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Dept. Tecnoloǵıas de las Comunicaciones. ETSI Telecom., Universidad de Vigo, 36200 Vigo, Spain
email: pcomesan@gts.tsc.uvigo.es, fperez@tsc.uvigo.es, fiz@tsc.uvigo.es

ABSTRACT

We analyze spread-spectrum and quantization projection data
hiding methods from a game-theoretic point of view, using
the bit error rate (BER) as the payoff, and assuming that the
embedder simply follows point-by-point constraints given
by a perceptual mask, whereas for the attacker an MSE-like
constraint is imposed. The optimal attacking and decoding
strategies are obtained by making use of a theorem that in
addition states that those strategies constitute an equilibrium
of the game. Experimental results supporting our analyses
are also shown.

1. INTRODUCTION

Although the mere existence of a game played by the em-
bedder and the attacker was recognized since the very in-
ception of watermarking and data hiding, it was not until
very recently that this idea was formalized by Moulin et
al. [1], [2] who introduced the concept of data hiding games
and analyzed them from an information theoretic point of
view. This formulation allows to derive optimal strategies
which are then of use for establishing the true limits of data
hiding. Some other researchers have also dealt with game-
theoretic aspects of data hiding capacities [3], [4]; however
payoffs other than channel capacity are also possible in the
data hiding game, as already suggested in [1] and devel-
oped in [5]. Here, we build on this idea to determine opti-
mal playing strategies by considering that the bit error rate
(BER) for the hidden information defines the payoff in the
game. The rationale behind this choice is that even though
capacity measures are of great importance when establish-
ing theoretical bounds, practical data hiding algorithms re-
quire strategies which may be different from those afforded
by capacity considerations. In fact, as we will later show,
different algorithms represent different games and, conse-
quently, the optimal playing strategies also differ.

Three agents generally play the data hiding game: em-
bedder, attacker and decoder. Each one has different ob-
jectives and constraints that frequently lead to colliding in-
terests which have been already discussed in depth in [1].
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As it is widely recognized, the most severe restriction faced
by the embedder is that of invisibility. In our case, we will
assume that this is driven by a perceptual maskα that in-
dicates the maximum allowed watermark energy that pro-
duces the least noticeable modification of the correspond-
ing sample of the host image. Ifx denotes the samples (or
coefficients in a transform domain) of the host image, ar-
ranged for convenience in vector form,w is the watermark
andy = x + w denotes the watermarked image, then we
will write the invisibility restriction as the following set of
point-by-point constraints

E{|yi − xi|2} = E{w2
i } ≤ α2

i , for all i ∈ S (1)

with S the set of pixels (or coefficients) devoted to data-
hiding purposes. Now, it can be seen that (1) allows very
little flexibility in choosing the embedder’s strategy: except
for rare cases, the optimum will be achieved when all the
watermark coefficients take their extremal values in (1). For
this reason, we will leave the embedder out of the game, al-
though it must be stressed that since the characteristics of
the human visual system (HVS) exploited here do not sweep
all known properties, it would be plausible to let the embed-
der play with additional degrees of freedom, a consideration
that will be left for future research.

The main purpose of this paper is to obtain the optimal
strategies for two classes of data hiding methods, namely,
spread-spectrum and quantized-projection schemes. We have
developed closed-form expressions for the bit error prob-
ability which are then used as cost functions for deriving
optimal tactics for the decoder and the attacker. To the au-
thors’ knowledge, the closest works to ours are those of Eg-
gers and Girod in [4] and Moulin et al. in [5], compared
to which the two main differences are: 1) the game pay-
off, which is channel capacity in [4] (although specifically
optimized for each method) and probability of correct de-
tection (zero-rate spread-spectrum scheme) in [5]; and 2)
the agents involved, that are the embedder and the attacker
in both mentioned works, whereas here we consider them to
be the attacker and the decoder.

2. PRELIMINARIES

We will follow the customary scheme [6] for dividing the
setS into N non-overlapping setsSi, i = 1, · · · , N , each



of sizeL, through a key-driven pseudorandom permutation.
Therefore, a total ofM , N · L samples are employed.
Each setSi is devoted to conveying a particular bitbi ∈
{±1}. Moreover, we will assume an additive probabilistic
noise channel for modeling attacks. Therefore, the image
at the decoder’s inputz can be written asz = y + n =
x + w + n, wheren is noise independent ofx. By virtue
of the pseudorandom choice of the indices inS we may
assume that the samples inn are also mutually independent,
with zero mean and variancesσ2

ni
, i ∈ S.

Another working hypothesis is that the vector of percep-
tual masksα is available not only to the embedder, but also
to the attacker and to the decoder. The decoder uses a cer-
tain decoding function parameterized by some weights vec-
tor β to produce the decoded vectorb̂. Then, the BER for
thei-th bit is justPe(i) = P{b̂i 6= bi}, and the games con-
sist in the successive maximization/ minimization ofPe =∑

k Pe(i)/N by respectively the attacker and the decoder
and viceversa, i.e.minβ maxσn

Pe, maxσn
minβ Pe.

The game has a pure (deterministic) equilibrium if the
minimax solution equals the maximin one at a given BER
value (called the value of the game) for some determinis-
tic optimal valuesσ∗n andβ∗. Then, the payoff function
is said to have a saddle-point at(σ∗n,β∗). If this happens,
the order in which the agents play the game is indifferent
as neither the attacker nor the decoder want to deviate from
the most conservative option marked by the saddle-point. If
there does not exist a saddle-point, the playing order is rel-
evant and the solution to the maximin (minimax) problems
allows to establish upper (lower) bounds to the BER perfor-
mance. However, as we will see, our problems do admit an
equilibrium.

Regarding attacks, as we said, they are limited to addi-
tive noise; moreover, Mean Square Error (MSE) constraints
will be taken into account. As noted in [6], the main draw-
back of MSE is that unacceptably high local distortions are
not ruled out, since they can be globally compensated. A
certain trade-off between mathematical suitability and per-
ceptual adequateness is achieved by an MSE-like condition
imposed on each set of coefficients devoted to a particular
information bit. The attacker constraints then read as

1
L

∑
j∈Si

E{|zj − yj |2} =
1
L

∑
j∈Si

σ2
nj
≤ Dc(i), (2)

for some specified positive quantitiesDc(i), and for alli =
1, · · · , N . Note that this obviously assumes that the attacker
knows the partitions. Although the more general case in
which the attacker does not have access to the partitions
is more involved and for clarity is not pursued here, it can
be shown [7] that theform of the solution is essentially the
same.

For comparison purposes it is useful to define thewatermark-
to-noise ratio(WNR) as the ratio (in decibels) between the
total energy devoted to the watermark and that devoted to

the distortion, that is,

WNR , 10 log10

(∑
j∈S E{w2

j}∑
j∈S σ2

nj

)
(3)

Finally, we state a Theorem which constitutes the basis
for deriving optimal attacking and decoding strategies. The
proof is omitted due to its length and can be found elsewhere
[7]. First, we need some definitions: letP denote theN -
dimensional ball centered at the origin and with radiusR,
whereasJ is any set of integer indices with cardinalityN .
Also, let us introduce the functionϕ : P × RN → R+

defined as

ϕ(p,β) ,

∑
j∈J β2

j (t2j + p2
j )(∑

j∈J βjqj

)2 (4)

with q, t arbitrary vectors inRN . Also let(x)+ , max{x, 0}.

Theorem 1 The vectorsp∗ andβ∗ with components

(p∗j )
2 = (ξqj − t2j )

+, for all j ∈ J (5)

β∗j =

{
K2qj

t2j
, if j ∈ J0

K2
ξ , otherwise

(6)

where the constantξ ∈ R is the solution to the equation∑
j∈J (ξqj − t2j )

+ = R2, K2 is a nonzero real constant,
andJ0 ⊂ J is the set of indices for which the right hand
side of (5) is negative; satisfy

min
β

max
p

ϕ(p,β) = ϕ(p∗,β∗) = max
p

min
β

ϕ(p,β). (7)

3. STRATEGIES FOR SPREAD-SPECTRUM.

Given the assumptions in the previous sections, spread-spec-
trum methods compute the watermark to be embedded as
wj = biαjsj , for all j ∈ Si, i ∈ {1, · · · , N}, where
sj is a key-dependent pseudorandom sequence satisfying
E{sj} = 0 andE{s2

j} = 1, so that (1) holds. Here, we will
assume the simplest distribution, that is,sj ∈ {±1}. As it is
well-known [8], the simplest receiver is based on the cross-
correlating decoder which constructs the set of statistics

ri =
∑
j∈Si

βjsjzj , i ∈ {1, · · · , N} (8)

cascaded with a bit-by-bit hard decisor, i.e.,b̂i = sign(ri),
i ∈ {1, · · · , N}. Note that the main difference with the
decoder considered in [8] is that the vectorα has been re-
placed by a more general vectorβ suitable for a proper op-
timization.

In the case that the watermarked imagey has undergone
a linear filtering operation, which we suposse invariant with
the noise, as a way of reducing the host-interference power
at the decoder, we can represent this situation by aM ×M



matrix that will be denoted byH, so that the filtered host
image would becomexf , Hx. As it was shown in [8],
the observation vectorr can be now modeled as the output
of an additive white Gaussian noise (AWGN) channel,ri =
aibi + ui, i ∈ {1, · · · , N}, where

ai =
∑
k∈Si

βkhk,kαk,

andu1, · · · , uN are samples of an i.i.d. zero-mean Gaussian
random process with variance

σ2
ui

=
∑

j∈Si
β2

j

[
x2

fj
+
∑M

k=1 h2
j,k

(
α2

k + σ2
nk

)
− h2

j,jα
2
j

]
.

Recalling that the information bits are assumed to be equiprob-
able and that we are using a hard decisor, we can write

Pe =
1
N

N∑
i=1

Q(ai/σui) (9)

with Q(x) , 1√
2π

∫∞
x

e−
τ2
2 dτ . Aiming at giving easily

interpretable results, for the remaining of this section we
make the simplificationH = diag(h1,1, · · · , hM,M ), so
from the attacking/decoding point of view, the objective will
be to minimize/maximize the arguments of each Q-function
adding up in (9). The exact derivation of results without this
simplification is a current issue of work [7]. Then, we can
resort to Theorem 1 whereJ = Si; pj = σnj ; qj = αj

andtj = xfj
/hj,j to show that the attack at the equilibrium

of the game with distortion constraints as in (2), for each
j ∈ Si, i = 1, · · · , N , is given by

σ∗nj

2 =

(
ξiαj −

x2
fj

h2
j,j

)+

, (10)

whereξi is a suitably chosen parameter so that1
L

∑
j∈Si

(ξiαj−
x2

fj

h2
j,j

)+ = D2
c (i) for all i = 1, · · · , N . If S0,i ⊂ Si,

i = 1, · · · , N , denotes the set of indices for which the right
hand side of Eq. (10) is zero, then the optimal decoding
strategy is

β∗j =


Kαjh2

j,j

x2
fj

, if j ∈ S0,i

K
ξi

, if j ∈ Si\S0,i

(11)

4. STRATEGIES FOR QUANTIZED PROJECTION

In the Quantized Projection (QP) method [6], the set of sam-
plesSi assigned to one bitbi, is projected by the embedder
onto one dimension obtaining a variablerxi , which is later
quantized with a uniform scalar quantizer with step2∆i so
the centroids of the decision cells associated tob̂i = 1 and
b̂i = −1 are respectively given by the unidimensional lat-
ticesΛ+1 , 2∆iZ−∆i/2 andΛ−1 , 2∆iZ + ∆i/2. The
linear projection function presented in [6] can be general-
ized so as to take into account the possibility of weighting

the various dimensions. Thus, in this more general way, the
projection can be constructed as

ryi
=
∑
j∈Si

yjsjβj , i ∈ {1, · · · , N} (12)

with sj having identical characteristics as in the previous
section. In fact, a similar definition to (12) applies torxi

andrwi
, i.e., the respective host image and projected wa-

termark. Moreover,ryi = rxi + rwi . The embedder must
select the watermark sampleswj , j ∈ Si, so thatryi in (12)
effectively belongs to the desired lattice. As we discussed
in the Introduction, it is reasonable to choosewj , j ∈ Si,
proportional toαj so wj = ρiαjsj , for all j ∈ Si, and
ρi = rwi

/(
∑

j∈Si
αjβj). In the decoder, the imagez is

projected similarly to (12) to obtainrzi , which is then quan-
tized to yieldb̂i, i = 1, · · · , N .

A performance analysis for this data hiding scheme can
be adapted from that in [6] to show that the probability of
errorPe(i) for thei-th bit can be approximated by

Pe(i) ≈ 2Q(∆i/2σrni
), i ∈ {1, · · · , N} (13)

with σ2
rni

the variance of the projected noise.
Then, considering the monotonicity of theQ-function,

we have that the functional that the decoder (attacker) should
maximize (minimize) is

∆2
i

4σ2
rni

=
τ2
i

(∑
j∈Si

αjβj

)2

4
∑

j∈Si
σ2

nj
β2

j

(14)

whereτi ∈ [
√

3, 2] a parameter that weakly depends onβi,
so it can be disregarded in the optimization.

Now, it is possible to apply Theorem 1 to (14) with
J = Si; pj = σnj

; qj = αj ; tj = 0, to conclude that the
equilibrium of the game is achieved whenσ∗nj

2 = K2αj ,
for any nonnegative constantK2, andβ∗j = constant.

5. EXPERIMENTAL RESULTS

We show next the results of applying the strategies derived
along previous sections to real data. In the figures that fol-
low, symbols refer to empirical (MonteCarlo) simulations,
while lines show theoretical results. Empirical data come
from the gray-scaleLena image (256 × 256), for which
the spatial perceptual maskα has been computed using the
method detailed in [8]. First, in Figure 1 thePe’s resulting
when different strategies are considered for spread-spectrum
(Section 3) are shown. Wiener filtering prior to decoding
and 50 pixels per bit (i.e.,L = 50) have been used. Three
cases are analyzed: a) the noise varianceσ2

nj
at each sam-

ple is made proportional toα2
j , andβ is proportional toα,

that is, the classical cross-correlating decoder; b) an attack
as in (a) but the optimal decoding weightsβ for this attack
are employed (shown in [7]); c) the plot labeled as “saddle-
point” corresponds to the equilibrium solution. In all cases,
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Fig. 1. BER versus WNR for spread-spectrum(L = 50) showing
three different attacking/decoding strategies.

the theoretical results lie close to the empirical ones, al-
though for those where the optimalβ∗ is used the differ-
ence is larger. This can be explained by the fact thatβ∗

depends on the Wiener filter coefficients, which in turn vary
after having hidden the information. It is very interesting to
note that the classical spread-spectrum solution can be sig-
nificantly improved by using an optimal decoding strategy.
The performance at the game-equilibrium lies somewhere
in the middle between the two former cases. Recall that this
is a satisfactory strategy for both parties due to the existence
of a saddle-point.

Regarding QP, Figure 2 shows the results of compar-
ing the optimal strategy given by the saddle-point solution
against a suboptimal attack for the QP scheme with 10 pix-
els per information bit (watermarking is performed in the
spatial domain). This suboptimal attack consists in perceptually-
shaped noise, for which the noise varianceσ2

nj
is propor-

tional to the squared perceptual maskα2
j . We can see that

the difference between both strategies is not too large due
to the fact that in this scenario all values of the perceptual
mask are very close to each other.

6. CONCLUSIONS

Two different data hiding methods have been analyzed from
a game-theoretic point of view, using the BER as a cost
function. We have provided a theorem which proves use-
ful not only for establishing the optimal joint decoding and
attacking strategies, but also for showing that these in fact
constitute a saddle-point from which neither the attacker
nor the decoder are interested in deviating. For spread-
spectrum, the game equilibrium is achieved by a water-filling
attack and a decoding strategy that is richer than the classi-
cal cross-correlating receiver: where the filtered host image
samples are small (i.e., small host-interference), the optimal
weights are constant; while for those samples where host in-
terference is large, the optimal weights somehow resemble
those used in the cross-correlating receiver. In fact, QP can
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Fig. 2. BER versus WNR corresponding to the optimal and sub-
optimal attacks for QP(L = 10) when the decoder follows the
optimum strategy.

be considered a limiting case, where host interference is al-
most eliminated, so no weighting is needed for decoding in
the saddle-point solution. However, this reasoning should
not be taken too far: for dither modulations (DM), where
host-interference is also nonexisting, the saddle-point solu-
tion turns out to be more involved than those given here [7].
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