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Efficient Real Single-Tone Frequency Estimator

Based on a Normalized IIR Notch Filter

Abstract

A novel unbiased frequency estimator for a single real-valued sinusoid in white noise is proposed, which is based

on a normalized second-order Infinite Impulse Response (IIR) notch filter, an can be seen as an extension of the

Pisarenko Harmonic Decomposer (PHD) estimator. The new estimator inherits the simplicity of the PHD estimator

and the high accuracy and selectivity achieved by an IIR filter. As the coefficient determining the pole angle of the

IIR notch filter depends on the unknown frequency value, an iterative scheme is proposed in which this coefficient

is computed from the frequency estimate from the previous iteration. An analytic expression for the Mean Square

Error at each iteration is derived. Simulation results show that this iterative method can approach the Cramer-Rao

Lower Bound in a few iterations under different Signal to Noise Ratio levels, provided that the data record length is

sufficiently large.

I. INTRODUCTION

Estimation of the frequency of a sinusoidal signal in the presence of broad-band noise is a common problem

in signal processing [1]. Numerous techniques have been developed for its treatment [1], [2], including Maximum

Likelihood (ML) estimation [3], notch filtering [4] and methods based on the linear prediction (LP) property of

sinusoidal signals such as Prony’s method, instrumental variable methods [5], iterative filtering [6], Yule-Walker

methods [7] and subspace schemes such as truncated singular value decomposition, MUSIC and ESPRIT [2].

The ML estimator is known to be statistically efficient in the sense that its variance asymptotically achieves the

Cramer-Rao Lower Bound (CRLB), but it requires the maximization of a highly nonlinear and multimodal cost

function [3], [8], with the corresponding high computational burden. On the other hand, computationally simple

estimators can be obtained by exploiting the LP property of the sinusoidal signal, but they result in suboptimum

performance. Among these, the Pisarenko Harmonic Decomposer (PHD) [9] is of historical interest, since it was

the first to exploit the eigenstructure of the covariance matrix of the observations, and its performance has been

extensively studied [10], [11]. Interestingly, for the case of a real-valued single sinusoid the PHD estimator can be

implemented in a very simple way [12].

Some attempts to improve the performance of the PHD estimator can be found in the literature. In [13] a variant

termed Reformed PHD (RPHD) was proposed. Its performance is superior to that of the original PHD, although the

statistical analysis in [13] revealed its inefficiency. Another estimator in the Pisarenko framework was derived in

[14] from a generalized eigenvalue problem, as a solution to a constrained Weighted Least Squares criterion. The

high computational load of this method, however, precludes its application to situations requiring rapid frequency

estimation.

The above estimators are esentially off-line (i.e. batch) methods. A different approach to frequency estimation

is the use of on-line (i.e. adaptive) notch filters. In fact, adaptive versions of Pisarenko’s method are possible,
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which attempt to match the angular positions of the zeros of a Finite Impulse Response (FIR) filter to the unknown

frequencies of the sinusoids. However, high noise rejection and sharp cutoff bandpass characteristics are desirable

traits which can only be obtained with very high order FIR structures, and thus Infinite Impulse Response (IIR)

notch filters have become a popular choice. Several algorithms have been developed for the adaptation of these

systems, essentially seeking the minimum point of some cost function; see e.g. [15, Ch. 10] and the references

therein.

It is natural then to ask whether off-line frequency estimators based on the idea of IIR notch filtering could be

devised. The main difficulty in this sense is the fact that the notch filter output is not a linear function of the IIR

filter parameters, and thus no Wiener-Hopf type closed-form expression for the optimum filter exists. However, if

the recursive portion of the IIR notch filter is regarded as fixed, the minimization problem becomes a quadratic

one.

The main contribution of this paper is to derive a computationally simple estimator based on the minimization

of the Least Squares (LS) cost function defined as the output power of a new normalized IIR notch filter. The

normalization constant is chosen so as to ensure that the frequency estimate is unbiased. The statistical analysis of

the proposed method, of which the RPHD estimator turns out to be a particular case, is derived in terms of the

Mean Square Error (MSE) of the frequency estimate.

In essence, the recursive part of the IIR notch filter acts as a data prefilter that enhances the sinusoidal component

over the noise background. For this purpose, the prefilter parameter must be tuned to the true frequency value. As

this value is a priori unknown, an iterative scheme is proposed in which, at each iteration, the prefilter parameter

is obtained based on the frequency estimate from the previous step. Simulation results show that convergence is

usually achieved in a few iterations, whereas the performance turns out to be very close to the CRLB for a range

of Signal to Noise Ratio (SNR) values, provided that the data record length is sufficiently large.

This paper is organized as follows. In Section II, the frequency estimation problem is formulated and the IIR notch

filter approach is presented. In Section III, the new normalized IIR notch filter is introduced and the estimator based

on the minimization of the corresponding LS cost function is derived. The relationship of the proposed estimator

with the PHD method is discussed and an iterative implementation is proposed. Performance is analyzed in Section

IV, whereas the selection of the notch filter bandwidth is discussed in Section V. Simulations are presented in

Section VI and conclusions are drawn in Section 6.

II. PROBLEM FORMULATION

Consider the problem of estimating the unknown frequency ω 0 of a real-valued sine wave s(i) immersed in white

noise u(i). The observed signal, y(i), is given by

y(i) = s(i) + u(i) (1)

= α sin(ω0i+ ϕ) + u(i), 1 ≤ i ≤ N,

where α is the sinusoid amplitude, ϕ is a random phase uniformly distributed in the interval [−π, π[, u(i) is a

real-valued zero mean white noise process with variance σ 2
u, and N is the number of observations. We assume that

the processes u(i) and s(i) are statistically independent. The SNR is defined as SNR
.= α2/(2σ2

u), and assumed

unknown.
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Usually, a second-order IIR filter with constrained parameterization is used for notch-filter-based estimation. The

following structure is typically used in practice [4]:

Hã0,r(z−1) =
Aã0(z

−1)
Aã0(rz−1)

=
1 + ã0z

−1 + z−2

1 + ã0rz−1 + r2z−2
, (2)

where ã0 = −2 cos ω̃0, ω̃0 is the frequency estimate and the parameter r (0 ≤ r < 1) is known as the pole

contraction factor.

Note that the zeros of Aã0(z−1) are on the unit circle, at angular locations ±ω̃0. The basic idea underlying notch-

filter-based estimation techniques is the minimization, with respect to ã0, of the power of the notch filter output

when the input is the observed signal y(i). Due to the presence of ã 0 in both the numerator and the denominator of

(2), this output power is a nonquadratic function of ã 0. It is known that in the noise-free case this cost function is

unimodal, with its only minimum at ã0 = a0
.= −2 cosω0 as desired [15], [16]. Seeking this minimum is feasible

via e.g. an on-line gradient descent procedure, but obtaining an off-line estimate based on this paradigm is not

straightforward. Moreover, the presence of the noise term u(i) in (1) will alter the location of this minimum, unless

the pole contraction factor is sufficiently close to one [16].

For these reasons, we consider the minimization of the output power but fixing the denominator in (1), i.e. the

notch filter transfer function becomes now

Hã0,b,r(z−1) =
Aã0(z−1)
Ab(rz−1)

(3)

where b is now a fixed parameter. A typical choice for b is the true parameter a 0
.= −2 cosω0; since a0 is not

available, later on we will present a means to select b.

III. CLOSED-FORM ESTIMATOR BASED ON A NORMALIZED IIR NOTCH FILTER

As a first step in the development of the frequency estimator, the appropriate normalization for the recursive

data prefilter is derived. Then the estimate is presented in closed form, together with the iterative procedure for the

selection of the prefilter.

A. Choice of normalization factor

Direct minimization of the power of e(i; ã0) = Hã0,b,r(z−1)y(i) with respect to ã0 leads to a biased estimate of

a0. To see this, write this power as

E{e2(i; ã0)} =
1
2π

∫ π

−π

|Hã0,b,r(ejω)|2Sy(ω)dω, (4)

where Sy(ω) is the power spectral density (psd) of y(i), which is the sum of the psd’s of s(i) and u(i), namely

Sy(ω) = Ss(ω) + Su(ω) (5)

where

Ss(ω) =
α2

4
[δ(ω + ω0) + δ(ω − ω0)] , Su(ω) = σ2

u. (6)
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Therefore the output power (4) can be split into the signal and noise induced terms:

E{e2(i; ã0)} = Js(ã0) + Ju(ã0), (7)

Js(ã0) =
α2

4π
|Hã0,b,r(ejω0 )|2, (8)

Ju(ã0) =
σ2

u

2π

∫ π

−π

|Hã0,b,r(ejω)|2dω. (9)

Substituting the expression of the notch filter H ã0,b,r(z−1) one obtains

Js(ã0) =
α2

4π
(ã0 − a0)2

(1 − r2)2 − r(1 + r2)a0b+ r2(a2
0 + b2)

, (10)

Ju(ã0) = σ2
u

(1 + r2)ã2
0 − 4rã0b+ 2r2b2 − 2r4 + 2

(1 − r2) [(1 + r2)2 − r2b2]
. (11)

Note that the signal induced term Js(ã0) is minimized when ã0 = a0, as desired. On the other hand, since the

noise induced term Ju(ã0) is a function of ã0, the minimum of E{e2(i; ã0)} will depend on the noise power σ2
u.

As a result, minimizing (4) in the presence of noise will result in a biased frequency estimate. This bias problem

would be avoided if the noise induced term could be made independent of the parameter ã 0. To do so, and in view

of (11), we propose to normalize the IIR notch filter by the following strictly positive function of ã 0, parameterized

by b and r (with r ∈ [0, 1[ and b ∈ [−2, 2] ):

Mã0,b,r
.=
√

(1 + r2)ã2
0 − 4rã0b+ 2r2b2 − 2r4 + 2. (12)

This results in a new IIR notch filter

H̄ã0,b,r(z−1) =
Hã0,b,r(z−1)
Mã0,b,r

. (13)

The expression of the power of the corresponding output ē(i; ã 0) = H̄ã0,b,r(z−1)y(i) is now

E{ē2(i; ã0)} = J̄s(ã0) + J̄u, (14)

J̄s(ã0) =
Js(ã0)
M2

ã0,b,r

, J̄u =
Ju(ã0)
M2

ã0,b,r

(15)

By design, J̄u is independent of ã0. On the other hand, the global minimum of J̄s(ã0) is still located at ã0 = a0.

Although J̄s(ã0) is no longer a quadratic function of ã0 (in contrast to Js(ã0)), it turns out that it still enjoys

a unique minimum at ã0 = a0. This can be seen by noting that the only solution different from ã 0 = a0 of

∂J̄s(ã0)/∂ã0 = 0 is

ã0 =
2(1 − rb + r2b2 − r4)

4rb − (1 + r2)a0
, (16)

which can be easily shown to correspond to a maximum of J̄s(ã0).

B. Frequency estimator

In order to obtain a frequency estimator in closed form based on the ideas of the previous subsection, we adopt

an LS approach.

Given b, r, we define as before the output of the normalized IIR notch filter as ē(i; ã 0) = H̄ã0,b,r(z−1)y(i). The

empirical power is then obtained as

PN (ã0)
.=

1
N − 2

N∑
i=3

ē2(i; ã0). (17)
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In order to obtain the minimizer of (17) we must solve

N∑
i=3

ē(i; ã0)
∂ē(i; ã0)
∂ã0

= 0. (18)

To do so, let w(i) be the signal obtained by prefiltering the data y(i) with the all-pole filter 1/A b(rz−1). Then we

can write

ē(i; ã0) =
1

Mã0,b,r
[w(i) + ã0w(i− 1) + w(i− 2)] , (19)

from which one readily obtains

∂ē(i; ã0)
∂ã0

=
1

M3
ã0,b,r

[
(2rb− (1 + r2)ã0)(w(i) + w(i− 2))

+ 2(1 − rbã0 + r2b2 − r4)w(i− 1)
]
. (20)

Thus the LS minimizer must satisfy the quadratic

ϑN ã
2
0 + ηN ã0 − 2�N = 0, (21)

where

ηN
.=

N∑
i=3

[
(1 + r2) (w(i) + w(i− 2))2 − 2(1 + r2b2 − r4 + 2)x2(i− 1)

]
, (22)

ϑN
.=

N∑
i=3

[
2rbx2(i− 1) + (1 + r2)w(i− 1) (w(i) + w(i− 2))

]
, (23)

�N
.=

N∑
i=3

[
rb (w(i) + w(i− 2))2 + (1 + r2b2 − r4)w(i− 1) (w(i) + w(i− 2))

]
. (24)

Of the two roots of (21), one corresponds to a maximum of PN (ã0) and the other one is the solution sought:

ã0 = −ηN +
√
η2

N + 8ϑN�N

2ϑN
, (25)

which provides the desired frequency estimate as

ω̃0 = arccos
(
− â0

2

)
, with â0

.= sgn(ã0) · min{2, |ã0|} (26)

For sufficiently large N , a simplified version of (25) can be derived. Note that for large N , the following hold:

1
N − 2

N∑
i=3

x2(n) ≈ 1
N − 2

N∑
i=3

x2(n− 1) ≈ 1
N − 2

N∑
i=3

x2(n− 2), (27)

1
N − 2

N∑
i=3

w(n)w(n − 1) ≈ 1
N − 2

N∑
i=3

w(n− 1)w(n− 2). (28)

Hence, the estimate (25) asymptotically converges to

ã0 = −r
2
(
1 + r2 − b2

)
ρ0 +

(
1 + r2

)
ρ2 +

√
Δ

2 [rbρ0 + (1 + r2) ρ1]
, (29)

where

Δ .=
[
r2

(
1 + r2 − b2

)
ρ0 +

(
1 + r2

)
ρ2

]2
+ 8

[
rbρ0 +

(
1 + r2

)
ρ1

] [
rb (ρ0 + ρ2) +

(
1 + r2b2 − r4

)
ρ1

]
, (30)
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and with the empirical autocorrelation coefficients defined as

ρp
.=

1
N − 2

N∑
i=3

w(i)w(i − p) for p = 0, 1, 2. (31)

In order to check the unbiasedness of the proposed estimator, note that the prefiltered signal w(i) consists of a

sinusoid in colored noise, and that the empirical autocorrelation estimates (31) asymptotically converge to the true

values

lim
N→∞

ρp =
cos(pω0)

|Ab (rejω0 ) |2 +
σ2

u

2πj

∮
zp−1dz

Ab (rz−1)Ab (rz)
. (32)

Using the residue theorem for the evaluation of the integral in (32), it is found that

lim
N→∞

ρ0 =
(
1 + r2

)
ξr,b + �a0,b,r, (33)

lim
N→∞

ρ1 = −rbξr,b − a0

2
�a0,b,r, (34)

lim
N→∞

ρ2 = −r2 (r2 − b2 + 1
)
ξr,b +

(
a2
0

2
− 1

)
�a0,b,r, (35)

with

ξr,b
.=

σ2
u

(1 − r2)
(
(1 + r2)2 − r2b2

) , (36)

�a0,b,r
.=

α2

2
(
(1 − r2)2 − r (1 + r2) a0b+ r2 (a2

0 + b2)
) . (37)

Substituting in (29) the asymptotic values of ρp given by (33)-(35), it is found that ã0 converges to a0 = −2 cos (ω0).

Thus the proposed estimator is asymptotically unbiased.

C. Relation with the PHD estimator

In the case of a single real-valued tone, the PHD estimate [9], [10], [12] is obtained in terms of the unit-norm

eigenvector [v0 v1 v2]T corresponding to the smallest eigenvalue of the 3 × 3 sample autocorrelation matrix⎛
⎜⎜⎝

ρ̌0 ρ̌1 ρ̌2

ρ̌1 ρ̌0 ρ̌1

ρ̌2 ρ̌1 ρ̌0

⎞
⎟⎟⎠ ,

where ρ̌p denotes the lag-p sample autocorrelation coefficient of the observations y(i), given by:

ρ̌p =
1

N − p

N∑
i=p+1

y(i)y(i− p). (38)

The corresponding eigenvector is symmetric (v2 = v0), and the frequency estimate is taken as the angular position

ŵ of the zero of the transfer function v0 + v1z
−1 + v0z

−2 [12]

ŵ = arccos

(
ρ̌2 +

√
ρ̌2
2 + 8ρ̌2

1

4ρ̌1

)
. (39)

In the same vein, a similar estimator was derived in [13] based on the linear prediction property of sinusoidal

signals. Termed Reformed PHD (RPHD), it is obtained under a constrained LS criterion and is given by

ŵ = arccos

(
γN +

√
γ2

N + 8β2
N

4βN

)
, (40)
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where

γN
.=

N∑
i=3

(
[y(i) + y(i− 2)]2 − 2y2(i− 1)

)
, (41)

βN
.=

N∑
i=3

[y(i) + y(i− 2)] y(i− 1). (42)

Consider now the IIR notch filter-based closed-form estimator (25)-(26). It turns out that for the particular case

r = 0 (i.e. when no data prefiltering is applied), the frequency estimate (26) corresponds to the RPHD estimate

(40), whereas the estimate obtained by using the asymptotic expression (29) in place of (25) corresponds to the

PHD estimate (39). Hence, both PHD and RPHD are obtained as particular cases of the proposed scheme.

D. Iterative update of the data prefilter

Observe that, if properly chosen, the data prefilter 1/A b(rz−1) has the potential to enhance the desired frequency

over the noise, thus improving the effective SNR. So far we have assumed that the parameter b of the prefilter is

fixed a priori. Note that this parameter determines the angular position of the poles of the data prefilter, and thus

ideally one would like to choose b = a0 = −2 cosω0. Since ω0 is of course not available, it seems natural to use

an iterative scheme in which the prefilter is designed at each iteration based on the frequency estimate obtained in

the previous step. In the first iteration, r = 0 can be used (and thus the RPHD estimate is used to initialize the

recursion), after which a suitable value r > 0 is set. The iterative procedure is summarized as follows:

1) Obtain an initial estimate ã(0)
0 based on RPHD (i.e. (25) with r = 0).

Set r to a suitable value r ∈ (0, 1). For k = 1, 2, 3, . . .

2) Set b(k) = ã
(k−1)
0 and obtain the prefiltered data w(i) = [1/Ab(k)(rz−1)]y(i).

3) Compute the new estimate ã(k)
0 using (25).

4) Repeat Steps 2 and 3 until convergence. Obtain the frequency estimate ω̃ 0 via (26).

IV. PERFORMANCE ANALYSIS

By a Taylor series argument, and assuming small errors, the MSEs of the estimates ω̃ 0 and ã0 = −2 cos ω̃0 are

easily shown to be related by

MSE(ω̃0) � MSE(ã0)
4 sin2 ω0

, ω0 /∈ {0, π}. (43)

First we derive the MSE of ã0 for a fixed value of b. Once this is done, a recursion for the MSE of ã (k)
0 at iteration

k will be obtained, which will yield the desired MSE value after convergence.

A. MSE for fixed b

For given values of b and r, the estimate ã0 must satisfy

FN (ã0)
.=

1
N − 2

N∑
i=3

ē (i; ã0)ψ (i; ã0) = 0, (44)

where ψ (i; ã0) = [∂ē (i; a)/∂a]a=ã0
. Assuming small errors, we can use a first-order expansion of FN (ã0) around

a0

FN (ã0) � FN (a0) + β (ã0 − a0) , (45)
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where

β
.=
∂FN (a)
∂a

∣∣∣∣
a=a0

. (46)

Using the weak law of large numbers, the evaluation of β for sufficiently large N yields

β =
α2

2M2
a0,b,r

[
(1 − r2)2 − r (1 + r2) a0b+ r2 (a2

0 + b2)
] . (47)

The terms neglected in (45) go to zero faster than |ã0 − a0| when N is sufficiently large.

It follows from (45) that the MSE is

MSE (ã0| b) = E
[
(ã0 − a0)

2 | b
]
� E[F 2

N (a0)]
β2

. (48)

The evaluation of E
[
F 2

N (a0)
]

for large N is done in the Appendix. The resulting asymptotic expression for the

MSE is

MSE (ã0| b) � 2
N · SNR2 ·

Ca0,b,r

[(
1 − r2

)2 − r
(
1 + r2

)
a0b+ r2

(
a2
0 + b2

)]2

M4
a0,b,r (1 − r2) [b2r2 − (1 + r2)2]

, (49)

where

Ca0,b,r
.= 2

[
a0br(1 + r2) − (1 − r2)2 − (a2

0 + b2)r2
]2 × {

(4 − 3a2
0 + a4

0) + 4b(a0 − a3
0)r

− [4(1 + b2) − (3 + 7b2)a2
0 − a4

0]r
2 − 4b[(2 + b2)a0 + a3

0]r
3

−[4(1 − 3b2) − (7 + 3b2)a2
0]r

4 − 12ba0r
5 + (4 + a2

0)r
6
}
. (50)

For the particular case r = 0, (49) reduces to the following known approximation for the MSE of the RPHD

estimator [13]:

MSERPHD � 4
[
a4
0 − 3a2

0 + 4
]

NSNR2(a2
0 + 2)2

. (51)

B. Evolution of the MSE

The previous analysis assumed b was fixed. At step k of the proposed iterative estimation scheme, the MSE of

ã
(k)
0 will be approximately given by the expected value of (49) after setting b = b (k):

MSE
(
ã
(k)
0

)
� E

{
MSE

(
ã
(k)
0

∣∣ b(k)
)}

(52)

Since the iteration sets b(k) = ã
(k−1)
0 , we assume that b(k) = a0 + ε(k), with ε(k) a zero mean random variable

with variance

E
{

(ε(k))2
}

= E
{
(b(k) − a0)2

}
= MSE

(
ã
(k−1)
0

)
. (53)

Let f(b) .= MSE
(
ã
(k)
0

∣∣ b), and consider a second-order expansion of f(b (k)) around a0:

f(b(k)) � f(a0) + ε(k) ∂f(b)
∂b

∣∣∣∣
b=a0

+
(ε(k))2

2
∂2f(b)
∂b2

∣∣∣∣
b=a0

. (54)

Taking the expectation of (54), one has

MSE
(
ã
(k)
0

)
� f(a0) +

1
2

MSE
(
ã
(k−1)
0

) ∂2f(b)
∂b2

∣∣∣∣
b=a0

. (55)

At the first iteration, ã(0)
0 coincides with the RPHD estimate, and hence MSE

(
ã
(0)
0

)
is given by (51).
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The evaluation of f(a0) shows that

f(a0) =
(1 − r)3h0(a0, r)

N SNR2 , (56)

where

h0(a0, r) =

4[(1 + r)2 − a2
0r]2

[
4(1 + r2)(1 + r)2 + a2

0(r4 − 10r3 − 2r2 − 2r − 3) + a4
0(3r2 − 2r + 1)

]
(1 + r)[(1 + r2)2 − a2

0r
2] [2(1 + r)(1 + r2) − 3a2

0r + a2
0]

2 .

On the other hand,
∂2f(b)
∂b2

∣∣∣∣
b=a0

=
r2(1 − r)h1(a0, r)

N SNR2 , (57)

where

h1(a0, r) =
∑7

m=0 pm(r)a2m
0

(1 + r)(2r3 + 2r2 − 3a2
0r + 2r + a2

0 + 2)4(1 + 2r2 + r4 − r2a2
0)3

. (58)

The terms pm(r) are polynomial functions of r of degree up to 20. 1

As k goes to ∞, the MSE at convergence can be obtained from (55) since

MSE
(
ã
(∞)
0

)
� f(a0) +

1
2

MSE
(
ã
(∞)
0

) ∂2f(b)
∂b2

∣∣∣∣
b=a0

. (59)

Solving equation (59) and using (43), one finally has

MSE
(
ω̃

(∞)
0

)
� 2(1 − r)3h0(a0, r)

[2N SNR2 − r2(1 − r)h1(a0, r)](4 − a2
0)
. (60)

C. Numerical examples

Computer simulations had been carried out to validate the theoretical MSE of the proposed estimator. The

magnitude of the input sine wave is set to
√

2 and its phase is randomly selected in [0, 2π[. All results are averages

of 103 independent experiments.

The theoretical MSE at convergence (60) as a function of r and for different sequence lengths N is shown in

Figs. 1 and 2, for SNR = 10 and 0 dB respectively. The sinusoid frequency is ω 0 = 0.4π. Also shown are the

empirical results obtained after three iterations of the proposed estimator. This empirical MSE agrees reasonably

well with the theoretical expression, more so for large N , as expected. We also note that, as r approaches 1, this

match requires larger values of N . Observe that considerable improvements with respect to RPHD (r = 0) can be

achieved by selecting r > 0.

Fig. 3 shows the theoretical and empirical MSE versus N in a very noisy setting (SNR=−10 dB), again for

ω0 = 0.4π and with r = 0.8. It is observed that convergence is achieved in two to three iterations. Even in this

low SNR setting a good match between the theoretical and experimental values is obtained if N is large enough.

1The exact expressions of pm(r) are available upon request.
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Fig. 1. Mean squared frequency errors versus r, SNR=10 dB, ω0 = 0.4π.
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Fig. 2. Mean squared frequency errors versus r, SNR=0 dB, ω0 = 0.4π.
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Fig. 3. Mean squared frequency errors versus N , SNR=-10 dB, r = 0.8, ω0 = 0.4π.

V. SELECTION OF THE POLE CONTRACTION FACTOR

As seen above, a proper choice of r can improve noticeably the performance of the estimate. Fig. 4 shows the

behavior of the theoretical MSE in terms of r for ω0 = 0.4π, N = 5000 and different SNR levels. The optimal

parameter ropt minimizing the MSE depends on the SNR. The higher the SNR, the larger r opt is for a given iteration

number. On the other hand, if the SNR is sufficiently low, a value of r too close to 1 in the first iteration can result

in degraded performance. Thus in low SNR settings the performance of the proposed estimator becomes sensitive

to the initial choice of the parameter r. Fig. 5 plots the theoretical MSE versus r for ω 0 = 0.4π, N=10000, SNR

= 0 dB. It is seen that ropt also depends on the sequence length N .

Fig. 6 and Fig. 7 display ropt as a function of the iteration number for different N and SNR levels, and for

ω0 = 0.4π and 0.1π respectively. It is seen that ropt increases with the iteration number. The initial and final values

of ropt also depend on ω0, N , and the SNR level.

These observations motivate the selection of a different pole contraction factor r (k) at different iterations. In

practice, no a priori information is available on the input sine wave so that its frequecy may fall outside of the

prefilter passband, especially for small SNR and/or short data lengths. Therefore it makes sense to use a wider

passband at the first iteration that becomes narrower as iterations evolve. This ‘bandwidth thinning’ strategy is

common in the design of adaptive notch filters [15]. A simple way to do this is to let r grow exponentially from

r(1) to a final value r(∞) according to

r(k+1) = λr(k) + (1 − λ)r(∞), 0 < λ < 1. (61)

The parameter λ determines the change rate of r (k), which should be larger for large data lengths in order to speed
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up convergence. On the other hand, with short data records a slower variation of r should help increase sensitivity

to the presence of the sine wave. Thus, λ should somehow be inversely proportional to N .

In our simulation studies, we apply the algorithm with the numerical values

r(1) = 0.75; r(∞) = 0.995.

The value r(1) = 0.75 was chosen as the smallest pole contraction which has significant effect on the bandwidth

of the notch filter, corresponding to the worst situation, where small sequence length N is available and low SNR

environment is considered. The value r (∞) = 0.995 was found to yield most accurate results in estimating the sine

wave frequency.
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Fig. 5. Mean squared frequency errors versus r, ω0 = 0.4π, SNR=-10 dB, N=10000.
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VI. SIMULATION RESULTS

In the following experiments we have made use of the following parameter values for the adjustment of the pole

contraction factor: r(1) = 0.75, r∞ = 0.995, and

λ(N) = 0.93/(1 + (N/200)2). (62)

Fig. 8 shows the MSE along the iterations for ω0 = 0.4π, setting SNR = 10 dB, and for N = 20, 200 and 1000.

Similarly, in Fig. 9 we fix N = 200 and consider SNR = 0, 10 and 20 dB. Also shown is the (approximate) CRLB

for this frequency estimation problem [17]:

varCR (ω̃0) ∼= 12
N3 SNR

. (63)

A noticeable improvement can be observed with just one iteration; furthermore, convergence is achieved in about

four iterations, and the achieved MSE is very close to the CRLB.

Next we compare the proposed estimator (using four iterations) with the RPHD [13] and ML [3] estimators.

Fig. 10 shows the MSE versus SNR for ω0 = 0.4π and N = 200. The ML estimate performs very close to the

theoretical optimum in the whole range SNR∈ [−5, 20] dB considered. The proposed estimate is also very close

to this optimum, except at very low SNR, and with a much smaller computational cost. The MSE of the RPHD

estimate is considerably far above the CRLB.

Fig. 11 plots the MSE versus N for ω0 = 0.4π, SNR=10 dB. Again, in addition to outperforming RPHD, the

MSE achieved by the proposed estimate is very close to the CRLB as soon as N > 20.

Fig. 12 shows the variation of the MSE as a function of ω0 for SNR = 10 dB and N = 20. The proposed estimate

performs close to the CRLB for ω0 close to 0.5π, whereas the ML method attains this bound for ω0 ∈ [0.1π, 0.9π].

Fig. 13 shows the corresponding results when the data length is increased to N = 200. The range of frequencies

over which the proposed estimate attains the CRLB has significantly expanded. These results highlight the good

behavior of the proposed method in high SNR even for short data records.

Fig. 14 shows the MSE as function of ω0 for N = 1000 in a noisy setting for which SNR = 0 dB. Performance

is comparable to that of the ML estimator, and to the CRLB (except near the critical frequencies {0, π}). This

shows that the proposed estimator can yield optimum estimation performance even with low SNR levels provided

the data length is sufficiently large.

From Figs. 10-14, we can conclude that the proposed estimator is superior to the RPHD estimator and can achieve

very good estimation performance. It can approach the CRLB for sufficiently high SNR and/or high data lengths.

VII. CONCLUSIONS

An asymptotically unbiased estimator for single sinusoid detection in the presence of white noise was presented.

This new estimator minimizes the LS cost function given by the output of a normalized IIR notch filter. It was

shown that the estimator variance can approach the CRLB under different SNR levels if the number of data points

is sufficiently large. The accuracy of this estimator and its computational simplicity make it attractive in practice

and is a motivation for further generalization to the case of multiple sinusoid detection.
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Fig. 8. Mean squared frequency errors versus iteration number for ω0 = 0.4π, SNR=10 dB.
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APPENDIX

For notatinal convenience, let H̄(z−1) = H̄a0,b,r(z−1) and G(z−1) =
[
∂H̄a,b,r(z−1)/∂a

]
a=a0

. Specifically, one

has

G(z−1) =
1

M3
a0,b,r

B(z−1)
Ab(rz−1)

, (64)

where B(z−1) is a second-order symmetric polynomial (i.e., B(z) = B(z−1)z−2) given by

B(z−1) = [2rb− a0(1 + r2)] + 2(1 − a0br + b2r2 − r4)z−1 + [2rb− a0(1 + r2)]z−2. (65)

Introduce also the signals

ē (i; a0) = H̄(z−1)s(i)︸ ︷︷ ︸
=0

+ H̄(z−1)u(i)︸ ︷︷ ︸
=κ(i)

,

ψ (i; a0) = G(z−1)s(i)︸ ︷︷ ︸
=x(i)

+G(z−1)u(i)︸ ︷︷ ︸
=v(i)

).

Using these, we can write

E
[
F 2

N (a0)
]

=
1
N2

N∑
i=1

N∑
j=1

E [e(i; a0)ψ(i; a0)e(j, a0)ψ(j, a0)]

=
1
N2

N∑
i=1

N∑
j=1

E [x(i)x(j)] E [κ(i)κ(j)]

+
1
N2

N∑
i=1

N∑
j=1

E [v(i)v(j)κ(i)κ(j)] .
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Since v(i), κ(i) are Gaussian, it holds that (see [18])

E [v(i)v(j)κ(i)κ(j)] = E [v(i)v(j)] E [κ(i)κ(j)]

+ E [v(i)κ(j)] E [v(j)κ(i)] + E [v(i)κ(i)] E [v(j)κ(j)] . (66)

Therefore we can write

E
[
F 2

N (a0)
]

= T0 + T1 + T2 + T3 (67)

where

T0 =
1
N2

N∑
i=1

N∑
j=1

E [x(i)x(j)] E [κ(i)κ(j)] , (68)

T1 =
1
N2

N∑
i=1

N∑
j=1

E [v(i)v(j)] E [κ(i)κ(j)] , (69)

T2 =
1
N2

N∑
i=1

N∑
j=1

E [v(i)κ(j)] E [v(j)κ(i)] , (70)

T3 =
1
N2

N∑
i=1

N∑
j=1

E [v(i)κ(i)] E [v(j)κ(j)] = E2 [v(i)κ(i)] . (71)

Note that E [v(i)κ(i)] is the derivative with respect to a (evaluated at a = a0) of the noise gain of the normalized

notch filter H̄(z−1). By design, this noise gain does not depend on a and therefore T 3 = 0. On the other hand, in

order to evaluate T0 we use the following approximation for large N :

T0 =
1
N2

N−1∑
l=−N+1

(N − |l|)E [x(i)x(i+ l)] E [κ(i)κ(i+ l)]

=
1
N

N−1∑
l=−N+1

E [x(i)x(i + l)] E [κ(i)κ(i+ l)] − 1
N2

N−1∑
l=−N+1

|l|E [x(i)x(i+ l)] E [κ(i)κ(i+ l)]

� 1
N

∞∑
l=−∞

E [x(i)x(i + l)] E [κ(i)κ(i+ l)] . (72)

Let {h̄k}∞k=0 be the impulse response of H̄(z−1). Then we have

T0 � σ2
u

N

∞∑
l=−∞

∞∑
k=0

h̄kh̄k+lE [x(i)x(i + l)]

=
σ2

u

N
E

{ ∞∑
m=0

∞∑
k=0

h̄kx(i− k)h̄mx(i−m)

}

=
σ2

u

N
E
{[
H̄(z−1)x(i)

]2}
= 0, (73)

since x(i) is a sinusoid with frequency ω0 and H̄(z−1) has zeros at z = e±jω0 .

Similarly, the following approximations for T1 and T2 can be derived for large N :

T1 � σ2
u

N
E
{[
H̄(z−1)G(z−1)u(i)

]2}
, (74)

T2 � σ2
u

N
E
{[
H̄2(z−1)u(i)

] · [G2(z−1)u(i)
]}
. (75)
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Due to the symmetry property of the numerators of the transfer functions H̄(z−1), G(z−1), it holds that the

right-hand sides of (74) and (75) are equal; thus T 1 � T2. Finally, using the residue theorem, we have

E
[
F 2

N (a0)
] � 2T1 � 2σ4

uCa0,b,r

NM8
a0,b,r (1 − r2)

[
b2r2 − (1 + r2)2

] , (76)

where Ca0,b,r is given in (50).
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