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ABSTRACT

One of the key problems in cognitive radio (CR) is the detecti
of primary activity in order to determine which parts of thses-
trum are available for opportunistic access. This detactisk is
challenging, since the wireless environment often resulisry low
SNR conditions. Moreover, calibration errors and impédréetlog
components at the CR spectral monitor result in unceresnti the
noise spectrum, making the problem more difficult. In thiskyave
present a new multiantenna detector which is based on théhfaic
the observation noise processes are spatially uncordeblateereas
any primary signal present should result in spatial coti@ta In
particular, we derive the generalized likelihood ratid {€4_RT) for
this problem, which is given by the quotient between therdeiteant
of the sample covariance matrix and the determinant of iiskal
diagonal version. For stationary processes the GLRT tesgna
totically to the integral of the logarithm of the Hadamartio®f the
estimated power spectral density matrix. Additionally, present
an approximation of the frequency domain detector in the J6WR
regime, which results in computational savings. The pearforce of
the proposed detectors is evaluated by means of numerinalasi
tions, showing important advantages over existing detecto

Index Terms— Cognitive radio, multiple-channel signal detec-
tion, generalized likelihood ratio test, Hadamard ratioherence
spectrum.

1. INTRODUCTION

In the last years the cognitive radio (CR) paradigm has eetkas
a key technology to improve spectrum usage [1]. The bask lide
hind CR is the opportunistic access of some users (secondarg)
to the wireless channel when the licensed (primary) usersnat
transmitting. Therefore, any CR system necessarily reles spec-
trum sensing device for determining which parts of the spect
band are available (spectrum holes). Even when a spectrigrisho
found and exploited, secondary users must periodicallyciche
whether it has been reclaimed by the primary network, in tvhese
the spectrum hole must be quickly vacated.

Detection of primary users in CR is a challenging problemgai
fading and shadowing may result in very weak received pryragy-

nals. This means that the spectrum monitor must operaterin ve

low SNR environments preventing synchronization to andémod-
ing of these signals, even if the modulation format and patars
of primary transmitters were known. A number of detectorgeha

been proposed for CR applications, see [2] and refereneesith
Perhaps the most popular (and computationally cheapestjsdhe
energy detector (ED), which does not require anyriori informa-
tion about the primary system and does not need any sort of syn
chronization. The main drawback of the ED resides in itsitigitg
to uncertainties in the background noise power, which mayltén
undetectable primary signals if the SNR is below certaielleven
as the observation time goes to infinj8}. Alternative approaches
to the ED exploit some features of primary signals, such afoey
stationarity or the presence of pilots. However, these ouslare
sensitive to synchronization errors [4], unavoidable i 8NR con-
ditions.

Another way to improve the detection performance of spettru
monitors is to use multiple antennas. Intuitively, the pree of any
primary signal should result in spatial correlation in thservations;
a feature that can be used for detection since the noise gresat
different antennas can be safely assumed statisticalgpeaident. A
multiantenna ED extension that also exploits knowledgehefpri-
mary spectral emission mask was proposed in [5], but thisreeh
remains sensitive to noise uncertainty. The multiantereteator
suggested in [6] does not need knowledge of the noise vajjdnut
it implicitly assumes that the noise processes are whitenatidthe
same power at all antennas. In practice, calibration elvecome
unavoidable, and thus any deviation from these assumptidhe-
sult in performance degradation.

In this work we propose a multiantenna detector in which ro as
sumptions are made about the primary signal nor the spgutvpt
erties of the noise. Rather, it is exclusively based on tearagtion
that, in the absence of primary transmissions, the obsengatre
spatially uncorrelated. We derive the generalized lilaith ratio
test (GLRT) for the block-diagonal structure of the spaoeetco-
variance matrix, which is asymptotically approximated bg inte-
gral of the log of the Hadamard ratio of the estimated powecsgl
density (psd) matrix. In the low SNR regime, of particulatein
est in CR applications, a computationally cheaper appration of
the frequency domain detector can be derived. The benefitseof
proposed detectors are illustrated by means of some nuathsiia-
ulations.

2. PROBLEM FORMULATION

We address the problem of detecting the presence of a priusany
in a cognitive radio node equipped with antennas, without any



prior knowledge about the primary transmission, the waglehan-
nel, or the noise processes (beyond spatial independdngegrtic-
ular, we test the covariance structure of the vector-vatimed series
{x[n], n = 0,+£1,...}, wherex[n] [z1[n],...,zc[n]]" is a
vector of measurements at time or equivalently,{xz;[n]} is the
time series at théth antenna. The detection problem is given by

Hi : x[n] = s[n] + vn],

Ho : x[n] = v[n],

n=0,...,N -1,
n=20,...,N—1,

wheres|n] is the vector with the samples of the primary signal at

the L antennas, and at timeg andv(n] = [vi[n],...,vr[n]]" is
the additive noise vector, which is assumed to be zero-mieen-c
lar complex Gaussian and spatially white, iB{v;[n]v}[k]} = 0
for ¢ # j and alln, k. No assumptions are made on tieenporal
correlation of the noise processés{v; [n|v; [k]}.

Let us define the data matrix

z1[0]  x1[1] 1[N —1] xi
B 1’2[()] 1’2[1] .'EQ[N — 1] B ng
2 [0] will] N1 |xT
where thei-th row, x! = [;[0], z[1],...,2:[N — 1]], contains

N-samples of the-th time series{z;[n]}, and then-th column is
then-th sample of the vector-valued time serfegn|}. The vector
z = vec(X") stacks the columns &€, and its covariance matrix
is

Ri1 R R7,
H

R=FE [zZH] ) Rz | o,
Rri Rie Rir

The covariance matricdB:x = E [xixy |, 1 < i,k < L capture
all space-time second-order information about the randentovs
{xi}iLzl-

In order to proceed, we need the distribution of
{x[n]} underH;. We take it to be zero-mean, circular complex
Gaussian. In addition to resulting in tractable models asefui
detectors, this assumption is reasonable if the primanyor&tem-
ploys orthogonal frequency division multiplexing (OFDM) mod-
ulation format. Thus, the hypothesis testing problem besom

Hi:z~CN(0,Rq),
7‘[0:ZNC./\/‘(O,R,o)7

whereCN (0, R;) denotes the complex Gaussian distribution with
zero mean and covarian®;. UnderH,, Ry is an unknown pos-
itive definite block-diagonal matrix, i.eRo € Ro, whereRy =
{R|R =diag(Ri1,...,Rrr)}, with the only constraint thaR ;;

is Hermitian positive definite, and undef;, R, € 91, whereft

is the set of unknown positive definite covariance matricéh no
temporal or spatial structure, since we do not use any prforrina-
tion about the primary signals. The block-diagonal strietf the
covariance matrix under the null hypothesis is due to spatieor-
relation of the noise.

3. DERIVATION OF THE GLRT

Let us assume an experiment produciigndependent realizations
of the data matrixX, or equivalentlyz. The joint probability density

function (pdf) for these measurements is the product of tfig, @nd
is given by

M1
p(2[0],...,2[M —1;R) = [] p(zln;R) =
1 R
= WEI(R)M exp{—MTI’ (R R)} ,

whereR is the sample covariance matrix given by,

R. RE .. R,
R_ 1Ml*1 []H[]_ R21 R22 REQ

= M nzo z\n|z n| = . 5
RLl RL2 RLL

andR,, € CV*¥ is the{i, k}-th block of R, which represents the
estimated cross-covariance matrix betweenihsample windows
of thei-th andk-th time series.

To solve our hypothesis testing problem, we will use the gen-
eralized likelihood ratio test (GLRT). Although it is knovthat the
GLRT is not optimal in the Neyman-Pearson sense, it prowiges!
performance [7]. The GLRT foto : R € Rovs. H1 : R € 1 is
based on the generalized likelihood ratio (GLR) [7]

max p (z[0],....z[M — 1[;R)
A= o
fnax p (2(0],...,2[M —1;R)

_ det(Rglf{l)M eXp{—Mtl’ [(Rgl - R;1> R] } ,

whereR, andRy are the maximum likelihood estimatesRfunder
hypothese${, andH,, respectively.

Now, we will obtain the ML estimates of the covariance masic
under both hypotheses, for which we need to assliings N. As
previously pointed out, undét, the correlation matriR is block-
diagonal, with the only constraint thRt;; is Hermitian non-negative
definite. That is, we force spatial uncorrelatedness butaddance
temporal stationarity. Then, it is easy to show that the Miineste

of Ro is Ro = dlag Rll, RQQ, . RLL .

ForH; we takeR; to be the set of matricd’, with no temporal
or spatial structure imposed, with the only constraint efatR . is
an Hermitian non-negative definite matrix. Then, the ML rastie
of R, is given byR; = R. Taking the ML estimates into account,

the GLRT is
ae()] "

11 der(s)|

which is a special case of a general result in [7]. Specificétle
GLRT is ageneralizedHadamard ratio. Interestingly, this statistic
is invariant to independent linear transformations of thetseries,
including any arbitrary filtering of the sequendes [n]}.

1
N_

AN — det(Rglﬁl) NN

B

3.1. Frequency Domain Detector

The time domain detector in (1) was derived without any stedtry
assumption. When the time serigs;[n]},i =1, ..., L, are jointly



stationary random vectors whose dimensions increase utitioaind
(jointly stationary time series) and following an argumatung the
lines of [8], the limiting form of (1) { fixed andN — oo) may be
approximated by

exp /log det [é (eﬁ)] %
| = \NT — - )
exp / log [E Szz <6J9)] %

whereS(e’?) is a standard quadratic estimator of the psd matrix,
averaged ovelM realizations

Sll(eje) S'gl(eje) 5'21(6j0)
_ s _ J0 Crx J0
(%) = 521(.e ) 522(.e ) SL2F6 )
§L1(6j9) SLQ(eje) SLL(eje)
Therefore, (2) can be rewritten as
T det|S (&'’
[ =exp /log M 49 , 3)
N ) 2w
“n [ Sii (e7%)
i=1

i.e., the GLRT in the frequency domain can be approximatethey
integral over the Nyquist band of the logarithm of a Hadanmatib.
Finally, we must point out that in the case bf= 2 time series the
term inside the logarithm is just a function of the magnitsdaared
coherence (MSC) spectrum [8].

3.2. Low SNR Approximation

In cognitive radio, the most interesting case is the low SK@ime.
In this scenario, and following the ideas of [9], the statist (3) can
be approximated by

1 s
l%exp{—i/

whereC(e’?) = D(e/?)"1/28(e7?)D(e7%)~1/? and D(e’?) is a
diagonal matrix formed from the main diagonaléxfeje). This ap-
proximation, which can be seen as a generalization of [9ptior-
valued time series, allows us to simplify the detector inltwe SNR
regime, and it also results in a more robust test statistienahe
number of available samples is small.

: do
F 21

L

; @

C(eﬂ’)H

4. SIMULATION RESULTS

In this section, we present some simulation results totitis the
performance of the proposed detectors (eq. (3) and eq. () a
compare it to that of the following detectors:

e The energy detector (ED) usingN samples per realization
(the total number of samples is therefareL V).

INotice that the ML estimates of the covariance matrices jra(é not
Toeplitz, in general; and consequently (2) is just an appration of the
asymptotic GLRT for stationary processes.

e The GLRT for white time series [9], which is equivalent to
the generalized coherence (GC) proposed in [10] and is given

by 1 — det(C[0]), whereC[0] = D[0]~/*R[0]D[0] /2, is
the L x L spatial coherence matrix in the time domain,
1 M-—1

NI nz X)X [n],

n=0

R[0] =

andD|0] is a diagonal matrix formed from the main diagonal
of R[0].

A modification of the detector [11] to handle noises with dif-
ferent powers at each antenna. The detector is based on the
ratio of largest to smallest eigenvalues of the spatial cohe

ence matrixCI0].

For the simulations, we have used an OFDM-modulated DVB-T
signaf with a bandwidth of7.61 MHz. The signal undergoes propa-
gation through a spatially uncorrelated frequency-sele®ayleigh
fading channel with exponential power delay profile and poiver;
at the spectrum monitor, it is downconverted and asynchusigo
sampled a6 MHz. The additive noises at each antenna are gener-
ated by filtering independent zero-mean and complex whitesGa
sian processes with common variangg with finite impulse re-
sponse (FIR) filters with i.i.d. random taps distributed as[n] ~
CN(0,1/4),n=0,...,3;i=1,..., L, and the common SNR for
all antennas is defined as SNR(dB)10 log,,(1/02).

Figures 1 and 2 show the receiver operating characterROE)
curve for a typical rural area (delay spread of 0.08#c) and for a
typical urban area (delay spread of 0.7#8&c) [12]. The remaining
parameters arel. = 3 antennasN = 100 sample$, the number
of realizations isM = 10, the signal-to-noise ratio is SNR 0 dB
and the psd matrix is estimated using the Welch’s approashcaf
be seen in the figures, the proposed detectors present tire fidss,
mainly for the most selective channel (Fig. 2), which intésathat
exploiting the frequency structure of the time series digantly im-
proves the performance of the detectors. These examplestadsy
that the Frobenius norm approximation (denoted as F-GLRTién
figures) presents good results, and it even outperformstuet de-
tector in some cases. Obviously, the GC and the detectod lzase
the eigenvalue spread perform poorly because they wergrossi
for temporarily white processes, and never intended foretated
time series.

Finally, Fig. 3 shows the miss probability as a function & th
SNR for a fixed value of the false alarm probabiligy=(+ = 0.01)
using the same parameters of the second example. Contrérg to
energy detector, the threshold of the proposed detectesmat de-
pend on the actual value of the SNR. Therefore, followingideas
of [13], it can be calculated in advance by simulations. mftgure,
we can see that the proposed detectors obtain the highpsssind
that the Frobenius approximation performs well for low anatier-
ate SNRs.

5. CONCLUSIONS

In this work we have presented a new multiantenna deteatspfec-
trum sensing in cognitive radio. This detector does notireggyn-
chronization at any level with the primary signal, and isdshsn the
fact that under the noise-only hypothesis, the observasbould be

28K mode, 64-QAM, guard interval/4 and inner code rat2/3.
SFor the energy detector the total number of sampléd 5N = 3000.
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Fig. 1. ROC for the rural area. We have considefee 3 antennas,
M = 10 realizations of lengtivV. = 100 and the SNR= 0 dB.
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Fig. 2. ROC for the urban area. We have consideted 3 antennas,
M = 10 realizations of lengtiv = 100 and the SNR= 0 dB.

spatially uncorrelated. The GLRT, and a frequency domapr@p

imation were derived under a Gaussian signal model. Sinasno

sumptions are made on the power and spectra (nor even stidtyon
of the signal and/or the noise, this scheme is robust to taiotes
in this regard, commonly found in practice due to imperfetilag
components and calibration errors.
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