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ABSTRACT

The binary Distortion Compensated Dither-Modulation (DC-
DM), which can be regarded to as a baseline for quantization-
based data-hiding methods, is rigorously analyzed. A novel
and accurate procedure for computing the exact probability
of bit error is given, as well as an approximation amenable
to differentiation which allows to obtain the optimal weights
in a newly proposed decoding structure, for significant im-
provements on performance. The results are particularized
for a JPEG compression scenario which allows to show their
usefulness. Experimental results validating the proposed
theory are presented.

1. INTRODUCTION.

Although quantization-based methods have been presented
since the beginnings of watermarking, it was not until very
recently that the idea was revisited from a sound theoreti-
cal perspective in the form of a data hiding scheme known
as Quantization Index Modulation (QIM) [1], which hides
information by constructing a data-driven set of quantizers.
This was later connected to an old paper by Costa [2] to re-
alize that by adding back a fraction of the quantization error,
performance could be significantly improved. This scheme
was thus termed Distortion Compensated QIM (DC-QIM).

The original proposal of DC-QIM can be adapted for
using many off-the-shelf vector quantizers. In particular,
a considerable attention has been paid to the special case
called Dither Modulation (DM) [1] —or formally equiv-
alent schemes [3], [4]—, which has the advantage of its
simplicity. Here we consider a (binary) multidimensional
extension of Distortion Compensated DM (DC-DM) which
can be regarded as a baseline for more sophisticated QIM
schemes [1]. Surprisingly, even for this very simple scheme
a thorough performance analysis (e.g. measured in terms of
the bit error rate, BER) lacks in the literature and only very
rough—and thus of little use—approximations based on the
so-called “union bound” are known [1].

The main contributions of the present paper, all focused
on the binary DC-DM method and, to the authors’ knowl-
edge, novel, are: 1) to provide a procedure for theexact
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computation of the BER that improves on the method pub-
lished in [5] (and which was only an upper bound); 2) to
give an approximation for the BER, more accurate than the
union-bound and amenable to analytical optimization; 3) to
extend the performance analysis to noise correlated to the
host image, in particular, to JPEG “attacks”; 4) to signifi-
cantly improve the hidden information decoder by using a
weighted Euclidean distance; and 5) to give an analytical
expression for the optimal weights, which produce consid-
erable gains when used on typical images.

Throughout the paper we will assume that the host im-
age coefficients are arranged in a vectorx, so that the wa-
termarked image can be written asy = x + w, being
w the watermark. The information to be hidden is repre-
sented by a vectorb with N binary antipodal components,
i.e., bj = ±1, j = 1, · · · , N . Following most existing
schemes, we will consider that thej−th bit is hidden in a
key-dependent set of coefficientsSj with cardinalityLj , for
all j = 1, · · · , N . The total set of coefficients devoted to
data hiding is denoted byS ,

⋃N
i=1 Si. For convenience,

wj stands for the vector comprising those samples with in-
dices belonging toSj . We will also assume that prior to de-
coding the watermarked image is sent through an additive
probabilistic noise channel, so that the image at its outputz
can be written asz = y + n = x + w + n, wheren is
the noise vector. By virtue of the pseudorandom choice of
the indices inS we may assume that the samples inn are
also mutually independent, with zero mean and variances
σ2

ni
, i ∈ S.
To measure the impact of the attack, we will follow the

popularwatermark-to-noiseratio (WNR), defined as WNR,
10 log10

∑
i∈S E{w2

i }/
∑

i∈S σ2
ni

.

2. BASIC CONCEPTS OF DC-DM.

Structured quantization-based methods ([3], [1]) hide infor-
mation by constructing a set of vector quantizersQb(·),
each representing a different codewordb. So, given a host
vectorx and an information codewordb, the embedder con-
structs the watermarked vectory by simply quantizingx
with Qb(·), i.e. y = Qb(x).

Here we will analyze the simplest (and most studied)
implementation of these methods, the binary Distortion Com-
pensated Dither Modulation (DC-DM) [1]. In the binary
DC-DM the watermark samples in the setSj , j = 1 · · · , N ,



are given bywj = νjej , i.e. theL-dimensional quantiza-
tion errorej , Qbj

(xj)− xj , weighted by an optimizable
distortion-compensating parameterνj , 0 < νj ≤ 1. Then,
we will haveyj = Qbj

(xj)− (1− νj)ej , j = 1, · · · , N
The uniform quantizersQ−1(·) and Q+1(·) are such

that the corresponding centroids are the points in the lattices

Λ−1 = 2(∆1Z, · · · ,∆LZ)T + d

Λ+1 = 2(∆1Z, · · · ,∆LZ)T + (∆1, · · · ,∆L)T + d (1)

with d ∈ RL a key-dependent dithering vector. Note that,
in contrast to [1], our setup allows for different quantiza-
tion steps to be used in each dimension to better account for
perceptual constraints.

If the quantization step in each dimension is small enough,
we can consider that the quantization errorei in each di-
mension will be uniformly distributed between[−∆i,∆i),
being2∆i the quantization step. Thus, the embedding dis-
tortion in each dimension will be E{w2

i } = ν2
j ∆2

i /3.
Finally, decoding is implemented as

b̂j = arg min
−1,1

{(
zj −Qbj

(zj)
)t

Bj

(
zj −Qbj

(zj)
)}

,

j = 1, · · · , N. (2)

whereBj = diag(βj1/∆2
j1

, · · · , βjL
/∆2

jLj
) andSj = {j1, · · · , jLj

}.

These weighting vectorsβj allow to improve decoding when
additional information about the noise pdf is available, as
we will confirm in Section 5. On the other hand, the nor-
malization by∆i in the i-th dimension is reasonable if one
thinks that noise variance will be roughly proportional to
∆2

i to reduce the perceptual impact of the attack. For sim-
plicity, in next section we will analyze the case in which no
weights other than the normalization by∆i are used, that is,
βi = 1. The analysis given here can be readily extended for
an arbitrary weights vector.

3. PERFORMANCE ANALYSIS AND NUMERICAL
COMPUTATION.

To analyze the performance of this scheme in terms of the
bit error probability (Pe), we will define

ui , zi −Qbj (zi)
= Qbj (xi)− (1− νj)ei + nj −Qbj (zi)
= 2l∆i − (1− νj)ei + ni (3)

for all i ∈ S and some integerl. Sinceui is a quantization
error generated by a quantizer of step size2∆i, thenui must
belong to[∆i,∆i), andl in (3) takes the appropriate value
so that this is accomplished. Consequently, the pdf ofui

can be written as

fui(ui) ={ ∑∞
l=−∞ fu′i

(ui − 2l∆i), ui ∈ [−∆i,∆i)
0, otherwise

(4)

whereu′i , ni − (1− νj)ei, is a random variable with pdf

fu′i
(u′i) = fni(u

′
i) ∗

1
(1− νj)

fei
(u′i/(1− νj)) (5)

Alternatively, we can writefui(ui) = fu′′i
(ui + ∆i), where

fu′′i
(u′′i ) = fni

(u′′i −∆i) ~2∆i

fei
(u′′i /(1− νj))
(1− νj)

(6)

being~2∆i
the circular convolution of size2∆i operator.

This circular convolution includes thealiasingeffect which
is evident in (4); also, the shifts of size∆i in fu′′ andfn

are due to the fact that the circular convolution is defined
in [0, 2∆i), while we are interested in[−∆i,∆i). A similar
technique has been used in [3], where the role of the circular
convolution is played by the sampling of the characteristic
function with period2π

2∆ , which is known to have an aliasing
effect, since it is equivalent to the convolution in the time
domain with an impulse train with period2∆.

To follow a strategy similar to the one described in [5]
and given (2) withβi = 1, we will definev as the vector
with componentsvi , ui/∆i, i = 1, · · · , Lj , so we can
write the bit error probability for thej-th hidden bit as

Pe(j) = P{‖v′j‖2 > ‖v′j − (1, · · · , 1)T ‖2}

= P

∑
i∈Sj

v′i > Lj/2

 , (7)

wherev′ is an auxiliary random vector with independent
components such thatv′ , |v| with pdf (assuming thatvi

is symmetric)

fv′i
(v′i) ,

{
2∆ifui

(v′i∆i), if 0 ≤ v′i ≤ 1
0, otherwise

, i ∈ Sj (8)

If we definerj ,
∑

i∈Sj
v′i, then the computation ofPe(j)

is equivalent to integrating the tail of the pdf ofrj from
Lj/2, but since thev′i are independent random variables, the
pdf ofrj is just the convolution of the pdf’s ofv′i, i ∈ Sj . An
efficient way to compute it is with the DFT. To that end, let
Φv′i

, DFTLjT

(
fv′i

(t/T )
)

be theLj · T -point DFT of the
sequence obtained by samplingfv′i

at t
T , t ∈ {0, · · · , T −

1}. From this, it is straightforward to write

Φrj
(l) =

∏
i∈Sj

Φv′i
(l), (9)

for l = 1, · · · , LjT − 1.
Finally, letfrj [rj ] = IDFTLjT (Φrj ), thenPe(j) can be

computed as

Pe(j) =
LjT∑

k=
⌈

Lj(T−1)+1
2

⌉ frj
[k], for all j ∈ {1, · · · , N}. (10)

where the lower index in the summation can be seen as cor-
responding toLj/2 in (7).

4. JPEG COMPRESSION.

In the previous development we have assumed that the noise
n is independent ofx. This is clearly not the case if the



attack is a coarse quantization, like the popular JPEG com-
pression, which is supposed to be one of the most likely
unintentional attacks. In this section we develop a method
for estimatingPe for a given quality factor.

Assuming the bits to transmit are equiprobable, and due
to the symmetry of the JPEG compression, we will concen-
trate in the case whenb = −1, without loss of generality.
Given a JPEG quantization stepδi corresponding to thei-th
dimension, we are interested in computing the probability
associated to each JPEG centroid, noting that this probabil-
ity will depend not only on the pdf of the host image (here
assumed to be Laplacian with parameterλ) but also on that
of the watermark. To that end, we have to determine the
limits of each quantization bin; the DC-DM centroid asso-
ciated to the k-th JPEG bin with limitsa±ik

= kδi ± δi/2
(the upper or lower limit, depending of the sign, in thei-th
dimension) is

Q−1(a±ik
) = di + 2∆i · round

(
a±ik

− di

2∆i

)
(11)

so the offset between the JPEG centroid and the DC-DM
centroid isey(a±ik

) , a±ik
− Q−1(a±ik

). This offset corre-
sponds to the watermarked image and it can be shown to
map back into the host image as

ex(a±ik
) =

min{max[ey(a±ik
),−(1− νj)∆i], (1− νj)∆i}

(1− νj)
,

for all i ∈ Sj , j = 1, · · · , N . Therefore, if we defineγ±jk
,

Q(a±jk
)+ex(a±jk

), we can see that it corresponds to the upper
(lower) limit of the JPEG quantization bin for thek-th JPEG
centroid in thei-th dimension of the host image. Now we
can compute the probability of occurrence for this centroid
asPik

= P (xi ≤ γ+
ik

)− P (xi ≤ γ−ik
) with

P (xi ≤ τ) =
{

1
2eλiτ , if τ ≤ 0
1− 1

2e−λiτ , if τ > 0 (12)

The parameterλj for the Laplacian distribution can be esti-
mated using the maximum likelihood criterion.

Notice thatPik
play the same role asfu′i

in 4. Once
we know the probability of a representative set of JPEG
centroids, it is necessary to “fold” them onto the interval
[−∆i,∆i) as in (4), and then follow a similar strategy to
that developed in the previous section to computePe(j) by
convolving the pdf’s of the JPEG centroids in each dimen-
sion. In our practical implementation we have used the DFT
method introduced in Section 3.

5. OPTIMAL DECODING WEIGHTS.

In the general formulation of Sect. (2) we considered the
possibility of computing an Euclidean distance weighted by
a vectorβj . In this Section we will show how these opti-
mal decoding weights can be determined and which kind of
knowledge about the noise pdf is required. Following the

development in Section 3, it is easy to show that (7) now
becomes

Pe(j) = P

∑
i∈Sj

βiv
′
i >

1
2

∑
i∈Sj

βi

 (13)

The random variablesv′k adding up in the leftmost sum in
(13) are independent and similarly distributed (it is not nec-
essary that they are identically distributed, but they must not
be too different). Then, when the cardinalityLj of each sub-
setSj is large enough and under some additional conditions
discussed in [5], it is possible to resort to the Central Limit
Theorem (CLT), to write that

Pe(j) ≈ Q

 1
2

∑
k∈Sj

βk −
∑

k∈Sj
βkE{v′k}√∑

k∈Sj
β2

kVar{v′k}

 (14)

whereQ(x) , 1√
2π

∫∞
x

e−
τ2
2 dτ . Recalling that theQ(·)

function is monotonically decreasing, it follows thatPe(j)
is minimized when its argument, that we will call in short
SNRj , is maximized. Then, the optimal decoding weights
can be found by differentiating the argument ofQ(·) in (14)
with respect toβi, i ∈ Sj , j = 1, · · · , N :

∂SNRj

∂βi
= ρj

(
1
2
− E{v′i}

)
− βiVar{v′i}

ρj

·

1
2

∑
k∈Sj

βk −
∑
k∈Sj

βkE{v′k}

 (15)

whereρj is an adequate constant. Setting (15) to zero and
operating we find that the optimal decoding weightsβ∗i , for
all i ∈ S can be written as

β∗i = K ·
(

1
2 − E{v′i}

)
Var{v′i}

(16)

whereK is an irrelevant positive real constant, sinceβ∗

can be scaled without any impact on performance. Also, it
is very interesting to note some of theβ∗i may be negative.
This will happen when the random variablev′i is such that
E{v′i} > 1/2, which may occur for large distortions.

Finally, as it can be inferred from (16), in order to com-
pute the optimal decoding weights, knowledge of E{v′i} and
Var{v′i} is required. In the case of JPEG compression, since
the quantization table is generally available to the decoder,
which will then be able to compute the joint pdf ofv′ us-
ing the procedure outlined in Section 4, and, consequently,
to derive the optimal decoding weights for minimum BER
data extraction.

6. EXPERIMENTAL RESULTS.

In order to validate the analytical results presented hereto-
fore, we have watermarked the imageLenawith size256×
256 in the DCT domain taking into account the same per-
ceptual properties as in previous works and we have repre-
sented the BER vs. WNR curves for different noise distri-
butions and decoders. First of all (Fig. 1), we have studied
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Fig. 1. BER versus WNR for DC-DM(L = 10 andν = 0.5)
with additive noise proportional to JPEG with QF = 85.

additive noise attacks, with both uniform and Gaussian dis-
tributions, and with variances which depend for each DCT
coefficient on the corresponding squared quantization step
used in JPEG compression with a quality factor (QF) of 85.
The resulting noise is scaled in order to work with differ-
ent WNR operating points. The theoretical curves for the
uniform case correspond to using (14), while for Gaussian
noise the DFT technique explained in Sect. 3 was employed.
Fig. 1 also plots the upper bound previously published in
[5]. For the uniform case, Fig. 1 clearly shows the im-
provement on performance that results when the procedure
in Sect. 5 is used. The slight difference between empirical
and theoretical results is due to the non-uniformity of the
image within the quantization step. This also explains why
that difference is larger when the WNR increases.

Finally, in Fig. 2 we depict the BER vs. WNR when the
same image is compressed with QF’s ranging from 70 to
90, comparing the empirical results with the analytical ones
obtained by following the procedure described in 4. The
results obtained show that binary DC-DM performs poorly
in front of JPEG compressions. Note that this fact is al-
ready very accurately predicted by our theory. Moreover,
without using the optimal weights an improvement does not
follow by incrementing the sizeL of the partitions devoted
to a particular bit; in fact if E{v′i} > 1

2 andβi = 1, for all
i ∈ Sj , Pe will increase withL . This is a quite remark-
able result which basically implies that although the mul-
tidimensional extension of the scalar DC-DM scheme can
be regarded to as a repetition code, for small WNR’s ( high
values of E{v′i}) there might be no advantage in using an
unweighted decoder, in evident contrast to what happens in
spread-spectrum and quantized-projection data hiding [6].
Nevertheless if the optimal weights are used we do obtain
such an improvement. The explanation is clear: in that case
we are using information about the distribution ofv′i, so the
argument of (14) will increase withL and thereforePe will
decrease. Finally, in Fig. 2 we have also represented the
empirical and theoretical results obtained when the optimal
decoding weights are used, to demonstrate how the BER
can be reduced by following this strategy.
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Fig. 2. BER versus WNR for DC-DM(L = 20 andν = 0.5)
with JPEG compression with QF between 70 and 90.

7. CONCLUSIONS

In this paper we have presented a theoretical analysis for the
binary DC-DM data hiding method, which can be consid-
ered as a reference for other more sophisticated quantization-
based schemes. An accurate analysis was lacking in the data
hiding literature and only rough upper bounds were avail-
able. The procedure here given not only allows to assess
beforehand the bit error rate performance of the DC-DM
method, but to improve the detector by exploiting any avail-
able knowledge about the noise joint pdf. This is particu-
larly so for JPEG compression, a case that has been treated
here in some detail.
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