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ABSTRACT

There has been a recent interest in counterforensics avarsadal
approach to forensic detectors. Most of the existing catorensics
strategies, although successful, are based on heurigtciar and
their optimality is not proven. In this paper the optimal rifi@etion
strategy of a content in order to fool a histogram-basednfios
detector is derived. The proposed attack relies on the gssom
of a convex cost function; special attention is paid to thelllean
norm, obtaining the optimal attack in the MSE sense. In otder
prove the usefulness of the proposed strategy, we employsifid-
cessfully attack a well-known algorithm for detecting deudPEG
compression.

been paid a larger attention due to its practical implicetif3, 4, 5].
This has quickly given rise to counterforensic schemes aac¢hose
proposed in [6, 7], or also in [8], accepted in this confesgremd
where the JPEG quantization detectors proposed in [3, #eShta
tacked by following a variational approach that minimizedistor-
tion function by using a projected subgradient method. torss+
ingly, counter counter-forensics have been also suggestedrly
reflecting the existence of a (so far, iterative) game betviernsic
system designers and adversaries [9].

Lukas and Fridrich [10], and then Pevny and Fridrich [11]dav
proposed double JPEG compression detection algorithmsatter,
to which will devote special attention in this work, was iaity de-

Index Terms— Histogram-based forensics, multimedia foren- signed for steganography, although it is recognized as estoihe

sics, optimal counterforensics strategy, transportétieory.

1. INTRODUCTION

In the last decades, due to both technological and socioalkkvo-
lution, multimedia contents have become precious assélsimi
plicit and explicit value that creators and owners want tesprve.
Parallel to the spread and importance of multimedia costehe
number and power of editing tools that are available everot n
skilled users have also increased, thus compromising tistatrility
of digital assets to the extent that their use as legal ecelénbeing
put into question.

also in forensics. Later, several other double JPEG corsjoresle-
tection schemes have been presented, including [12, 13, Rd]
cently, counterforensic double JPEG attacks have beenpatso
posed, such as the one due to Sutthiwan and Shi [15].

Another problem where this game was played is the Fixed Pat-

tern Noise (FPN) [16] and Photo Response Non-Uniformitysioi
(PRNU) [17] detection, where not just counterforensics],[18it
counter-counterforensics have been also put forward [19].

Although these counterforensic strategies are genenatiyess-
ful, a common characteristic of most of them is that they ab®pti-
mal, implying that their optimality is not proven (or eversdissed)

Passive multimedia forensics has quickly evolved in thé 1asynger any meaningful criterion. An additional drawback ajstn

years to face the challenging problem of assessing the gsige

of them, is that they are aimed at specific forensics prohlemd

coding and editing steps a content has gone through. A lessqfjeir extension to broader scenarios is not straightfciwah re-

already learned in watermarking and steganography rdsetire
emergence of forensics has naturally led to an arms racesbetthe
forensic detector designers aadversaries In fact, this race epito-
mizes the current trend &fdversarial Signal Processir[d] which
considers the existence of a smart adversary in the desigmary
decision functions. In the case of multimedia forensicaneples
of this race are sprouting in the literature. We review soetevant
instances next, noticing that the list is by no means exhaust

markable exception is the recent work by Baghal. [20], where a
general methodology is proposed, which is shown to be aldepie
with two different problems, specifically, gamma-correntand his-
togram stretching.

Leveraging on [20], the objective of this work is to propose a
general (non-targeted) attacking method, with the dititiadeature
of a single target function whose optimization is consiyepur-

Popescu and Farid [2] presented in their seminal work négjus sued in the different steps of the attack design. Specifioat will

well-known resampling detection technique, but also cedaten-
sic attacks aiming at resampling detectors. The case of JoHEG
pression detection is probably one of the forensic problgrashas
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focus our attention on the so-called histogram-based $icatetec-
tors, that take their decisions just based on the histogifzan(@en-
erally, transform-based) function of the input samples.

The remaining of this paper is organized as follows: Sect. 2

presents the main result in this work, deriving the optiniedtegy
(in terms of distortion) that a smart attacker should sedlis $trat-
egy is put into practice in Sect. 3, where the double-JPEGpcesa
sion detector in [11] is optimally attacked. Finally, camgbns and
future work are presented in Sect. 4.



2. MAIN RESULT

In this section we derive the optimal attacking strategyauruertain
distortion conditions.

2.1. Problem formulation

The inverse mapping dif (b;, y) is denoted by ~*(p, y), and
is defined as

ot = ar min i
.y) 8 << s (b y) 2D

Definition: For a given set of histogram bin boundary poiitghe
test statistiap, is histogram-based if there exists a functiop :

Let x be a vector containing the samples of a discrete signal in it§{ — {0, 1} such thaty,(y) = ¢u(H(B,y))forally € Y. O

original spacex is assumed to belong to a finite setc RY. We
assume thak can be transformed through a functigt), yielding
y = f(x), which belongs to a se¥ verifying ) C RY. Further-
more, we will assumg(+) to be a bijection. The identity function,
the full-frame DFT and the block-DCT transform are exampués
this transformation.

A basic element in every forensics system is the forensisotet

¢ = X — {0, 1}, that decides between two alternative hypothesesy” (H (B,y), H(B,y'))

Hy, and H;. For instanceH; can be % is doubly-compressed” and

Hy “x is not doubly-compressed”. In those detectors working én th

transform domaing. is defined in terms of, : J — {0, 1}, so

¢=(x) = ¢, (f(x)). Giveng,, the acceptance and rejection regions

are defined in the original space as
Ri={x€X:¢(x) =k}, k=0,1,

with a similar definition forR}, k = 0, 1.

We are interested in solving the following optimization iplem:
Problem: Givenx € RY and a functiory” : X x X — R, solve
O

* . x /
x" =arg min g¢*(x,x).
X/€RE

A typical choice forg is the squared Euclidean distance, i.e.

Therefore, givers, for a histogram-based test we can define the
equivalent acceptance and rejection sets as

RE = (H(B.y) : u(H(B,y)) = k}, k=0,1.

We introduceg : H x H — R to quantify the similarity be-
tween histograms:

n 9'y,y"). @

= mi
y":H(B,Y")=H(B,Yy')

We can state now the main result in this paper
Lemma: The solution to (1) is equivalent to

H(B,y") 9" (H(B,y), H'(B,y')),

®)
(4)

= min

arg
H(BY')eRE

*

y = a

ar ' (y,¥").

min
Y :H(BY)=H4(B,y¥)
The procedure comprised by the three optimization steps in
Egs. (2-4), can be justified in termsaptimal transportation theory
[22]. It is also reminiscent of the strategy recently pragmbsor
the counterforensics problem by Bamti al. [20], which will be
discussed in detail in Sect. 2.4. At this point we remark that

'work differs from [20] in the strategy of constructing bagh and

g°(x,x') = ||x—x'||?, although perceptual measures like the Struc- &

tural Similarity Index (SSIM) [21] are possible.
Based on the bijective nature $f the previous problem defini-
tion is equivalent to

y" =arg min ¢"(f ' (y). /T (¥),
Y/ERY

wherey™ = f(x*).

For the sake of simplicity, we will limit our discussion toeth
case where there exists a functigh : Y x ¥ — R such that
g*(f ' (y), f'(y)) = ¢*(y,y’). Forinstance, this is met when
is an orthonormal transform and andg? are Euclidean distances.
Under this assumption, we can alternatively work in the dfamm
domain, i.e.,

y" =arg min g%(y.y’). @
Y/eRY

g** directly from ¢” in order to find the attack that optimizes the
target in the original domain.
2.2. Arelevant particular case
For the case wherg? is component-wise additive and depen-
dent on the difference between the input vectors, §¥(y,y’) =
SN g% (yi — yl), eachg¥ is convex, and3 = Y, we can write
yi = H ' (H(yi,y),y),
and it can be shown that
9" (H(B,y), H(B,y")) =
Siig [H ' (Fy) —H T (F.y)] (5)

This result can be seen as the discrete counterpart of dptima

In this paper we are mainly interested on histogram-based deransportation on the real line [22], where instead of thsritiu-

tectors. We will use the cumulative histogramygfwhich is defined
in terms of the boundary points between histogram bins. ipec
cally, if the histogram bins are delimited by the set of peiit=
{bo,bl, .. ~7bn1}1 wherebyg < b1 < ... < b"lv bp = —o0, b"l =
oo, we define the cumulative histogramyin terms of3 as

N
1
H(bz,y) = N E l(yj sz),ZI 1,...,’/7,17
Jj=1

wherel(-) is 1 if its boolean argument is true, afbtherwise. The
definition guarantees that< H(b;,y) < 1. For the sake of sim-
pllClty, we deflneH(B7 y) = [H(b17 y)7 H(b27 y)7 L) H(b"—17 y)]'
while the set containing all the valif (3, y) will be denoted by#.

tion function we use the cumulative histogram. In fact, (Sparo-
vides directions on how to modify into a signal with histogram
H*(B,y"), i.e., to solve (4). Specifically, if we denote lyan or-
dering permutation of, i.e.,yr, < yr; < ...Yny, and byr a
similarly defined ordering of*, then the optimal modification algo-
rithm is nothing but

N (6)
Note that ties in the ordering gfandy* can be arbitrarily reordered
without affecting the value of the target function. Them,tfee par-
ticular case in this section, the original problem invotyitme three
optimizations in (2), (3), and (4), only requires one numerbpti-
mization, i.e. (3).

ya = yh, i=1,...



2.3. Example

Next, we illustrate how the general approach outlined irptteious
sections can be applied to a well-known practical scen&lvisfocus

now on the case of JPEG-compressed images, with DCT histegra

based detection and PSNR as distortion measure. In suchviramk
x would be the pixelsy their block-DCT transformed coefficients,
andg” andg¥ the Euclidean norm.

The result given in the last section indicates that in ordendve
an imagex € R7 to Rj with a minimum MSE (or equivalently,
maximum PSNR), one should seek the histogfdht3, y*) defined
according to (3), which in this case is simply

9" (H(B,y),H(B,y')) =
SN HT (Fy) - HT (E.9)]

Onceyﬁ is found, the optimal modification in the block-DCT coeffi-

cient domain of the original image is implemented as (6). Again,
it is important to note that just one numerical optimizatitive com-
putation of H* (B, y*), is involved in this approach.

from Kerckhoff’s principle), then it is possible to devise aptimal
attack that takes advantage of such knowledge, as we wiititite
in the next Section.

3. EXPERIMENTAL RESULTS

In order to show the validity of our strategy, we focus on trzarfe-
work described in Sect. 2.3. The used forensic detectoeiddble-
JPEG compression detector proposed in [11], and the corside
database is UCIDv2 [24]. Following Kerckhoff’s principlee as-
sume that the detector is perfectly known by the adversary.

The scheme proposed in [11] considgi&x 8-block DCT coef-
ficients, and computes for each of themliésbin histogram, where
each bin is centered at the integer multipliers of the qaatitin step.
These histograms are fed to a SVM with Gaussian kernel. To tra
and test the Support Vector Machine (SVM) used in [11], and de
termine the SVM parameterS and~, 380 images were randomly
chosen for the training an8R0 for testing. Each of those images
was doubly JPEG-compressed, with Quality Factor (QF) ofitke
compression all the values {9, 10, 20, . . ., 100}, while the second

Even though it could be argued that the PSNR used in this seguality factor was fixed tq0, i.e., the SVM was trained for a spe-

tion lacks perceptual significance, it is important to engire that
due to the form of the solution in (6), the attack will not fecon
specific regions of the image, but will be evenly spread olleha
involved DCT coefficients. In fact, the degrees of freedorented
by the ties in (6), which do not affect the PSNR, can also béoéepl
to reduce the perceptual distortion while keeping the PSNRny
case, we note that other distortion measures as the SSIMidatfe
general framework provided in Sect. 2.1, which means trest tlan
be addressed by resorting to the three-stage optimizatiem dpy
Egs. (2-4).

2.4. Comparison with previous art

A result quite similar to the particular case discussed énldist sec-
tion was reported by Eggegt al. in [23], where it was applied to
the minimum Euclidean distortion histogram mapping probia
steganography.

In the forensics field, Barret al. has very recently proposed in
[20] a counterforensics technique which is similar to ouprapch.
However, in Barni et al.’s work different target functiongaised in
the three solution stages (specifically, chi-square, médion diver-
gence and SSIM), instead of a unique target throughout ttieeen
procedure, as it occurs in our case. We remark that pbtiind ¥

directly derive fromg®. This allows us, for instance, to determine

the value of the manipulation distortion in the original dimas a
simple function of the original and the target distorteddgsams.

Therefore, the3-step optimization in [20] is reduced here to a

one-step optimization (the equivalent to histogram realien Barni
etal.’s work, i.e., the determination H”(B, y”)). Once such cumu-
lative histogram is obtained, we give a closed, as opposkielrtiive
or numerical, procedure to compute the signal in the orlginenain
that produces the required histogram with minimal disbortin this
way, the iterative procedures used in [20] are avoided, aitbnse-
quent reduction of the computational cost.

Another significant difference with [20] is that no specificén-
sic detector is used therein; instead the smart attacksrttifind the
mapping strategy that minimizes the Kullback-Leibler djence
(KLD) between the histograms of the modified and originahalg;
the rationale behind this strategy is that the KLD measuregits-
tinguishability between distributions. However, when #tacker is
aware of the particular detector being used (a reasonaflergsion

cific QF, as proposed in [11]. Additionally, all the imagesrevalso
compressed just once with @F70, in order to provide the second
training class to the SVM; consequently, the two classedddtie
SVM for training (and similarly those used for testing) hE®&0 and
380 images, respectively.

Parameterg” and - were chosen following the strategy pro-
posed in [11]; namely, they were sampled in a logarithmic aiom
and then exhaustive search was performed. The critericoh fase
selecting the values was the maximization of the well-knéwea
Under Curve, which resulted i@ = 23 andy = 27°. Once the
SVM has been fixed, we had to decide the detection thresheld th
SVM soft output will be compared to; in this case we tried ttedr
approximately the same value for both probabilities of efie.,
false negative Py,,, and false positiveP;,, that is, the probabili-
ties of respectively deciding that the image was compressed,
when it was actually compressed twice, and viceversa),irohta
Pygy, = 0.1557 and Py, = 0.1478 for a threshold equal te-0.1574.
Furthermore, due to the possible rounding effects in theogiam
probabilities related to the use of a finite number of DCT fioef
cients, a tolerance df.02 was added, so the optimization process
considered a conservative value for the threshold @fl 774.

In order to test the performance of the proposed attackiadr st
egy, a challenging situation was chosen: the attacker wyltb
modify doubly JPEG-compressed images with a first QF as small
as 10, and a second QGF 70, while fooling the detector to decide
that the resulting image was only once compressed. Thisléhou
be achieved maximizing the PSNR between the original deubly
compressed and the attacked versions of each image.

To avoid the possible bias in the results due to reusing isage
from the training and test sets, we decided to use a freshH $80o
images in the performance evaluation. One of those imagess wa
JPEG-compressed only once with ©F70, while the others were
compressed twice: first with GF 10 and then with QE 70. The
once-compressed image was used to move the input image to the
boundary of the detection region, and then start an optimizal-
gorithm.

The PSNR achieved by averaging the MSBis78 dB, while
the minimum PSNR for a single image 38.93 dB, and the max-
imum 40.21 dB. It is important to note that the SVM soft outputs
actually lie around the desired value (i.0.1774), with empirical
mean—0.1741 and variancd.1-10~%. This variability is due to the
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the usual robustness measures, as the ROC, that do noteothed
possibility of smart adversaries.

Among the future lines, we plan to use our methodology to at-
tack other histogram-based detectors. Furthermore, dBB3NR is
known to be an inadequate distortion measure in percepeuaist
we will address the use of other measures as the SSIM. Inghges
as the SSIM is non-convex, it would be worth deriving a convex
proxy that could speed-up the optimization here proposed.
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