired, and even then the final performance is largely



degraded [16]. Finally, although it is possible to circumvent
the CA constraints by doubling the number of transmit and
receive RF chains [9], [16], or by using two phase shifters
for each coefficient [10], those approaches increase transceiver
cost and power consumption.

We present a novel design to explicitly account for CA
constraints, overcoming the limitations of the different ap-
proaches in [16]. The proposed method significantly reduces
the aforementioned loss, performing almost as well as the all-
digital design. In this way, suitable analog beamformers for FD
mmWave operation are obtained at reasonable computational
cost, cancelling SI in the analog domain, and without the need
to double the number of RF chains or phase shifters.

II. PROBLEM SETTING

Fig. 1 represents a mmWave network of two nodes in FD
mode. Each node is equipped with transmit (TX) and receive
(RX) antenna arrays, with a single data stream supported in
each direction. The number of transmit antennas at node i and
of receive antennas at node j are respectively denoted as Nt,i
and Nr,j , with i, j ∈ {1, 2}. The transmission bandwidth is
assumed sufficiently narrow so that channels can be regarded
as frequency-flat. We denote Hij the Nr,j × Nt,i channel
matrix from the TX array of node i to the RX array of node
j. Note that Hjj corresponds to the SI channel affecting node
j. We postpone a discussion on specific channel models to the
description of simulation results in Sec. V, since the designs
to be presented next are model-independent.

Let fi denote the complex-valued Nt,i × 1 beamforming
vector (precoder) applied by node i ∈ {1, 2} before transmis-
sion; and let wj denote the Nr,j×1 combiner applied by node
j ∈ {1, 2} after reception. With analog-domain beamforming
using phase shifters, each of the entries of these vectors has
constant magnitude, and it is only possible to pick their phases.
The average transmit power per symbol of node i is ρi, and the
noise nj at the receiver of node j is zero-mean white Gaussian
with covariance σ2

j INr,j . With these, the received symbols at
nodes 1 and 2 are respectively given by

y1 = wH
1 (
√
ρ2H21f2s2 +

√
η1H11f1z1 + n1) , (1)

y2 = wH
2 (
√
ρ1H12f1s1 +

√
η2H22f2z2 + n2) , (2)

with si the zero-mean unit-variance symbol sent by node i.
The zero-mean unit-variance SI affecting node j is denoted
by zj , and ηj quantifies SI strength. Due to front-end im-
perfections, in general zj will be a distorted version of the
signal transmitted by node j [11]; if any propagation and/or
analog-circuit domain SI mitigation method is applied, then zj
is to be understood as the residual SI. To meet the TX power
constraint, ‖fi‖ = 1 is imposed, i ∈ {1, 2}.

Treating SI as noise and assuming Gaussian codebooks, the
sum rate of this network can be written as

R = log2

(
1 +

ρ2|wH
1 H21f2|2

σ2
1w

H
1 w1 + η1|wH

1 H11f1|2

)
+ log2

(
1 +

ρ1|wH
2 H12f1|2

σ2
2w

H
2 w2 + η2|wH

2 H22f2|2

)
. (3)
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Fig. 1. Two-node FD network with analog TX/RX beamforming.

R is invariant to scalings of wj , so ‖wj‖ = 1, j ∈ {1, 2} can
be assumed. Thus, letting εij , ρi

σ2
j

for i 6= j and εjj , ηj
σ2
j

,
(3) can be rewritten as

R = log2

(
1 +

ε21|wH
1 H21f2|2

1 + ε11|wH
1 H11f1|2

)
+ log2

(
1 +

ε12|wH
2 H12f1|2

1 + ε22|wH
2 H22f2|2

)
. (4)

As in [15], [16], we shall assume that all channel matrices
Hij are known. The beamforming design problem in this FD
network can be stated as the maximization of R in (4) with
respect to f1, f2, w1, w2 subject to the following constraints:
1) Unit-norm constraints: All four vectors f1, f2, w1, w2

have unit norm.
2) Constant-amplitude (CA) constraints: Each of the en-

tries of vectors f1, f2, w1, w2 has constant magnitude.
An upper bound to (4) is obtained assuming no SI (ε11 =
ε22 = 0) and dropping the CA constraints. Then R ≤ R?,
with

R? , log2
(
1 + ε21σ

2
1(H21)

)
+ log2

(
1 + ε12σ

2
1(H12)

)
(5)

where σ1(A) denotes the largest singular value of matrix A.
Although this upper bound is not achievable in general, it
provides a useful benchmark, to be used in Sec. V.

III. THE ZF-MAX-POWER DESIGN

Even without CA constraints, maximizing (4) is not a
convex problem. An alternative approach suggested in [15]
neglects CA constraints and imposes new “Zero-Forcing” (ZF)
constraints on the SI. The resulting problem is:

P1 : max
{fi},{wj}

log2
(
1 + ε21|wH

1 H21f2|2
)

+ log2
(
1 + ε12|wH

2 H12f1|2
)

(6)
s. to ‖f1‖ = ‖f2‖ = ‖w1‖ = ‖w2‖ = 1, (7)

wH
1 H11f1 = wH

2 H22f2 = 0. (8)

We now review this approach in detail as it is the basis of
our proposed analog design. Note that the ZF constraints (8)
actually cancel SI in the analog domain, specifically at the
input of the receive RF chains in Fig. 1. However, because of



the coupling between variables due to (8), P1 does not admit
a closed-form solution. A cyclic maximization-based scheme
termed ZF-Max-Power was proposed in [15], which attempts
to solve P1 iteratively:
1) In the first step, hold the TX beamforming vectors f1,

f2 fixed to their values from the previous iteration, and
then maximize (6) w.r.t. the RX beamforming vectors
w1, w2 subject to the unit norm constraints (7) and the
ZF constraints (8). Then the maximization w.r.t. w1, w2

decouples into the following two subproblems:

max
w1

|wH
1 H21f2|2 s.to ‖w1‖ = 1, wH

1 H11f1 = 0, (9)

max
w2

|wH
2 H12f1|2 s.to ‖w2‖ = 1, wH

2 H22f2 = 0. (10)

2) The RX beamforming vectors w1, w2 so obtained are held
fixed, and then the maximization is performed w.r.t. f1, f2:

max
f1

|fH1 HH
12w2|2 s.to ‖f1‖ = 1, fH1 HH

11w1 = 0, (11)

max
f2

|fH2 HH
21w1|2 s.to ‖f2‖ = 1, fH2 HH

22w2 = 0. (12)

These two steps are then iterated until convergence. Some
pertinent comments regarding ZF-Max-Power are:
• Each of the corresponding subproblems (9)-(12) can be

solved in closed form, as discussed in Sec. IV.
• As in any cyclic maximization procedure, at each step the

objective function is increased (or at least not decreased).
Since the objective is bounded above, the sequence of
values of the objective through the iterations is convergent.
This does not necessarily imply convergence to the global
maximum of P1, although in practice this method seems
to work very well [15], [16]: the corresponding solution is
often very close to the upper bound (5).

• In order to enforce the original CA constraints, which
were neglected in P1, the authors of [16] proposed
the following. After convergence of ZF-Max-Power, the
corresponding solutions for the beamforming vectors are
projected onto the set of unit-norm CA vectors

VN =

{
v ∈ CN

∣∣∣ vi = 1√
N
ejθi , i = 1, . . . , N

}
(13)

by dividing each entry of the corresponding vector by its
magnitude and then scaling the result by the inverse of
the square root of the vector dimension. However, this
projection step incurs a very significant loss in sum rate.

Thus, although the ZF-Max-Power method seems suitable for
digital beamforming systems, it does not provide a satisfactory
solution for analog beamforming architectures. A modified
design overcoming this drawback is presented next.

IV. PROPOSED ANALOG DESIGN

ZF-Max-Power performs poorly with analog beamforming
because once the obtained solutions are projected onto the set
of CA vectors, the resulting vectors are likely to violate the
ZF constraints. The resulting SI may be significant, translating
into a large performance loss; this suggests that ensuring that
the ZF constraint holds for the final precoders and combiners

is of paramount importance. Thus, rather than projecting the
final solution after convergence, we propose to seek a vector
simultaneously satisfying the ZF and CA constraints at each
iteration of the cyclic maximization procedure.

Specifically, recall that at each iteration of ZF-Max-Power,
subproblems (9)-(12) must be solved. These four subproblems
share the same generic form:

max
x
|xHa|2 s. to xHc = 0, xHx = 1, (14)

where a, c ∈ CN are given vectors and, depending on the
particular iteration, x ∈ CN represents either a precoder fi or
a combiner wj . The solution x? to (14) is as follows:

x̃ =

(
I − ccH

‖c‖2

)
a, x? =

x̃

‖x̃‖
, (15)

which can be interpreted as (i) project vector a onto the
subspace orthogonal to c to obtain x̃ (since I − ccH

‖c‖2 is the
projection matrix onto such subspace); (ii) project the result
x̃ onto the set of unit-norm vectors.

In the proposed modification of ZF-Max-Power, we intro-
duce additional constraints in the basic subproblem, so that its
solution is a CA vector. Specifically, we replace (14) with

max
x
|xHa|2 s. to xHc = 0, x ∈ VN . (16)

Note that the constraint x ∈ VN subsumes both the CA and
unit-norm constraints.

With this additional CA constraint, however, the new sub-
problem (16) does not have a closed-form solution anymore.
Regarding feasibility, a necessary and sufficient condition can
be found (see the Appendix for the proof) for the existence of
a CA vector orthogonal to a given vector:

Lemma 1. Let c = [ c1 · · · cN ]T . Then a CA vector
x ∈ VN satisfying xHc = 0 exists if and only if

1

N

N∑
i=1

|ci| ≥
2

N
max

1≤i≤N
{|ci|}. (17)

Thus, suppose that the entries of c are random and i.i.d.
Under mild assumptions on their distribution, (17) will be
satisfied as N →∞ with probability one. Since N stands for
Nt,i or Nr,j depending on the subproblem, this suggests that
feasibility should not be an issue with sufficiently large arrays.
In view of this, we propose to tackle (16) by using alternating
projections to find a feasible vector. The method of alternating
projections is a well-known scheme to seek a point in the
intersection of two sets; when the sets are closed and convex,
the scheme is known as projection onto convex sets (POCS),
and it converges to a point in the intersection [17]. In the
general case convergence is not guaranteed, but nevertheless
the method is routinely applied to nonconvex problems with
good results [18].

The proposed iteration to approximately solve (16) is ini-
tialized at a point providing a large value of the objective, with
the hope that successive projections will remain in its vicinity.
Specifically, we set x(0) = a, and for k = 1, 2, . . ., do:



1) Projection onto the subspace orthogonal to c:

x̃ =

(
I − ccH

‖c‖2

)
x(k−1). (18)

2) Projection onto the set of unit-norm CA vectors VN :

x
(k)
i =

1√
N

x̃i
|x̃i|

, i = 1, . . . , N. (19)

These inner iterations (alternating projections) should be
run for each of the four basic subproblems, which in turn
are part of the original, outer iterations (cyclic maximization)
of ZF-Max-Power. The overall procedure is summarized in
Algorithm 1.

Algorithm 1 Precoder-combiner design under CA constraints
1: function ALTPR(a, c, N )
2: x← a
3: for k ← 1, Ninner do
4: x̃← x− cHx

‖c‖2 c
5: for i← 1, N do
6: xi ← 1√

N

x̃i
|x̃i|

7: end for
8: end for
9: return x

10: end function

11: Input: H12, H21, H11, H22

12: Initialize w1, f1, w2, f2

13: for t← 1, Nouter do
14: w1 ← ALTPR(H21f2,H11f1, Nr,1)
15: w2 ← ALTPR(H12f1,H22f2, Nr,2)
16: f1 ← ALTPR(HH

12w2,H
H
11w1, Nt,1)

17: f2 ← ALTPR(HH
21w1,H

H
22w2, Nt,2)

18: end for

V. NUMERICAL RESULTS

Consider the setting of Fig. 1 with the two FD nodes having
their antennas arranged in uniform linear arrays (ULAs) with
λ/2 separation between adjacent elements (λ is the wave-
length). The distance and angle between the TX and RX ULAs
of each node are respectively d = 2λ and ω = π

6 in both cases,
see [16, Fig. 2].

For the node-to-node channels H12, H21, we consider the
narrowband clustered channel model from [14], with Ncl scat-
tering clusters, each of which contributing Nray propagation
paths. The channel matrices are then given by

Hij =

Ncl∑
k=1

Nray∑
`=1

βk,`ar(φ
j
k,`)a

∗
t (θ

i
k,`), (20)

with βk,` the complex gain of the `th ray in the kth cluster,
and at(θ

i
k,`) and ar(φ

j
k,`) the antenna array steering and

response vectors at the transmitter and receiver, respectively,
evaluated at the corresponding azimuth angles of departure
from transmitter at node i, θik,`, or arrival at node j, φjk,`. In the
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Fig. 2. Performance results (500 Monte Carlo runs). Self-interference to noise
ratio is 30 dB at both nodes. Nt,1 = Nt,2 = 32, Nr,1 = Nr,2 = 16.

simulations, we take Ncl = 6 clusters and Nray = 8 paths per
cluster. The path gains are independently drawn from a circular
complex Gaussian distribution, all with the same variance. The
angles of departure and arrival are random, with uniformly
distributed mean cluster angle and angular spreads of 20◦.

We assume that the TX and RX arrays of each node are
close to each other, so that a line-of-sight near-field model is
adopted for the SI channels H11, H22 [3], [4], [15], [16]:

[Hii]pq =
1

d
(i)
pq

e−j2π
d
(i)
pq
λ , (21)

with d(i)pq the distance between the p-th antenna of the TX array
and the q-th antenna of the RX array of node i. All channel
matrices are normalized so that trHH

ijHij = Nt,iNr,j .
Fig. 2 shows the sum rate obtained by different designs, in

terms of the SNR ε12 = ε21 which is set equal at both nodes,
when the array sizes are Nt,1 = Nt,2 = 32 and Nr,1 = Nr,2 =
16. The SI-to-noise ratios are ε11 = ε22 = 30 dB. For ZF-
Max-Power, 50 cyclic-maximization iterations were run. In the
proposed design, for each of those 50 outer iterations, different
number of alternating-projection inner iterations were tested.
In all cases, the precoders and combiners were randomly
initialized.

The performance of the all-digital (i.e., no CA constraint)
ZF-Max-Power design is very close to the upper bound (5),
but when the corresponding solution is projected onto the set
of CA vectors (method 2 from [16]), a very significant perfor-
mance loss is observed, in agreement with [16]. The angle
search approach (method 1 from [16]) performs somewhat
better at the price of a much higher computational cost. In
contrast, the proposed design is able to provide a CA solution
at a moderate loss with respect to the all-digital solution
(within 1.2 dB with 10 inner iterations). A feasible solution
was found in all Monte Carlo trials.
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Fig. 3 shows results under the same conditions, except for
the array sizes which were set to Nt,1 = Nt,2 = 8 and
Nr,1 = Nr,2 = 8; similar trends to those in Fig. 2 can be
observed. Again, a feasible solution was always found, even
for these relatively small array sizes. In this case, with 10
inner iterations the proposed method approaches the all-digital
design within 1.4 dB.

VI. CONCLUSION

We have proposed an effective design of analog beamform-
ers for Full-Duplex mmWave communication, simultaneously
achieving spatial SI suppression and sizeable beamforming
gain. This design is based on the method of alternating projec-
tions and exhibits convergence in a few iterations, without any
noticeable feasibility problems. As with any beamforming de-
sign, knowledge of the channel matrices involved is required.
In particular, estimation of mmWave SI channels is not a well-
studied area, clearly deserving future attention.

APPENDIX: PROOF OF LEMMA 1

Without loss of generality, assume that |c1| ≥ |c2| ≥ · · · ≥
|cN |. Note that the existence of a CA vector x ∈ VN with
xHc = 0 is equivalent to the existence of a polygon in R2

with sides |c1|, |c2|,. . . ,|cN |.
Suppose first that (17) does not hold, i.e., |c1| > |c2|+ · · ·+

|cN |. Since for any a, b ∈ C it holds that |a+b| ≥ |(|a|−|b|)|,
one has that, for any angles θ1,. . . ,θN ,∣∣∣∣∣

N∑
i=1

cie
jθi

∣∣∣∣∣ ≥
∣∣∣∣∣
(
|c1| −

∣∣∣∣∣
N∑
i=2

cie
jθi

∣∣∣∣∣
)∣∣∣∣∣

≥

∣∣∣∣∣
(
|c1| −

N∑
i=2

|ci|

)∣∣∣∣∣ > 0, (22)

which proves the first part of the result.
To prove the second part, assume now that (17) does hold,

i.e., |c1| ≤ |c2| + · · · + |cN |, and let us find a valid polygon.

If N = 2, the proposition is trivial because then |c1| = |c2|.
If N = 3, the result follows from the fact that a triangle
(degenerate if |c1| = |c2| + |c3|) with sides |c1|, |c2| and
|c3| can be constructed. If N > 3, we proceed iteratively
as follows. Let L0 = {`(0)i , 1 ≤ i ≤ N} with `

(0)
i , |ci|,

1 ≤ i ≤ N . For k ≥ 1, let Lk = {`(k)i , 1 ≤ i ≤ N − k}
be the set obtained from Lk−1 by adding its two smallest
elements and keeping the rest, and then reordering so that
`
(k)
1 ≥ `(k)2 ≥ · · · ≥ `(k)N−k. Clearly, at each stage the inequality
`
(k)
1 ≤ `(k)2 + · · ·+ `(k)N−k holds. Therefore, for k = N −3 it is

possible to construct a triangle with sides `(N−3)1 , `(N−3)2 and
`
(N−3)
3 , which is the desired polygon.
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