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Abstract—This paper considers the design of hybrid precoders
and combiners for mmWave MIMO systems with per-antenna
power constraints and the additional limitations introduced by
the phase-shifting network in the analog processing stage. Previ-
ous hybrid designs were obtained using a total power constraint,

but in practical implementations per-antenna constraints are
more realistic, specially at mmWave, given the large number of
power amplifiers used in the transmit array. Assuming perfect
channel knowledge, we obtain first an approximation to the all-
digital solution for the precoder and the combiner given the
per-antenna constraints. Then, we develop a new method for the
design of the hybrid precoder and combiner which attempts to
match such all-digital approximation. Simulation results show
the effectiveness of the proposed approach, which performs close
to the all-digital solution.

I. INTRODUCTION

Hybrid precoding is a MIMO architecture that reduces cost

and power consumption of large antenna arrays in mmWave

MIMO systems, by partitioning the spatial processing into

the analog RF and digital baseband (BB) domains [1], [2].

Since the pioneering work in [3], many different designs

have been proposed [4]–[10]. These approaches achieve high

spectral efficiency, close to that of the all-digital solution [11]

when a narrowband clustered channel model is considered. All

these designs are obtained assuming a constraint on the total

transmit power. Per-antenna power constraints, though, are

more realistic, since each antenna element in the transmit array

is equipped with its own power amplifier. This is particularly

important in mmWave systems, in which the array comprises

a much larger number of antennas and amplifiers than in

conventional cellular systems.

The design of optimal precoders and combiners maximiz-

ing spectral efficiency for a conventional (all-digital) MIMO

system subject to per-antenna power constraints has not been

clearly solved in the previous literature. The work in [12],

[13] considers the maximization of the mutual information

with per-antenna power constraints in a multistream single user

MIMO system. To this end, an iterative approach is proposed
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for the design of the optimal precoder. Since the focus was

on mutual information, the design of the combiner was not

addressed in [12], [13]. As shown in [14], maximizing the

mutual information amounts to minimizing the determinant

of the error covariance matrix, assuming a minimum Mean

Squared Error linear receiver.

Alternative criteria other than spectral efficiency have also

been considered for all-digital MIMO transceivers under per-

antenna power constraints. In [15], the precoder and combiner

are chosen to maximize the receive SNR, whereas [16] pro-

poses an MMSE precoder design minimizing the bit error

rate of the single-user MIMO system. The multiuser MIMO

setting with per-antenna power constraints was considered in

[17], seeking the optimum precoder and combiner to maximize

SINR for the different streams. The downlink channel in a

multiuser system is also considered in [18], where the maxi-

mum transmit power on each transmit antenna is minimized,

subject to per-user SINR constraints.

In this paper, we develop hybrid precoders and combiners

with per-antenna power constraints for mmWave systems, in

which the RF analog processing is implemented by means of

phase shifters. Whereas previous hybrid transceiver designs

consider the maximization of the mutual information, thus

decoupling the designs of the precoder and the combiner, and

with a total power constraint, we address the maximization

of the spectral efficiency by jointly designing the precoder

and combiner under per-antenna constraints. To this end,

we first consider an all-digital design without any hardware-

related constraints. Since the resulting problem is difficult, we

introduce a relaxation leading to a suboptimal solution that can

be obtained in closed form. Once the jointly optimum precoder

and combiner for the relaxed problem are obtained, we propose

a heuristic strategy to cope with the hardware limitations of

the analog RF stages. We obtain first an approximation of the

RF precoder, optimizing the baseband precoder in a second

stage. The combiner is designed using a similar approach.

Simulation results show that the spectral efficiency achieved

by the hybrid design is very close to that of the all-digital

solution, while satisfying at the same time the individual per-

antenna constraints.
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Fig. 1. Single-user mmWave hybrid system architecture.

II. SYSTEM MODEL

Consider a single-user mmWave MIMO system as shown

in Fig. 1. The transmit terminal is equipped with Nt transmit

antennas and Lt ≤ Nt RF chains, whereas the receive terminal

has Nr antennas and Lr ≤ Nr RF chains. A total of Ns data

streams are to be transmitted, with Ns ≤ min{Lt, Lr}.
At the transmitter, a linear precoder F ∈ CNt×Ns is applied

to the symbol vector s ∈ CNs , with E[ss∗] = 1

Ns

INs
.

The precoder output x = Fs is sent over a narrowband,

block-fading channel. Assuming perfect carrier and timing

synchronization, the received signal can be written as

r =
√
ρHFs+ n, (1)

where H ∈ CNr×Nt is the channel matrix with E[‖H‖2F ] =
NtNr, ρ denotes the average transmit power per symbol,

and n ∈ CNr is the zero-mean Gaussian noise vector with

E[nn∗] = INr
. Since the noise has unit variance, ρ can be

identified with the signal-to-noise ratio (SNR).

The receiver applies a linear combiner W ∈ CNr×Ns to the

received signal in order to obtain

y = W ∗r =
√
ρW ∗HFs+W ∗n. (2)

A hybrid architecture is assumed for the precoder and the

combiner. The hybrid precoder F = FRFFBB consists of

a baseband precoder FBB ∈ CLt×Ns followed by an RF

precoder FRF ∈ CNt×Lt . Analogously, the hybrid combiner

W = WRFWBB is composed of an RF combiner WRF ∈
C

Nr×Lr and a baseband combiner WBB ∈ C
Lr×Ns . Since

the RF precoder and combiner are implemented in the analog

domain, they are subject to hardware-specific constraints. In

particular, we assume that FRF and WRF are implemented

with a network of variable analog phase shifters, so that every

entry in these matrices has unit magnitude.

III. PROBLEM FORMULATION

Assuming perfect channel state information at the transmit-

ter and receiver, the problem considered is to design the hybrid

precoder and combiner to maximize the spectral efficiency. If

we define the effective channel and the noise covariance matrix

after combining, respectively, as

He , W ∗HF = W ∗
BBW

∗
RFHFRFFBB, (3)

Re , W ∗W = W ∗
BB

W ∗
RF

WRFWBB, (4)

then the spectral efficiency can be written as

R(F ,W ) = log
2

∣

∣

∣

∣

INs
+

ρ

Ns

H∗
e
R−1

e
He

∣

∣

∣

∣

. (5)

We consider individual power constraints at each of the Nt

transmit antennas:

e∗jFF ∗ej ≤ pj, j = 1, . . . , Nt, (6)

where ej denotes the j-th element of the standard basis, and

pj > 0 is the available average power at the j-th transmit

antenna, j = 1, . . . , Nt. In addition, the hardware-specific

constraints

FRF ∈MNt×Lt , WRF ∈MNr×Lr (7)

must hold as well, where Mm×n denotes the set of m × n

matrices with unit-magnitude entries.

To get some insight about hybrid precoder and combiner

design, we will study first the corresponding problem in which

the hardware-specific constraints (7) are removed.

IV. ALL-DIGITAL DESIGN

Assume for the moment an all-digital implementation of the

precoder and combiner, and consider the problem of jointly

maximizing R(F ,W ) directly with respect to F and W

subject to the per-antenna power constraints (6). A related

problem was considered in [13], namely the maximization with

respect to F of the mutual information

I(F ) = log
2

∣

∣

∣

∣

INs
+

ρ

Ns

F ∗H∗HF

∣

∣

∣

∣

, (8)

subject to the constraints (6). There, an iterative algorithm was

proposed to compute the optimal precoder; it was also shown

in [13] that such optimal precoder must satisfy all per-antenna

power constraints (6) with equality. This result can be extended

as follows (see Appendix A for the proof):

Lemma 1. Consider the problem

max
F ,W

R(F ,W ) s. to e∗jFF ∗ej ≤ pj , j = 1, . . . , Nt.

(9)

Then the optimal precoder for (9) satisfies all the per-antenna

power constraints with equality.

Since the solution to problem (9) is difficult to characterize

beyond the result in Lemma 1, we resort to suboptimal but

tractable approximations. For this, note that the average power

at any transmit antenna can be upper bounded as

e∗jFF ∗ej ≤ σ2

1
(F ), (10)

where σ1(F ) denotes the largest singular value of F (it consti-

tutes the spectral norm of F ). Hence, if we let p0 , minj{pj},
then the set of precoders satisfying σ2

1
(F ) ≤ p0 is feasible for

problem (9). Consider now the following “relaxed” problem:

max
F ,W

R(F ,W ) s. to σ2

1
(F ) ≤ p0. (11)

It follows that the solution to problem (11) is feasible for

problem (9), although it will be suboptimal in general. Our



interest in problem (11) stems from the fact that it can be

solved in closed form:

Theorem 1. Let Φ ∈ CNr×Ns and Γ ∈ CNt×Ns respectively

comprise the Ns left and right singular vectors of the channel

matrix H corresponding to the Ns largest singular values.

Then the solution to problem (11) is given by

F =
√
p0ΓQ, W = ΦT , (12)

with Q ∈ CNs×Ns an arbitrary unitary matrix, and T ∈
CNs×Ns an arbitrary invertible matrix.

The proof is in Appendix B. Note that the optimum precoder

for problem (11) is semiunitary with uniform power allocation

across the Ns data streams. If one is to take such precoder

as an approximate, suboptimal solution to problem (9), then

performance can be improved by optimizing such power

allocation. Specifically, suppose that, in view of Theorem 1,

we take W = Φ, and F = Γ∆ with ∆ = diag{ δ1 · · · δNs
},

and then maximizeR in terms of ∆ subject to the per-antenna

power constraints. Then the problem becomes

max
∆

R(Γ∆,Φ) = log
2

∣

∣

∣

∣

INs
+

ρ

Ns

Σ
2
∆

2

∣

∣

∣

∣

(13)

s. to e∗jΓ∆
2
Γ
∗ej ≤ pj , j = 1, . . . , Nt,

where Σ = diag{ σ1 · · · σNs
} comprises the Ns largest

singular values of H . Letting γjk denote the (j, k)-th element

of Γ, (13) can be explicitly written as

max
{δ2

k
}

Ns
∑

k=1

log2

(

1 +
ρσ2

k

Ns

δ2k

)

(14)

s. to

{

∑Ns

k=1
|γjk|2δ2k ≤ pj , j = 1, . . . , Nt,

δ2k ≥ 0, k = 1, . . . , Ns.

Since problem (14) is convex, the corresponding power allo-

cation coefficients {δk} can be efficiently found. The standard

waterfilling problem is obtained if the per-antenna constraints

in (14) are replaced by a total power constraint.

V. HYBRID PRECODER DESIGN

The fact that any orthonormal basis of the subspace spanned

by the columns of Γ is optimal for problem (11) as per

Theorem 1 motivates the following approach to the design

of the hybrid precoder F = FRFFBB:

max
FBB,FRF

‖Γ∗FRFFBB‖2F (15)

s. to

{

FRF ∈MNt×Lt ,

e∗jFRFFBBF
∗
BB

F ∗
RF

ej ≤ pj , j = 1, . . . , Nt,

which incorporates the hardware-specific as well as the per-

antenna power constraints. Note that the objective in (15) does

not change if we replace Γ with ΓQ, with Q any unitary

matrix. In [3], it was shown that, under certain aproximations,

maximizing ‖Γ∗FRFFBB‖2F was equivalent to maximizing the

mutual information. As also mentioned in [3], this term is

related to the chordal distance between Γ and FRFFBB in the

Grassmann manifold when FRFFBB is made semiunitary.

Problem (15) is intractable due to the hardware constraints.

To proceed, we obtain first a reasonable approximation for

the RF precoder, and then optimize the baseband precoder.

As shown in [4], a sensible choice for the RF precoder is the

projection of the channel right singular vectors ontoMNt×Lt .

Specifically, let Γ̃ ∈ CNt×Lt comprise the Lt right singular

vectors of H corresponding to the Lt largest singular values,

and let γ̃jk denote the (j, k)-th element of Γ̃. Then we set

(FRF)jk =
γ̃jk

|γ̃jk|
,

{

j = 1, . . . , Nt,

k = 1, . . . , Lt.
(16)

With this choice for the RF precoder FRF, we propose to find

FBB according to the following design:

max
FBB

‖Γ∗FRFFBB‖2F (17)

s. to e∗jFRFFBBF
∗
BB

F ∗
RF

ej ≤ pj, j = 1, . . . , Nt.

An approximate solution to (17) can be found as follows. First,

consider an SVD FBB = UFΣFV
∗
F , with UF ∈ CLt×Ns and

ΣF ,VF ∈ CNs×Ns , so that FBBF
∗
BB

= UFΣ
2

FU
∗
F . Then let

A = F ∗
RF

Γ ∈ CLt×Ns , so that the objective in (17) becomes

‖A∗FBB‖2F = tr[A∗FBBF
∗
BB

A]. Since neither the objective

nor the constraints in (17) depend on VF , we can take VF =
INs

without loss of optimality.

Now let A = UAΣAV
∗
A be an SVD of A, with UA ∈

CLt×Ns and ΣA,VA ∈ CNs×Ns . Then

‖A∗FBB‖2F = tr[AA∗FBBF
∗
BB] ≤ tr[Σ2

AΣ
2

F ], (18)

where the last step in (18) follows from Von Neumann’s trace

inequality [19] (singular values in ΣA and ΣF are assumed

sorted in descending order). Equality is achieved in (18) if

UF = UA. Thus, it is reasonable to choose the baseband

precoder as FBB = UAΣF , and then find ΣF by solving

max
ΣF

tr[Σ2

AΣ
2

F ] (19)

s. to e∗jFRFUAΣ
2

F (FRFUA)
∗ej ≤ pj , j = 1, . . . , Nt.

If we let B = FRFUA, with elements bjk , and

ΣA = diag{ σA,1 σA,2 · · · σA,Ns
}, (20)

ΣF = diag{ σF,1 σF,2 · · · σF,Ns
}, (21)

then (19) can be explicitly written as

max
{σ2

F,k
}

Ns
∑

k=1

σ2

A,kσ
2

F,k (22)

s. to

{
∑Ns

k=1
|bjk|2σ2

F,k ≤ pj , j = 1, . . . , Nt,

σ2

F,k ≥ 0, k = 1, . . . , Ns,

which is a linear program in the allocation variables σ2

F,k.

Note that the proposed design for the baseband precoder

FBB is not, in general, the exact solution to (17). This is

because choosing UF = UA is optimal if the per-antenna

power constraints are ignored, but it need not be so once they

are taken into account.



VI. HYBRID COMBINER DESIGN

To design the combiner W = WRFWBB, we start from the

following two observations. First, in view of Theorem 1, any

basis of the Ns-dimensional subspace spanned by the columns

of Φ is optimal for problem (11). Second, by choosing the

combiner to have orthonormal columns, there is no loss of

optimality in terms of spectral efficiency. These suggest the

following design for the hybrid combiner:

max
WBB,WRF

‖Φ∗WRFWBB‖2F (23)

s. to

{

WRF ∈ MNr×Lr ,

(WRFWBB)
∗(WRFWBB) = INs

.

Using a similar approach to that in Sec. V, we first obtain a

reasonable approximation for the RF combiner WRF, and then

optimize the baseband combiner WBB. Thus, let Φ̃ ∈ CNr×Lr

comprise the Lr left singular vectors of H corresponding to

the Lr largest singular values, and let φ̃jk be the (j, k)-th
element of Φ̃. Then

(WRF)jk =
φ̃jk

|φ̃jk|
,

{

j = 1, . . . , Nr,

k = 1, . . . , Lr.
(24)

With this choice for WRF, we find now WBB by solving

max
WBB

‖Φ∗WRFWBB‖2F (25)

s. to (WRFWBB)
∗(WRFWBB) = INs

.

The solution to problem (25) is as follows. Consider the

SVD WRF = UWΣWV ∗
W . Then the set of matrices WBB

satisfying the constraint (WRFWBB)
∗(WRFWBB) = INs

is

given by WBB = VWΣ
−1

W Z, with Z ∈ CLr×Ns an arbitrary

matrix with orthonormal columns. Therefore,

‖Φ∗WRFWBB‖2F = ‖Φ∗UWZ‖2F , (26)

which is maximized subject to Z∗Z = INs
when Z spans

the same subspace as the Ns left singular vectors of U∗
WΦ

corresponding to the Ns largest singular values.

The overall proposed design is summarized in Algorithm 1.

Algorithm 1 Hybrid precoder and combiner design with per-

antenna power constraints

Precoder:

Set Γ̃ = (γ̃jk)← Lt dominant right singular vectors of H

Compute RF precoder FRF by (16)

Set Γ← Ns dominant right singular vectors of H

Set A = F ∗
RF

Γ with SVD A = UAΣAV
∗
A

Set B = (bjk) = FRFUA

Compute ΣF by solving the linear program (22)

Compute baseband precoder FBB = UAΣF

Combiner:

Set Φ̃ = (φ̃jk)← Lr dominant left singular vectors of H

Compute RF combiner WRF by (24)

SVD: WRF = UWΣWV ∗
W

Set Z ← Ns dominant left singular vectors of U∗
WΦ

Compute baseband combiner WBB = VWΣ
−1

W Z

VII. PERFORMANCE EVALUATION

In this section we provide simulation based numerical

evidence for the performance of the proposed hybrid precoding

and combining methods with per-antenna power constraints,

highlighting the tradeoff between spectral efficiency and per-

antenna power consumption.

We consider the narrowband clustered channel model from

[3], with Ncl scattering clusters, each of which contributing

Nray propagation paths. The channel matrix is then given by

H =

√

NtNr

NclNray

Ncl
∑

i=1

Nray
∑

ℓ=1

βi,ℓar(φ
r
i,ℓ)a

∗
t (φ

t
i,ℓ), (27)

with βi,ℓ the complex gain of the ℓth ray in the ith cluster, and

at(φ
t
i,ℓ) and ar(φ

r
i,ℓ) the antenna array steering and response

vectors at the transmitter and receiver, respectively, evaluated

at the corresponding azimuth angles of departure or arrival. In

the simulations, we take Ncl = 6 clusters with equal powers

and Nray = 8 paths per cluster. The path gains are indepen-

dently drawn from a circular complex Gaussian distribution.

The angles of departure and arrival are random, with uniformly

distributed mean cluster angle and angular spreads of 7.5◦.

Uniform linear arrays (ULA) are assumed at the transmitter

and receiver, with Nt = 64 and Nr = 16 antennas respectively.

The number of RF chains are Lt = Lr = 4. Results are

averaged over 100 channel realizations.

We compare the proposed hybrid design under per-antenna

power constraints (PPC) as given by Algorithm 1 with two all-

digital designs. The first one assumes a total power constraint

(TPC), the precoder and combiner are taken as the dominant

singular vectors of the channel, and power allocation across

streams is performed via waterfilling. In the second design

we use Pi’s algorithm from [13] to design the precoder under

per-antenna constraints, and then take the combiner from the

channel’s dominant left singular vectors. For the PPC designs,

a uniform power constraint pj = Pa ∀j is placed at all

antennas, whereas for the TPC design the total available power

is NtPa.

Fig. 2 shows the performance of the three designs in terms

of spectral efficiency vs. the SNR ρ, for different number of

data streams Ns. As observed in [13], the all-digital solution

obtained by Pi’s PPC algorithm performs very close to the

TPC waterfilling solution. The proposed PPC hybrid design

achieves spectral efficiencies close to those of Pi’s method,

with a small performance loss which increases with the

number of data streams.

Fig. 3 shows the complementary cumulative distribution of

the power consumed by a given antenna, for both the TPC

waterfilling design and the proposed PPC hybrid approach (for

Pi’s method, the power at each antenna is exactly Pa, as shown

in [13, Th. 1]). It is seen that the proposed hybrid design

always meets the per-antenna constraints but not necessarily

with equality, i.e., there can be antennas whose amplifiers do

not deliver their maximum available power, especially for low

values of Ns; when number of data streams is the same as the

number of RF chains (4 in this example), all antennas are seen
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to transmit at maximum power. The TPC waterfilling design

yields a power distribution with larger spread across antennas,

with peak value decreasing as Ns increases. For example, the

probability of a given antenna transmitting 3 dB above Pa is

0.13, 0.06, and 0.01 for Ns = 1, 2, and 4 respectively. From

Fig. 3, one can estimate the performance loss incurred if the

TPC waterfilling design was to be directly scaled down in

order to meet the per-antenna power constraints; for instance,

if a probability of 0.01 for a given antenna not fulfilling

the constraint is desired, the transmit power would have to

be backed off by approximately 6, 4, and 3 dB respectively

for Ns = 1, 2, and 4, meaning that the corresponding

“SVD+W” curves in Fig. 2 would shift to the right by the

same amounts. This shows the benefits of taking individual

per-antenna constraints into account at the design stage.

VIII. CONCLUSION

We have developed a closed-form approximation for the

digital precoder and combiner maximizing spectral efficiency

in a MIMO system with per-antenna power constraints. Then

we considered a mmWave MIMO system implemented with a

hybrid architecture and developed a heuristic algorithm for the

design of the hybrid precoder and combiner approximating the

all-digital solution. Simulations show that hybrid designs with

per-antenna power constraints achieve spectral efficiencies

close to that of the all-digital solution. We also studied the

power distribution over the antennas resulting from the hybrid

design, finding that the per-antenna constraints are always

met, but not necessarily with equality. The importance of

considering per-antenna power constraints at the design stage

has been shown.

APPENDIX A: PROOF OF LEMMA 1

Let (F0,W0) maximize R(F ,W ) in (5) subject to the per-

antenna power constraints (6), and consider the SVD W0 =
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U0Σ0V
∗
0 . Now fix in (5) the combiner to W0 and consider

the resulting function of F :

R(F ,W0) = log
2

∣

∣

∣

∣

INs
+

ρ

Ns

F ∗H∗U0U
∗
0
HF

∣

∣

∣

∣

, (28)

which is just the mutual information for a channel with matrix

U∗
0
H . By the same argument as that in [13, Th. 1], the

optimum precoder F0, which maximizes (28) under (6), must

satisfy such constraints with equality.

APPENDIX B: PROOF OF THEOREM 1

Considering the SVDs of the precoder and combiner,

F = UFΣFV
∗
F , W = UWΣWV ∗

W , (29)

then it is found that the spectral efficiency R(F ,W ) in (5) is

a function of UF , ΣF and UW alone:

R(F ,W ) = log2

∣

∣

∣

∣

INs
+

ρ

Ns

U∗
WHUFΣ

2

FU
∗
FH

∗UW

∣

∣

∣

∣

,

(30)

where the cyclic property of the determinant |I + AB| =
|I+BA| has been used. Thus, we must maximize (30) subject

to

U∗
WUW = INs

, U∗
FUF = INs

, p0INs
−Σ

2

F ≥ 0. (31)

Let now

ΣF = diag{ ρ1 ρ2 · · · ρNs
}, (32)

X =

(

ρ

Ns

U∗
FH

∗UWU∗
WHUF

)−1

, (33)

so that (30) can be rewritten as

R(F ,W ) = log
2

∣

∣INs
+X−1

Σ
2

F

∣

∣ (34)

= log2
∣

∣X−1
∣

∣+ log2
∣

∣X +Σ
2

F

∣

∣ . (35)



Denoting Xk = X +
∑

i6=k ρieie
∗
i , one has

∣

∣X +Σ
2

F

∣

∣ =

∣

∣

∣

∣

∣

X +

Ns
∑

i=1

ρ2ieie
∗
i

∣

∣

∣

∣

∣

(36)

=
(

1 + ρ2ke
∗
kX

−1

k ek
)

|Xk|. (37)

Since Xk does not depend on ρk, the value of ρ2k ∈ [0, p0]
maximizing

∣

∣X +Σ
2

F

∣

∣ is ρ2k = p0. This is true for every

k = 1, . . . , Ns, hence Σ
2

F = p0INs
is optimal, yielding

R(F ,W ) = log2

∣

∣

∣

∣

INs
+

ρp0

Ns

U∗
WHUFU

∗
FH

∗UW

∣

∣

∣

∣

. (38)

Let C = ρp0

Ns

HUFU
∗
FH

∗, and consider the maximization of

(38) with respect to UW :

R(F ,W ) = log2 |INs
+U∗

WCUW | (39)

= log
2
|INr

+UWU∗
WC| . (40)

For A ∈ Cn×n Hermitian, let λ1(A) ≥ λ2(A) ≥ · · · ≥
λn(A) be its ordered eigenvalues. Using Lemma 3 from [20],

|INr
+UWU∗

WC| ≤
Nr
∏

i=1

(1 + λi(UWU∗
W )λi(C))(41)

=

Ns
∏

i=1

(1 + λi(C)) , (42)

where the second step follows from the fact that

λi(UWU∗
W ) = 1 for 1 ≤ i ≤ Ns and zero otherwise.

The upper bound is achieved if the columns of UW constitute

an orthonormal basis for the subspace spanned by the Ns

dominant eigenvectors of C .

It remains to maximize (42) with respect to UF . Note that

Ns
∏

i=1

(1 + λi(C)) ≤
Nr
∏

i=1

(1 + λi(C))

= |INr
+C|

=

∣

∣

∣

∣

INr
+

ρp0

Ns

HUFU
∗
FH

∗

∣

∣

∣

∣

=

∣

∣

∣

∣

INt
+

ρp0

Ns

UFU
∗
FH

∗H

∣

∣

∣

∣

≤
Nt
∏

i=1

(

1 +
ρp0

Ns

λi(UFU
∗
F )λi(H

∗H)

)

=

Ns
∏

i=1

(

1 +
ρp0

Ns

λi(H
∗H)

)

, (43)

where we have applied again [20, Lemma 3] and the fact that

the only nonzero eigenvalue of UFU
∗
F is 1, with multiplicity

Ns. The upper bound in (43) is achieved if the columns of UF

span the subspace of the Ns dominant right singular vectors of

H , i.e., UF = ΓQ for any unitary Q ∈ CNs×Ns . This yields

HUFU
∗
FH

∗ = ΦΣ
2
Φ

∗, where Φ ∈ CNr×Ns comprises the

Ns dominant left singular vectors of H , and Σ ∈ CNs×Ns

is diagonal with the corresponding Ns largest singular values.

Hence, the optimum UW is of the form UW = ΦR for any

R ∈ CNs×Ns unitary. The maximum value of R is given by

R⋆ =

∣

∣

∣

∣

INs
+

ρp0

Ns

Σ
2

∣

∣

∣

∣

. (44)

This concludes the proof.
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