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ABSTRACT

Scaling attacks are well-known to be some of the most harm-
ful strategies against quantization-based watermarking meth-
ods, as they can completely ruin the performance of the wa-
termarking system with almost no perceptual impact on the
watermarked signal. In this paper we propose a new family of
quantization-based methods specifically devised to deal with
those attacks, and which presents the desirable property of
yielding perceptually shaped watermarks.

Index Terms— Watemarking, Data Hiding, Logarithmic
Domain, Valumetric Attack

1. INTRODUCTION

After that Chen and Wornell [1] showed that the capacity
of an Additive White Gaussian Noise could be achieved in
a scenario where the state channel is known by the encoder
but not know by the decoder using quantization-based tech-
niques, this kind of algorithms has received increasing interest
by the data hiding research community. Nevertheless, under
non-additive channels the performance of quantization-based
techniques can be worse than classic spread-spectrum based
methods. This is the case, for example, of scaling (a.k.a.
valumetric) attacks which can be applied with very little per-
ceptual impact, a fact that accounts for the recent intereston
quantization-based methods that are robust to scaling. Al-
though some proposals are available in the literature [2, 3],
this is still an open topic that we will study in this paper from
a novel perspective: embedding in the logarithmic domain.

The followed notation, as well as the description of the
proposed methods are provided in Sect. 2. Those methods
are analyzed from power and proability of error approaches
in Sect. 3 and 4, respectively. Furthermore, Sect. 5 deals with

This work was partially funded byXunta de Galiciaunder projects
PGIDT04 TIC322013PR and PGIDT04 PXIC32202PM; MEC project
DIPSTICK, reference TEC2004-02551/TCM; FIS project IM3, reference
G03/185 and European Comission through the IST Programme under Con-
tract IST-2002-507932 ECRYPT. ECRYPT disclaimer: The information in
this paper is provided as is, and no guarantee or warranty is given or implied
that the information is fit for any particular purpose. The user thereof uses
the information at its sole risk and liability.

their perceptual properties, and some interesting links with
multiplicative watermarking are established. Finally, conclu-
sions and future lines are discussed in Sect. 6.

2. METHOD DESCRIPTION

2.1. Notation and Framework

In this section we introduce our proposed methods to solve the
problems due to the valumetric attack. In order to do so, we
need to introduce some notation. We will denote scalar ran-
dom variables with capital letters (e.g.,X) and their outcomes
with lowercase letters (e.g.x). The same notation criterion
applies to random vectors and their outcomes, denoted in this
case by bold letters (e.g.X, x). Theith component of a vector
X is denoted asXi. In this way, the data hiding problem can
be summarized as follows: the embedder wants to transmit a
symbolb, which we assume to be binary (b ∈ {0, 1}), to the
decoder by adding the watermarkw to the original host vector
x, both of them of lengthL. Merely for analytical purposes,
we will model these signals as realizations of random vectors
W, andX, respectively. LetQ∆(·) be the base uniform scalar
quantizer, with quantization step∆, andd denote the dither-
ing vector,d ∼ U [−∆/2, ∆/2]L. The power of the origi-
nal host signal will be denoted byDh , 1

L

∑L
i=1 σ2

Xi
, where

σ2
Xi

, Var{Xi}, whereas the power of the watermark is given

by Dw , 1
L

∑L
i=1 E{W 2

i }. The resulting watermarked sig-
nal can be written asy = x + w. On the other hand, the
decoder receives the signalz = y + n, wheren is a noise
vector (which can be seen as realization of random vectorN,
with Dn , 1

L

∑L
i=1 E{N2

i }). Finally, the decoder estimates
the embedded symbol with a suitable decoding function.

In order to compare the power of the host signal and the
watermark, we use the Document to Watermark Ratio (DWR),
defined as DWR= Dh/Dw; similarly, the Document to Noise
Ratio (DNR) is defined as DNR= Dh/Dn.

2.2. Proposed methods

The proposed techniques are based on the quantization of the
original host signalin the logarithmic domain. Firstly, we will



address the logarithmic version of Dither Modulation (DM)
[1], whose embedding function is given by

log(|yi|) = Q∆

(

log(|xi|) −
bi∆

2
− di

)

+
bi∆

2
+ di.

A further step toward a scaling resistant scheme would be a
differential watermarking method in the logarithmic domain,
where the embedding procedure can be described as

log(|yi|) = Q∆

(

log(|xi|) − log(|yi−1|) −
bi∆

2
− di

)

+ log(|yi−1|) +
bi∆

2
+ di.

In both casesyi = sign(xi) · elog(|yi|).

3. POWER ANALYSIS

Assuming i.i.d. components, the power of the watermark,
both for the differential and non-differential methods, isgiven
by

Var{w} , σ2
W =

1

∆

∫ ∆/2

−∆/2
(

∞
∑

m=−∞

∫ em∆+∆/2+τ

em∆−∆/2+τ

(|x| − em∆+τ)2f|X|(|x|)dx

)

dτ.

If the host signal follows a zero-mean Gaussian distribution,
it can be shown that

σ2
W =

1

∆

∫ ∆/2−log(σX )

−∆/2−log(σX )

2 ·
[

∞
∑

m=−∞

∫ m∆+∆/2

m∆−∆/2

σ2
Xe2x2(ex1 − em∆)2

e−
e2(x1+x2)

2

√
2π

ex1+x2dx1

]

dx2.

Since for a given value of∆ the function inside the brackets
in the last formula is periodic with period∆, σ2

W is propor-
tional toσ2

X , implying that theDocument to Watermark Ratio
(DWR) is independent ofσ2

X .

3.1. Computation of an approximation to the embedding
distortion for small values of the quantization step

Taking into account that the dither is independent of the host,
and uniformly distributed in[−∆/2, ∆/2]L, log(|yi|)−log(|xi|)
will be also uniformly distributed in[−∆/2, ∆/2]L, regard-
less of the value ofx. This implies that we can writelog(|y|) =
log(|x|)+v, wherev is uniform in[−∆/2, ∆/2]L, so|yj| =
|xj |evj , with 1 ≤ j ≤ L. Therefore, the power of the water-
mark, both for the differential and non-differential methods,
is given by

σ2
W =

1

∆

∫ ∆/2

−∆/2

∫ ∞

0

[x(1 − ev)]2fX(x)dxdv.
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Fig. 1. Comparison of the exact DWR and the obtained ap-
proximation as a function of∆.

For small values of∆, i.e. ∆ << 1, which is reasonable due
to imperceptibility constraints, we can approximate1 − ev ≈
−v, so 1

∆

∫ ∆/2

−∆/2(1 − ev)2dv ≈ ∆2

12 , yieldingσ2
W ≈ σ2

X
∆2

12 ,
for any distribution of the original host signal.

4. PROBABILITY OF ERROR

4.1. Non-differential scheme

Considering the periodic nature of the decision region in the
logarithmic domain, it is straightforward to show that the prob-
ability of decoding error when the minimum distance decoder
is used is given by

Pe = Pr

{

| log(|Zi|) − Di − Q∆(log(|Zi|) − Di)| ≥
∆

4

}

= Pr{|mod(log(|Zi|) − Di, ∆) | ≥ ∆/4} .

Noticing thatlog(|Yi|) = Di +m∆, such probability of error
can be rewritten as

Pe = Pr

{

∣

∣

∣

∣

mod
(
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(∣

∣

∣

∣

1 +
Ni

Yi

∣

∣

∣

∣

)

, ∆
)

∣

∣

∣

∣

≥ ∆/4

}

.

Considering that the samples of bothN andY are i.i.d.
we will disregard the subindex, and writelog(|N/Y |) = log(|N |)−
log(|Y |). If both the host signal and the noise are Gaussian
we can write

flog(|X|)(x) =
2

√

2πσ2
X

e
− e2x

2σ2
X ex

and similarly forflog(|N |)(n), so taking into account thatlog(|Y |) =
log(|X |) + V , whereV follows a uniform distribution on
[−∆/2, ∆/2], the pdf oflog(|N/Y |) = log(|N |)−log(|X |)−
V can be written as

flog(|N/Y |)(x) =
2
[

arccot
(

e−∆/2+xσX

σN

)

− arccot
(

e∆/2+xσX

σN

)]

π∆
.
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Fig. 2. Empirical and theoretical decoding error probabili-
ties as a function ofσX , for both the differential and non-
differential schemes.σN = 2 and∆ = 1.

For large values ofσX/σN , the ratio |N/Y | will take
small values with high probability, so in practical scenarios
we can approximate| log(|1 + N/Y |)| ≈ |N/Y |, where we
have used the fact thatlog(|1+x|) ≈ x, for |x| << 1. There-
fore,

f| log(|1+N/Y |)|(x) ≈
2
[

arccot
(

e−∆/2xσX

σN

)

− arccot
(

e∆/2xσX

σN

)]

π∆x
.

Assuming that∆ << 1 andσX/σN >> 1, and consider-
ing that arccot(x) ≈ 1/x when|x| >> 1, the last expression
can be approximated byf| log(|1+N/Y |)|(x) ≈ 2σN

σXπx2 , so we

can writePe ≈
∑∞

m=1
2σN

(−3∆/4+m∆)σXπ − 2σN

(−∆/4+m∆)σXπ .

4.2. Differential Scheme

Following a reasoning similar to that given for the non-differential
case, it is straightforward to see that the probability of error is

nowPe = Pr

{

∣

∣

∣

∣

mod
(

log
(∣

∣

∣
1 + Ni

Yi

∣

∣

∣

)

−log
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∣

∣

∣

)

, ∆
)

∣

∣

∣

∣

≥

∆/4

}

. In this case we will use the fact that the distribution

of Y is assymptotically independent of∆ for small values of
∆, so we can approximate the distribution oflog(|N/Y |) as

flog(|N/Y |)(x) ≈ flog(|N/X|)(x) =
2σXσNex

π (σ2
Xe2x + σ2

N )
,

and since|N/Y | ≈ |N/X | << 1, we can writelog(|1 +
N/Y |) ≈ N/Y ≈ N/X , so

f| log(|1+N/Y |)|(x) ≈ 2σXσN

π (σ2
Xx2 + σ2

N )
, x ≥ 0.

Be aware that for large values ofσX/σN the last formula can
be approximated by2σN

πσXx2 , the approximation to the pdf of

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−2

10
−1

10
0

∆

P
e

Empirical No Diff.
Theoretical No Diff.
Empirical Diff.
Theoretical Diff.

Fig. 3. Empirical and theoretical decoding error probabil-
ities as a function of∆, for both the differential and non-
differential schemes.σX = 100 andσN = 1.

| log(|1 + N/Y |)| obtained in Section 4.1. Considering that
N/Y will take positive and negative values with the same
probability it follows that

flog(|1+N/Y |)(x) ≈ σXσN

π (σ2
Xx2 + σ2

N )
, for all x ∈ R,

and the pdf ofxdiff , log
(∣

∣

∣
1 + Ni

Yi

∣

∣

∣

)

− log
(∣

∣

∣
1 + Ni−1

Yi−1

∣

∣

∣

)

is

written as

fxdiff (x) ≈ 2σ3
Xσ2

Nx

π(4σ2
Xσ3

Nx + σ4
XσNx3)

;

which, assuming thatσX >> σN , can be approximated as
fxdiff (x) ≈ 2σN

πσXx2 , so the probability of decoding error is
given by

Pe = 2

(

∞
∑

m=1

2σN

(−3∆/4 + m∆)σXπ
− 2σN

(−∆/4 + m∆)σXπ

)

.

This is nothing but twice the probability of decoding error
obtained for the non-differential scheme, implying that for a
given value of∆, and therefore a fixed value of DWR, the
WNR needed for achieving a certain probability of decoding
error is increased by6 dB (compared to the non-differential
one) when the differential scheme is used. On the other hand,
the differential scheme makes the resulting scheme completely
invulnerable to valumetric attacks using a constant scaling
factor, and even robust to attacks where such factor changes
slowly. In Figs. 2 and 3, we can see the good fit of the empir-
ical results with the obtained approximations, especiallyfor
the specified asymptotic values.

5. PERCEPTUAL MASKING

Another interesting characteristic of the proposed methods is
the perceptual shape of the obtained watermark; the quantiza-



tion step in the original domain is increased with the magni-
tude of the host, introducing more watermark distortion when
the host signal takes large values. This effect makes sense
from a perceptual point of view, since the human visual sys-
tem performs the so-calledcontrast masking, the reduction of
the visibility of one image component in presence of another.
This phenomenom, which is reflected in the perceptual distor-
tion measure introduced by Watson in [4], constitutes the mo-
tivation for multiplicative spread spectrum data hiding tech-
niques, where it is “desirable that larger host features bear a
larger watermark” [5]; recent works on video watermarking
have also chosen multiplicative methods based on perceptual
considerations [6]. Furthermore, these techniques, wherethe
embedding process is given byyi = xi(1 + ηsi), with s the
spreading sequence andη a distortion controlling parameter,
can be interpreted in logarithmic terms, as for|ηsi| << 1
we can write1 + ηsi ≈ eηsi , andyi ≈ xie

ηsi . Therefore,
we can say that multiplicative spread spectrum is to additive
spread spectrum watermarking, as the logarithmic techniques
presented here are to Dither Modulation.

Returning to the perceptual justification of logarithmic (or
multiplicative) techniques, in this section we will use Wat-
son’s perceptual measure in order to illustrate with some ex-
perimental results the performance advantages, for a given
embedding perceptual distortion, of the proposed techniques
when they are compared with theclassicalscalar DM data
hiding technique. In order to perform this comparison, we
embedded the watermark in the AC coefficients of the8 × 8
blocks DCT of real images, using a repetition rate of1/100,
and adding as attack i.i.d. Gaussian noise with variance yield-
ing a DNR= 35 dB. In Fig. 4 we can see the achieved prob-
ability of error as a function of the perceptual distortion mea-
sure introduced by Watson [4] due to the embedding. As ex-
pected, the non-differential strategy clearly outperforms the
differential one, although the ratio between the probability of
error for both cases somewhat differs from the theoretical one,
due to the fact that DCT coefficients do not really follow a
Gaussian distribution, as it was assumed throughout the pre-
vious sections. Nevertheless, one can also verify the good
performance of the proposed logarithmic schemes compared
with theclassicalDM, due to the perceptually shaped nature
of the watermark.

6. CONCLUSIONS AND FUTURE LINES

In this paper we have presented a novel quantization-based
watermarking technique robust to scaling attacks, with both
differential and non-differential versions. The analysisof these
methods is completed with some perceptual considerations,
showing their good behavior with respect toclassicalDM,
and establishing interesting links with previous multiplica-
tive schemes. Ongoing research includes the analysis of the
distortion compensated and Spread Transformed versions of
the proposed methods, as well as their performance against
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coarse quantization attacks.
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