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ABSTRACT

One of the key problems in cognitive radio (CR) is the detection
of primary activity in order to determine which parts of the spec-
trum are available for opportunistic access. This detection task is
challenging, since the wireless environment often resultsin very low
SNR conditions. Moreover, calibration errors and imperfect analog
components at the CR spectral monitor result in uncertainties in the
noise spectrum, making the problem more difficult. In this work, we
present a new multiantenna detector which is based on the fact that
the observation noise processes are spatially uncorrelated, whereas
any primary signal present should result in spatial correlation. In
particular, we derive the generalized likelihood ratio test (GLRT) for
this problem, which is given by the quotient between the determinant
of the sample covariance matrix and the determinant of its block-
diagonal version. For stationary processes the GLRT tends asymp-
totically to the integral of the logarithm of the Hadamard ratio of the
estimated power spectral density matrix. Additionally, wepresent
an approximation of the frequency domain detector in the lowSNR
regime, which results in computational savings. The performance of
the proposed detectors is evaluated by means of numerical simula-
tions, showing important advantages over existing detectors.

Index Terms— Cognitive radio, multiple-channel signal detec-
tion, generalized likelihood ratio test, Hadamard ratio, coherence
spectrum.

1. INTRODUCTION

In the last years the cognitive radio (CR) paradigm has emerged as
a key technology to improve spectrum usage [1]. The basic idea be-
hind CR is the opportunistic access of some users (secondaryusers)
to the wireless channel when the licensed (primary) users are not
transmitting. Therefore, any CR system necessarily relieson a spec-
trum sensing device for determining which parts of the spectrum
band are available (spectrum holes). Even when a spectrum hole is
found and exploited, secondary users must periodically check
whether it has been reclaimed by the primary network, in which case
the spectrum hole must be quickly vacated.

Detection of primary users in CR is a challenging problem, since
fading and shadowing may result in very weak received primary sig-
nals. This means that the spectrum monitor must operate in very
low SNR environments preventing synchronization to and/ordecod-
ing of these signals, even if the modulation format and parameters
of primary transmitters were known. A number of detectors have

been proposed for CR applications, see [2] and references therein.
Perhaps the most popular (and computationally cheapest) one is the
energy detector (ED), which does not require anya priori informa-
tion about the primary system and does not need any sort of syn-
chronization. The main drawback of the ED resides in its sensitivity
to uncertainties in the background noise power, which may result in
undetectable primary signals if the SNR is below certain level, even
as the observation time goes to infinity[3]. Alternative approaches
to the ED exploit some features of primary signals, such as cyclo-
stationarity or the presence of pilots. However, these methods are
sensitive to synchronization errors [4], unavoidable in low SNR con-
ditions.

Another way to improve the detection performance of spectrum
monitors is to use multiple antennas. Intuitively, the presence of any
primary signal should result in spatial correlation in the observations;
a feature that can be used for detection since the noise processes at
different antennas can be safely assumed statistically independent. A
multiantenna ED extension that also exploits knowledge of the pri-
mary spectral emission mask was proposed in [5], but this scheme
remains sensitive to noise uncertainty. The multiantenna detector
suggested in [6] does not need knowledge of the noise variance, but
it implicitly assumes that the noise processes are white andwith the
same power at all antennas. In practice, calibration errorsbecome
unavoidable, and thus any deviation from these assumptionswill re-
sult in performance degradation.

In this work we propose a multiantenna detector in which no as-
sumptions are made about the primary signal nor the spectralprop-
erties of the noise. Rather, it is exclusively based on the assumption
that, in the absence of primary transmissions, the observations are
spatially uncorrelated. We derive the generalized likelihood ratio
test (GLRT) for the block-diagonal structure of the space-time co-
variance matrix, which is asymptotically approximated by the inte-
gral of the log of the Hadamard ratio of the estimated power spectral
density (psd) matrix. In the low SNR regime, of particular inter-
est in CR applications, a computationally cheaper approximation of
the frequency domain detector can be derived. The benefits ofthe
proposed detectors are illustrated by means of some numerical sim-
ulations.

2. PROBLEM FORMULATION

We address the problem of detecting the presence of a primaryuser
in a cognitive radio node equipped withL antennas, without any



prior knowledge about the primary transmission, the wireless chan-
nel, or the noise processes (beyond spatial independence).In partic-
ular, we test the covariance structure of the vector-valuedtime series
{x[n], n = 0,±1, . . .}, wherex[n] = [x1[n], . . . , xL[n]]T is a
vector of measurements at timen, or equivalently,{xi[n]} is the
time series at thei-th antenna. The detection problem is given by

H1 : x[n] = s[n] + v[n], n = 0, . . . , N − 1,

H0 : x[n] = v[n], n = 0, . . . , N − 1,

wheres[n] is the vector with the samples of the primary signal at
the L antennas, and at timen; andv[n] = [v1[n], . . . , vL[n]]T is
the additive noise vector, which is assumed to be zero-mean circu-
lar complex Gaussian and spatially white, i.e.,E{vi[n]v∗

j [k]} = 0
for i 6= j and alln, k. No assumptions are made on thetemporal
correlation of the noise processes,E{vi[n]v∗

i [k]}.
Let us define the data matrix
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where thei-th row, xT
i = [xi[0], xi[1], . . . , xi[N − 1]], contains

N -samples of thei-th time series{xi[n]}, and then-th column is
then-th sample of the vector-valued time series{x[n]}. The vector
z = vec

(

X
T
)

stacks the columns ofXT , and its covariance matrix
is

R = E
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∈ C
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The covariance matricesRik = E
[

xix
H
k

]

, 1 ≤ i, k ≤ L capture
all space-time second-order information about the random vectors
{xi}

L
i=1.

In order to proceed, we need the distribution of
{x[n]} underH1. We take it to be zero-mean, circular complex
Gaussian. In addition to resulting in tractable models and useful
detectors, this assumption is reasonable if the primary network em-
ploys orthogonal frequency division multiplexing (OFDM) as mod-
ulation format. Thus, the hypothesis testing problem becomes

H1 : z ∼ CN (0,R1) ,

H0 : z ∼ CN (0,R0) ,

whereCN (0,Rl) denotes the complex Gaussian distribution with
zero mean and covarianceRl. UnderH0, R0 is an unknown pos-
itive definite block-diagonal matrix, i.e.R0 ∈ R0, whereR0 =
{R | R = diag(R11, . . . ,RLL)} , with the only constraint thatRii

is Hermitian positive definite, and underH1, R1 ∈ R1, whereR1

is the set of unknown positive definite covariance matrices with no
temporal or spatial structure, since we do not use any prior informa-
tion about the primary signals. The block-diagonal structure of the
covariance matrix under the null hypothesis is due to spatial uncor-
relation of the noise.

3. DERIVATION OF THE GLRT

Let us assume an experiment producingM independent realizations
of the data matrixX, or equivalentlyz. The joint probability density

function (pdf) for these measurements is the product of the pdfs, and
is given by

p (z[0], . . . , z[M − 1];R) =
M−1
∏

n=0

p (z[n];R) =

=
1

πLNM det(R)M
exp

{

−MTr
(

R
−1

R̂

)}

,

whereR̂ is the sample covariance matrix given by,

R̂ =
1

M
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∑
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andR̂ik ∈ C
N×N is the{i, k}-th block ofR̂, which represents the

estimated cross-covariance matrix between theN -sample windows
of thei-th andk-th time series.

To solve our hypothesis testing problem, we will use the gen-
eralized likelihood ratio test (GLRT). Although it is knownthat the
GLRT is not optimal in the Neyman-Pearson sense, it providesgood
performance [7]. The GLRT forH0 : R ∈ R0 vs. H1 : R ∈ R1 is
based on the generalized likelihood ratio (GLR) [7]

λ =

max
R∈R0

p (z[0], . . . , z[M − 1];R)

max
R∈R1

p (z[0], . . . , z[M − 1];R)
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(

R̂
−1

0 R̂1

)M
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1

)
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,

whereR̂1 andR̂0 are the maximum likelihood estimates ofR under
hypothesesH1 andH0, respectively.

Now, we will obtain the ML estimates of the covariance matrices
under both hypotheses, for which we need to assumeM ≥ N . As
previously pointed out, underH0 the correlation matrixR is block-
diagonal, with the only constraint thatRii is Hermitian non-negative
definite. That is, we force spatial uncorrelatedness but do not force
temporal stationarity. Then, it is easy to show that the ML estimate

of R̂0 is R̂0 = diag
(

R̂11, R̂22, . . . , R̂LL

)

.

ForH1 we takeR1 to be the set of matricesR, with no temporal
or spatial structure imposed, with the only constraint being thatR is
an Hermitian non-negative definite matrix. Then, the ML estimate
of R1 is given byR̂1 = R̂. Taking the ML estimates into account,
the GLRT is

λ
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]

1

N

, (1)

which is a special case of a general result in [7]. Specifically, the
GLRT is ageneralizedHadamard ratio. Interestingly, this statistic
is invariant to independent linear transformations of the time-series,
including any arbitrary filtering of the sequences{xi[n]}.

3.1. Frequency Domain Detector

The time domain detector in (1) was derived without any stationary
assumption. When the time series{xi[n]}, i = 1, . . . , L, are jointly



stationary random vectors whose dimensions increase without bound
(jointly stationary time series) and following an argumentalong the
lines of [8], the limiting form of (1) (L fixed andN → ∞) may be
approximated1 by

l = λ
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whereŜ(ejθ) is a standard quadratic estimator of the psd matrix,
averaged overM realizations

Ŝ(ejθ) =











Ŝ11(e
jθ) Ŝ∗
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Therefore, (2) can be rewritten as

l = exp
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, (3)

i.e., the GLRT in the frequency domain can be approximated bythe
integral over the Nyquist band of the logarithm of a Hadamardratio.
Finally, we must point out that in the case ofL = 2 time series the
term inside the logarithm is just a function of the magnitudesquared
coherence (MSC) spectrum [8].

3.2. Low SNR Approximation

In cognitive radio, the most interesting case is the low SNR regime.
In this scenario, and following the ideas of [9], the statistic in (3) can
be approximated by

l ≈ exp

{
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, (4)

whereĈ(ejθ) = D̂(ejθ)−1/2
Ŝ(ejθ)D̂(ejθ)−1/2 andD̂(ejθ) is a

diagonal matrix formed from the main diagonal ofŜ(ejθ). This ap-
proximation, which can be seen as a generalization of [9] to vector-
valued time series, allows us to simplify the detector in thelow SNR
regime, and it also results in a more robust test statistic when the
number of available samples is small.

4. SIMULATION RESULTS

In this section, we present some simulation results to illustrate the
performance of the proposed detectors (eq. (3) and eq. (4)) and
compare it to that of the following detectors:

• The energy detector (ED) usingLN samples per realization
(the total number of samples is thereforeMLN ).

1Notice that the ML estimates of the covariance matrices in (1) are not
Toeplitz, in general; and consequently (2) is just an approximation of the
asymptotic GLRT for stationary processes.

• The GLRT for white time series [9], which is equivalent to
the generalized coherence (GC) proposed in [10] and is given
by 1−det(Ĉ[0]), whereĈ[0] = D̂[0]−1/2

R̂[0]D̂[0]−1/2, is
theL × L spatial coherence matrix in the time domain,

R̂[0] =
1

NM

M−1
∑

n=0

X[n]XH [n],

andD̂[0] is a diagonal matrix formed from the main diagonal
of R̂[0].

• A modification of the detector [11] to handle noises with dif-
ferent powers at each antenna. The detector is based on the
ratio of largest to smallest eigenvalues of the spatial coher-
ence matrixĈ[0].

For the simulations, we have used an OFDM-modulated DVB-T
signal2 with a bandwidth of7.61 MHz. The signal undergoes propa-
gation through a spatially uncorrelated frequency-selective Rayleigh
fading channel with exponential power delay profile and unitpower;
at the spectrum monitor, it is downconverted and asynchronously
sampled at16 MHz. The additive noises at each antenna are gener-
ated by filtering independent zero-mean and complex white Gaus-
sian processes with common varianceσ2 with finite impulse re-
sponse (FIR) filters with4 i.i.d. random taps distributed asai[n] ∼
CN (0, 1/4), n = 0, . . . , 3; i = 1, . . . , L, and the common SNR for
all antennas is defined as SNR(dB)= 10 log

10
(1/σ2).

Figures 1 and 2 show the receiver operating characteristic (ROC)
curve for a typical rural area (delay spread of 0.097µsec) and for a
typical urban area (delay spread of 0.779µsec) [12]. The remaining
parameters are:L = 3 antennas,N = 100 samples3, the number
of realizations isM = 10, the signal-to-noise ratio is SNR= 0 dB
and the psd matrix is estimated using the Welch’s approach. As can
be seen in the figures, the proposed detectors present the best results,
mainly for the most selective channel (Fig. 2), which indicates that
exploiting the frequency structure of the time series significantly im-
proves the performance of the detectors. These examples also show
that the Frobenius norm approximation (denoted as F-GLRT inthe
figures) presents good results, and it even outperforms the logdet de-
tector in some cases. Obviously, the GC and the detector based on
the eigenvalue spread perform poorly because they were designed
for temporarily white processes, and never intended for correlated
time series.

Finally, Fig. 3 shows the miss probability as a function of the
SNR for a fixed value of the false alarm probability (pF A = 0.01)
using the same parameters of the second example. Contrary tothe
energy detector, the threshold of the proposed detectors does not de-
pend on the actual value of the SNR. Therefore, following theideas
of [13], it can be calculated in advance by simulations. In the figure,
we can see that the proposed detectors obtain the highest slopes and
that the Frobenius approximation performs well for low and moder-
ate SNRs.

5. CONCLUSIONS

In this work we have presented a new multiantenna detector for spec-
trum sensing in cognitive radio. This detector does not require syn-
chronization at any level with the primary signal, and is based on the
fact that under the noise-only hypothesis, the observations should be

28K mode, 64-QAM, guard interval1/4 and inner code rate2/3.
3For the energy detector the total number of samples isMLN = 3000.
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Fig. 1. ROC for the rural area. We have consideredL = 3 antennas,
M = 10 realizations of lengthN = 100 and the SNR= 0 dB.
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Fig. 2. ROC for the urban area. We have consideredL = 3 antennas,
M = 10 realizations of lengthN = 100 and the SNR= 0 dB.

spatially uncorrelated. The GLRT, and a frequency domain approx-
imation were derived under a Gaussian signal model. Since noas-
sumptions are made on the power and spectra (nor even stationarity)
of the signal and/or the noise, this scheme is robust to uncertainties
in this regard, commonly found in practice due to imperfect analog
components and calibration errors.
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