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Abstract. This paper puts in consideration the concepts of security

and robustness in watermarking, in order to be able to establish a clear
frontier between them. A new information-theoretic framework to study
data-hiding and watermarking security is proposed, using the mutual
information to quantify the information about the secret key that leaks
from the observation of watermarked objects. This framework is applied
to the analysis of a Spread-Spectrum data-hiding scheme in different
scenarios. Finally, we show some interesting links between a measure
proposed in previous works in the literature, which is based on Fisher
Information Matrix, and our proposed measure.

1 Introduction

Although a great amount of the watermarking and data-hiding1 literature deals
with the problem of robustness, little has been said about security, and even in
this time of relative maturity of watermarking research no consensus has been
reached about its definition, and robustness and security continue to be often
seen as overlapping concepts. The purpose of this first section is to give an
overview of the evolution of research on watermarking security.

First, the notation and a general model for the evaluation of watermarking
security will be introduced. The model is depicted in Figures 1-a and 1-b: a
message M will be embedded in an original document X (the host), yielding a
watermarked vector Y. The embedding stage is parameterized by the embedding
key Θe, and the resulting watermark is W. In the detection/decoding stage, the

detection key Θd is needed;2 M̂ denotes the estimated message in the case of

⋆ This work was partially funded by Xunta de Galicia under projects PGIDT04
TIC322013PR and PGIDT04 PXIC32202PM; MEC project DIPSTICK, reference
TEC2004-02551/TCM; FIS project IM3, reference G03/185 and European Comis-
sion through the IST Programme under Contract IST-2002-507932 ECRYPT.
ECRYPT disclaimer: The information in this paper is provided as is, and no guar-
antee or warranty is given or implied that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.

1 In this paper we will use these both terms with no distinction.
2 In symmetric watermarking Θe = Θd
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Fig. 1. General model for security analysis: embedding (a) and decoding/detection (b)

decoding, and the decision whether the received signal is watermarked or not in
the case of detection. Capital letters denote random variables, and bold letters
denote vectors.

During the first years, most of the literature deals with the problem of ro-
bustness, overlooking the meaning of security, in such a way that, at most, there
was the notion of intentional and non-intentional attacks [1]. It could be said
that the sensitivity attack [2] raised up the problem of security in watermarking,
showing that a watermarking system could be broken in a number of iterations
which is linear with the dimensionality of the host signal, but the first attempt
at proposing a theoretical framework for assessing the security of a general wa-
termarking scenario was [3]. The two main issues of this paper are the perfect
secrecy (concept directly borrowed from the seminal work on cryptanalysis by
Shannon in [4]) of the embedded message and the robustness of the embedding,
characterizing both in terms of mutual information. However, this approach does
not take into account that some information about the secret key may leak from
the observations, giving advantage to the attacker. Thereafter, Kalker [5] shed
some light on the concept of security in watermarking, giving definitions for ro-
bust watermarking and security, but perhaps they have the problem of being too
general.

Another framework for watermarking security was proposed in [6], modeling
watermarking as a game with some rules that determine which information (pa-
rameters of the algorithm, the algorithm itself, etc.) is public. According to this
rules, attacks are classified as fair (the attacker only exploits publicly available
information) or unfair (the attacker tries to access all the possible information
which can be of help for him/her). The authors also define the security level
as “the amount of observation, the complexity, the amount of time, or the work
that the attacker needs to gather in order to hack a system”.

To the best of our knowledge, the most recent paper dealing with security
is [7]. We agree with the authors about the difficulty of distinguishing between
security and robustness. Kerckhoff’s principle is also translated from cryptogra-
phy to watermarking (it was introduced for the first time in [8]): all functions
(encoding/embedding, decoding/detection, ...) should be declared as public ex-
cept for a parameter called the secret key. An important contribution of [7] is
the proposal of a security measure based on Fisher’s Information Matrix [9]. In



Section 4.2 it will be shown that the proposed measure is somewhat questionable
since it is neglecting some important parameters as the uncertainty (differential
entropy) in the secret key or in the watermarked signal. Finally, in [7] the se-
curity analysis of spread spectrum is performed and some practical methods for
hacking systems are introduced.

After this brief overview the rest of the paper is organized as follows: In
Sect. 2, definitions of security and robustness are proposed, and related issues
are studied. In Sect. 3, a new information-theoretic measure is proposed for data-
hiding security; this is applied to the study of Spread Spectrum watermarking
security analysis in Sect. 4. Finally, in Sect. 5, the conclusions of this work are
presented.

2 Fundamental definitions

In this section, some thoughts about the concept of watermarking security are
expounded and some definitions are proposed. First, in order to establish a clear
line between robustness and security, the following definitions are put forward
for consideration:

Definition 1. Attacks to robustness are those whose target is to increase the
probability of error of the data-hiding channel.

Definition 2. Attacks to security are those aimed at gaining knowledge about
the secrets of the system (e.g. the embedding and/or detection keys).

At first glance, in the definition of attacks to robustness we could have used
the concept of channel capacity instead of the probability of error, but this entails
some potential difficulties: for instance, an attack consisting on a translation or a
rotation of the watermarked signal is only a desynchronization, thus the capacity
of the channel is unaffected, but depending on the watermarking algorithm, the
detector/decoder may be fooled. Another considerations about security, taking
into account the above definitions, are the following:

About the intentionality of the attacks : attacks to security are obviously inten-
tional, but not all intentional attacks are threats to security. For instance, an
attacker may perform a JPEG compression to fool the watermark detector be-
cause he knows that, under a certain JPEG quality factor, the watermark will be
effectively removed. Notice that, independently of the success of his attack, he
has learned nothing about the secrets of the system. Hence, attacks to security
imply intentionality, but the converse is not necessarily true.

About the blindness of the attacks : blind attacks are those which do not exploit
any knowledge of the watermarking algorithm. Since attacks to security will try
to disclose the secret parameters of the watermarking algorithm, it is easy to
realize that they can not be blind. On the other hand, a non-blind attack is
not necessarily targeted at learning the secrets of the system; for instance, in a



data-hiding scheme based on binary scalar Dither Modulation (scalar DM), if
an attacker adds to each watermarked coefficient a quantity equal to a quarter
of the quantization step, the communication is completely destroyed because
the bit error probability will be 0.5, although the attacker has learned nothing
about the secrets of the systems. Hence, security implies non-blindness, but the
converse is not necessarily true.

About the final purpose of attacks : many attacks to security constitute a first
step towards performing attacks to robustness. This can be easily understood
with a simple example: an attacker can perform an estimation of the secret
pseudorandom sequence used for embedding in a spread-spectrum-based scheme
(attack to security); with this estimated sequence, he can attempt to remove the
watermark (attack to robustness).

About the distinction between security and robustness : a watermarking scheme
can be extremely secure, in the sense that it is (almost) impossible for an at-
tacker to estimate the secret key(s), but this does not necessarily affect the
robustness of the system. For instance, the boundary of the detection region of
watermarking algorithms whose decisions are based on linear correlation can be
complicated by using, as a decision boundary, a fractal curve [10]; this way, secu-
rity is highly improved since, for example, sensitivity-like attacks are no longer
effective because the boundary of the detection region is extremely hard to de-
scribe. However, this countermeasure against security attacks does not improve
anyway the robustness of the method. Therefore, higher security does not imply
higher robustness.

About the measure of security itself : security must be measured separately from
robustness. The following analogy with cryptography may be enlightening in this
sense: in cryptography, the objective of the attacker is to disclose the encrypted
message, so the security of the system is measured assuming that the commu-
nication channel is error-free; otherwise it makes no sense to measure security,
since the original message was destroyed both for the attacker and fair users. By
taking into account the definition of robustness given at the beginning of this
section, the translation of this analogy to the watermarking scenario means that
security must be measured assuming that no attacks to robustness occur.

The measure of security proposed here is a direct translation of Shannon’s
approach [4] to the case of continuous random variables, which was already
hinted for watermarking by Hernández et al. in [11]. Furthermore, we will take
into account Kerckhoff’s principle [12], namely that the secrecy of a system must
depend only on the secret keys. Security can be evaluated in the two scenarios
of Figure 1.

1. For the scenario depicted in Figure 1-a, security is measured by the mutual
information between the observations Y and the secret key Θ

I(Y1,Y2, . . . ,YNo ;Θ) = h(Y1,Y2, . . . ,YNo) − h(Y1,Y2, . . . ,YNo |Θ)

= h(Θ) − h(Θ|Y1,Y2, . . . ,YNo), (1)



where h(·) stands for differential entropy, and Yn denotes the n-th obser-
vation.3 Equivocation is defined as the remaining uncertainty about the key
after the observations:

h(Θ|Y1,Y2, . . . ,YNo) = h(Θ) − I(Y1,Y2, . . . ,YNo ;Θ). (2)

This scenario encompasses attacks concerning the observation of watermarked
signals, where it is possible that additional parameters like the embedded
message M or the host X are also known by the attacker. The model is valid
for either side-informed and non-side-informed watermarking/data-hiding
schemes.

2. The scenario depicted in Figure 1-b covers the so-called oracle attacks. In
this case, the attacker tries to gain knowledge about the secret key Θ by
observing the outputs M̂ of the detector/decoder corresponding to some
selected inputs Y, so the information leakage is measured by

I(M̂1, . . . , M̂No ,Y1, . . . ,YNo ;Θ),

where, in this case, Yn are not necessarily watermarked objects but any
arbitrary signal, for instance the result of the iterations of an attacking
algorithm.

The translation of Shannon’s approach to the continuous case is straight-
forward; we only must be careful with the concept of differential entropies,
in order to redefine properly the unicity distance for continuous random vari-
ables: in this case, an attacker will have perfect knowledge of the key when
h(Θ|Y1,Y2, . . . ,YNo) = −∞. Hence, the security level is the number No of
observations required to reach the unicity distance. However, since this number
is ∞ in general, the security level could be measured by the growth-rate of mu-
tual information with the number of observations No; another possibility is the
establishment of a threshold in the value of the equivocation, which is directly
related to the minimum error variance in the estimation of the key:

σ2
E ≥ 1

2πe
e2h(Θ|Y), (3)

where σ2
E is the estimation error variance. For an attack based on the key esti-

mate, its probability of success is given by the variance of the estimation error.
This way, we can give the following definition:

Definition 3. Given a required probability of success of an attack Ps, let σ2
E be

the resulting variance of the secret key estimation error. Then, the security level
is the minimum number of observations N∗

o needed to satisfy inequality (3).

For the measure of security to be well defined, at least two of the three
quantities involved in (2) must be given, because important information about
the security of the system may be masked when only one of those quantities is
available:
3 The observations are independent signals watermarked with the same secret key Θ.



– The value of h(Θ) is only the a priori uncertainty about the key, so it does
not depend on the system itself.

– The value of I(Y1,Y2, . . . ,YNo ;Θ) shows the amount of information about
the key that leaks from the observations, but a smaller information leakage
does not necessarily imply a higher security level: notice that, for example,
a deterministic key would yield null information leakage, but the security is
also null.

– The value of the equivocation h(Θ|Y1,Y2, . . . ,YNo) is indicative of the
remaining uncertainty about the key, but it does not reflect what is the a
priori uncertainty.

3 Theoretical evaluation of security

In this section some theoretical measures about the residual entropy will be
presented. The notation is borrowed from [7]: Nv will denote the length of the
vectors (number of samples in each observation), No the number of observations,
and Nc the number of carriers (or hidden symbols). After some modifications in
the nomenclature described in [7], the following attacks will be analyzed:

– Known Message Attack (KMA): In this case the mutual information between
the received signal and the secret key, when the sent message is known by
the attacker, should be computed:

I(Y1, · · · ,YNo ;Θ|M1, · · · ,MNo) = h(Y1, · · · ,YNo |M1, · · · ,MNo)

− h(Y1, · · · ,YNo |Θ,M1, · · · ,MNo),

so the residual entropy will be

h(Θ|Y1, · · · ,YNo ,M1, · · · ,MNo) = h(Θ) − h(Y1, · · · ,YNo |M1, · · · ,MNo)

+ h(Y1, · · · ,YNo |Θ,M1, · · · ,MNo). (4)

– Watermarked Only Attack (WOA): The mutual information between the
observations and the secret key is

I(Y1, · · · ,YNo ;Θ) = h(Y1, · · · ,YNo) − h(Y1, · · · ,YNo |Θ)

and the residual entropy will be

h(Θ|Y1, · · · ,YNo) = h(Θ) − h(Y1, · · · ,YNo) + I(Y1, · · · ,YNo ;M1, · · · ,MNo |Θ)

+ h(Y1, · · · ,YNo |Θ,M1, · · · ,MNo).

– Estimated Original Attack (EOA): In this case the following will be com-
puted

I(Y1, · · · ,YNo ;Θ|X̂1
, · · · , X̂

No

) = h(Y1, · · · ,YNo |X̂1
, · · · , X̂

No

)

− h(Y1, · · · ,YNo |Θ, X̂
1
, · · · , X̂

No

),(5)



where X̂
i

, Xi + X̃
i

is an estimate of Xi and X̃
i

is the estimation error;

X̃
i

is assumed to have power E and to be independent of Xi. The Known
Original Attack (KOA) proposed in [7] can be regarded to as a particular
case of EOA, where the variance of the original host estimation error is set
to 0. On the other hand, when the original host estimation error is σ2

X , we
are in the WOA case, so it can be also seen as particular case of EOA. The
attacker could obtain this estimate by averaging several versions of the same
host watermarked with different keys, but in order to ensure independence
between the key and the estimate, the watermarked version with the to-be-
estimated key should not be included in the averaging. Other alternative
could be to filter the watermarked signal to compute the estimate of the
original host (assuming the resulting signal is independent of the watermark).
Taking into account (5), it is possible to write

h(Θ|Y1, · · · ,YNo , X̂
1
, · · · , X̂

No

) = h(Θ) − h(Y1, · · · ,YNo |X̂1
, · · · , X̂

No

)

+ h(Y1, · · · ,YNo |Θ, X̂
1
, · · · , X̂

No

).

Finally, note that, depending on the method, the secret key could be related
to the watermarking scheme parameters (i.e. the spreading sequence in spread-
spectrum, the dither sequence in SCS or the codebooks in Costa schemes with
random codebooks) through a deterministic function, constructing a Markov
chain, in such a way that the attacker could be interested just in estimating
the result of this function and not in the secret key itself. When No = 1, the
superscript denoting the observation will be obviated for notation simplicity.

4 Security Analysis of Spread Spectrum Watermarking

For these methods, Nc random vectors (the spreading sequences), denoted by
Ui are generated depending on the secret key Θ. In this way, the embedding
function can be written as:

Yj = Xj +
1√
Nc

Nc
∑

i=1

Ui(−1)Mj
i , 1 ≤ j ≤ No, (6)

with Yj , Xj and Ui Nv-dimensional vectors and Ui,j is the j-th component of the
i-th of the spreading sequence. The host is modeled as an i.i.d. Gaussian process,
Xj ∼ N (0, σ2

XINv
), and the message letters M j

i ∈ {0, 1}, being Pr{M j
i =

0} = Pr{M j
i = +1} = 1/2. All of these quantities are assumed to be mutually

independent. Since (6) is related with Θ only through the Ui’s, we will measure
the security with respect to the Ui’s.

4.1 Known Message Attack

To compute I(Y;U1,U2, . . . ,UNc
|M) (so No = 1) for a generic distribution of

Ui numerical integration must be used. In Fig. 2 and Fig. 3 the results of this
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Fig. 2. Results of numerical integration for the equivocation h(U1|Y) and h(U1|M,Y)
in spread-spectrum for Gaussian and uniform distributions of U1 and Nv = 1.

numerical integration are shown for Nc = 1 and both Gaussian and uniform
distributions of U1 in the scalar case. Those figures show that the information
the attacker can not learn (i.e., h(U1|Y)) is larger if U1 is chosen to be Gaussian.
Taking this into account, we will focus on the case Ui ∼ N (0, σ2

UINv
). When

the sent symbol is known to the attacker, the following result is derived in
Appendix A.1 for Nv > 1, Nc > 1 and No = 1,

I(Y;U1,U2, . . . ,UNc
|M) =

Nv

2
log

(

1 +
σ2

U

σ2
X

)

, (7)

yielding

h(U1,U2, . . . ,UNc
|Y,M) =

Nv

2
log

[

(

2πe
σ2

U

Nc

)Nc

· σ2
X

σ2
X + σ2

U

]

.

The result in (7) says that the information that an attacker can obtain is the
same whatever the number of carriers, although the entropy of the key is a
linear function of this parameter (this result applies to a great variety of pdf’s
for the key, since by the central limit theorem, the sum of the carriers tends
to a Gaussian). This result is also a consequence of the power normalization
performed in (6); independently of the number of carriers, the power of the
watermark stays constant.

In App. A.2, we analyze the case of one sent bit (Nc = 1), Nv = 1, when
there are several available observations (No > 1), all of them watermarked with
the same secret key. If Nv > 1 and the components are independent, the result
is also valid, after multiplying it by Nv, so we can write

I(Y1, · · · ,YNo ;U1|M1, · · · ,MNo) =
Nv

2
log

(

1 +
Noσ

2
U

σ2
X

)

, (8)
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Fig. 3. Results of numerical integration for I(Y;U1) and I(Y;U1|M) in spread-
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which yields

h(U1|Y1, · · · ,YNo ,M1, · · · ,MNo) =
Nv

2
log

(

2πe
σ2

Uσ2
X

Noσ2
U + σ2

X

)

(9)

This result shows that I(Y1, · · · ,YNo ;U1|M1, · · · ,MNo) grows non-linearly
with the number of observations, although for large Document to Watermark
Ratios4 (DWR >> 0) and low values of No it grows almost linearly. Moreover,
(8) coincides with the capacity of a Gaussian channel with signal power σ2

U and
noise power σ2

X/No. This suggests that the best method the attacker should
follow for estimating U1 is just to average the observations Yi (at least this
is the case when both the host signal and the watermark are Gaussian distrib-
uted). In Fig. 4 the mutual information is compared with its linear version when
DWR = 30 dB.

4.2 Comparison with the result in [7]

In [7], the security level is defined as O(N⋆
o ), where N⋆

o , Notr(FIM(θ)−1) with
FIM(θ) the Fisher Information Matrix. In this section we try to link the result
obtained in that paper with the one obtained here for spread-spectrum KMA
when Nc = 1.

It is shown in App. B that the FIM obtained when a constant multiple
(vectorial) parameter is estimated in the presence of i.i.d. Gaussian noise, taking
into account No independent observations in the estimate, is No

σ2
X

INv
, where σ2

X

is the power of the interfering signal (the original host in our case). This is the
only term considered in [7]. Nevertheless, an additional term should be taken

4 The Document to Watermark Ratio is defined as DWR, 10 log
10

�
σ
2
X

σ2
U

�
.
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into account, due to the random nature of the secret key (see [13]):

JPij
= E

[

∂ log fU1
(u1)

∂u1,i
·
∂ log fU1

(u1)

∂u1,j

]

. (10)

If U1 is an i.i.d. Gaussian vector, it is easy to prove that JP = 1
σ2

U

INv
, so

FIM(U1) =
(

No

σ2
X

+ 1
σ2

U

)

INv
, yielding

N⋆
o = Nv

σ2
Xσ2

U

σ2
U + σ2

X/No
,

which is obviously related with the proposed information-theoretic approach,
since (9) is the differential entropy of a i.i.d. Gaussian random vector with co-
variance matrix N⋆

o /(NoNv)INv
.

On the other hand, if we considered only the FIM obtained when estimating
a constant multiple parameter, the obtained N⋆

o is Nvσ2
X , which is obviously

related with h(Y1, · · · ,YNo |U1,M
1, · · · ,MNo) = NvNo

2 log(2πeσ2
X); this was

the methodology followed in [7]. Therefore, it does not take into account the
entropy of the secret key neither the entropy of the watermarked signal. As stated
in Sect. 2, both terms are relevant for the analysis of the system, so they should
be considered. In fact, h(Y1, · · · ,YNo |U1,M

1, · · · ,MNo) for the KMA case
grows linearly with the number of observations, while the mutual information
will not increase linearly due to the dependence between observations. The linear
approximation is actually an upper-bound; the larger the number of observations,
the worse this approximation is.

4.3 Watermarked Only Attack

Due to the symmetry of the pdf’s, it is possible to conclude that the components
of the vector Y are still mutually independent, so for Nc = 1 and a single



observation, we can write

I(Y;U1) = NvI(Yi;U1,i) = Nv (h(Yi) − h(Yi|U1,i)) (11)

= Nv (h(Yi|M = 0) − h(Yi|U1,i)) . (12)

In order to determine this for a generic distribution of U1, numerical integration
should be used, whose results are plotted in Fig. 2. Once again, the information
the attacker can not learn (h(U1|Y)) is larger for the shown cases when U1 is
chosen to be Gaussian. Therefore, assuming U1 to be Gaussian, we can write

I(Y;U1) = Nv

(

1

2
log
(

2πe(σ2
X + σ2

U )
)

− h(Yi|U1,i)

)

. (13)

The rightmost term of (13) must still be numerically computed. When DWR <<
0 we can easily analyze the asymptotic behavior of the mutual information taking
into account h(Y) ≈ h(U1) and h(Y|U1) ≈ h(X) + log(2), yielding

I(Y;U1) ≈ h(U1) − h(X) − log(2), (14)

I(Y;U1|M) ≈ h(U1) − h(X). (15)

This explains and quantifies the gap between the WOA and KMA cases, which
is exactly log(2) = 0.69 nats. Nevertheless, note that a very small DWR is not
practical, since it would yield unuseful watermarked images. This case has been
introduced here only to shed some light into the general behavior of the mutual
informations. On the other hand, to compute the gap between a Gaussian and
a uniform distribution for U1, h(U1) will be determined in both cases for a
constant variance σ2

U ,

h(UGauss) − h(Uunif ) =
1

2
log(2πeσ2

U ) − 1

2
log(12σ2

U ) =
1

2
log
(πe

6

)

= 0.1765,

which will be the asymptotic gap (in residual entropy terms) between the Gaussian
and uniform cases for both known and unknown messages (see Fig. 2) when
DWR >> 0, since for a large DWR both I(Y;U1) and I(Y;U1|M) are approx-
imately 0.

For Nc carriers and No = 1 we have, similarly to the KMA case, the following
mutual information:

I(Y;U1,U2, . . . ,UNc
) = NvI(Yi;U1,i, U2,i, . . . , UNc,i)

= Nv (h(Yi) − h(Yi|U1,i, . . . , UNc,i))

= Nv

[

1

2
log(2πe(σ2

x + σ2
u)) − h(Yi|U1,i, . . . , UNc,i)

]

,

where the second term of the last equality must be numerically computed again.
The case of one sent bit (Nc = 1), Nv = 1, and several available observations

(No > 1) needs very expensive numerical computations. Practical computations
demand the reduction of the number of available observations to a very small
value; in that case, the mutual information will be in the linear region, so no
knowledge is available about the growth of the mutual information for large
values of No.



4.4 Estimated Original Attack

In this case, the attacker will have access to an estimate of the original host signal,
with some estimation error denoted by X̃, which is assumed to be i.i.d. Gaussian
with variance E, in such a way that for No = 1 we can write I(Y;U1, · · · ,UNc

|X+

X̃) = Nv

[

h(Yi|Xi + X̃i) − h(Yi|Xi + X̃i, U1,i, · · · , UNc,i)
]

. Assuming σ2
X >> E,

X̃i will be almost orthogonal (and therefore independent) to Xi + X̃i, so

I(Y;U1, · · · ,UNc
|X + X̃) ≈ Nv







h





1√
Nc

Nc
∑

j=1

Uj,i(−1)Mj − X̃i





− h





1√
Nc

Nc
∑

j=1

Uj,i(−1)Mj − X̃i|U1,i, · · · , UNc,i











.

This situation is equivalent to that described in 4.3, but replacing σ2
X by E, so

when Nc = 1 it is possible to use Fig. 2 for obtaining numerical results, using the

Estimation error to Watermark Ratio (EWR), defined as 10 log10

(

E
σ2

U

)

, instead

of the DWR, in the horizontal axis. When the estimate is perfect, i.e. σ2
x̃ = 0,

the mutual information approaches infinity.

5 Conclusions

In this paper, an overview of watermarking security has been introduced, showing
the evolution of this concept in the last years. The frontier between security and
robustness is rather fuzzy, so we have proposed some definitions in order to make
a clear distinction between these two concepts, which in turn allows the isolation
of the security analysis from the robustness issue. Based on these definitions, a
new information-theoretic framework to evaluate watermarking security has been
introduced based on the use of mutual information to measure the secret key
leakage; this measure has been shown to be more complete than the measure
proposed in [7], which was based on the FIM and did not take into account the
term related with the variability of the secret key. Security of Spread Spectrum
watermarking has been analyzed in different scenarios classified by the amount of
information available to the attacker, quantifying the information leakage about
the key as a function of the number of observations and the DWR.

A Calculation of mutual information for spread spectrum

A.1 Known Message Attack (KMA) for a single observation

For a single observation (No = 1) and Nc = 1, we have



I(Y;U1|M) =

Nv
∑

i=1

Nv
∑

j=1

I(Yi;U1,j |M, Yi−1, . . . , Y1, U1,j , . . . , U1,1) (16)

=

Nv
∑

i=1

I(Yi;U1,i|M, Yi−1, . . . , Y1) (17)

=

Nv
∑

i=1

I(Yi;U1,i|M) = NvI(Yi;U1,i|M), (18)

where (17) follows from the fact that Yi and U1,j are independent ∀ i 6= j; (??)
follows from the independence between the components of Y given the message,
and (18) follows from the fact that Y and U1 are i.i.d. processes. The theoretical
expression for (18) is easy to calculate:

I(Yi;U1,i|M) = I(Yi;U1,i|M = 0) = h(Yi|M = 0) − h(Yi|M = 0, U1,i),

where h(Yi|M = 0) will obviously depend on the distribution of U1,i. Assuming
U1 to be Gaussian, i.e. U1 ∼ N (0, σ2

UINv
), we can write

I(Yi;U1,i|M) = h(N (0, σ2
X + σ2

U )) − h(N (0, σ2
X)) =

1

2
log

(

1 +
σ2

U

σ2
X

)

.

Next, the case of multiple carriers is analyzed. When Nc > 1, we can write

I(Y;U1,U2, . . . ,UNc
|M) = NvI(Yi;U1,i, U2,i, . . . , UNc,i|M)

= Nv {h(Yi|M) − h(Yi|U1,i, . . . , UNc,i,M)}
= Nv

{

h
(

Xi +
∑Nc

j=1(Nc)
−1/2Uj,i

)

− h(Xi)
}

= Nv

{

h(N (0, σ2
X + σ2

U )) − h(N (0, σ2
X))
}

=
Nv

2
log

(

1 +
σ2

U

σ2
X

)

. (19)

A.2 Known Message Attack (KMA) for multiple observations

When Nv = 1, there are several available observations (No > 1) watermarked
with the same secret key and there is one bit to be sent in each observation
(Nc = 1) which we will assume without loss of generality to be the same for all
the observations, it can be seen that the covariance matrix of (Y1, · · · ,YNo),
denoted by RY, becomes

RY =











σ2
X + σ2

U σ2
U · · · σ2

U

σ2
U σ2

X + σ2
U · · · σ2

U
...

...
. . .

...
σ2

U σ2
U · · · σ2

X + σ2
U











,



so its entropy is (see [14])

h(Y1, · · · ,YNo) =
1

2
log
(

(2πe)No |RY|
)

=
1

2
log

(

(2πe)No

[

Noσ
2
U

σ2
X

+ 1

]

σ2No

X

)

,

and we can write I(Y1, · · · ,YNo ;U1|M1, · · · ,MNo) = 1
2 log

(

1 +
Noσ2

U

σ2
X

)

.

B Fisher Information Matrix for SS-KMA

In this section we will compute the Fisher Information Matrix of the esti-
mate of the constant multiple parameter θ taking into account the observations
Y1, · · · ,YNo . Let us consider Yj = Xj + θ, with Xj ∼ N (0, σ2

XINV
), and the

Xj ’s to be mutually independent for 1 ≤ j ≤ No
5. Following the definition of

Fisher Information Matrix ([13]), we can write

FIMii(θ) =

∫

f(y1, · · · ,yNo |θ)

(

∂

∂θi
log f(y1, · · · ,yNo |θ)

)2

dy1 · · · dyNo ,

where f(y1, · · · ,yNo |θ) =
∏Nv

k=1

∏No

j=1
1√

2πσ2
X

e
−(y

j
k
−θk)2

2σ2
X , in such a way that

∂

∂θi
log f(y1, · · · ,yNo |θ) =

No
∑

j=1

yj
i − θi

σ2
X

=

∑No

j=1 xj
i

σ2
X

,

and, finally, after a variable change,

FIMii(θ) =

∫

(

∑No

j=1 xj
i

σ2
X

)2 No
∏

j=1

1
√

2πσ2
X

e
−(x

j
i
)2

2σ2
X dx1

i · · · dxNo

i =
No

σ2
X

, 1 ≤ i ≤ Nv.

On the other hand,

FIMik(θ) =

∫

f(y1, · · · ,yNo |θ)

(

∂

∂θi
log f(y1, · · · ,yNo |θ)

)

(

∂

∂θk
log f(y1, · · · ,yNo |θ)

)

dy1 · · · dyNo

=





∫

∑No

j=1 xj
i

σ2
X

No
∏

j=1

1
√

2πσ2
X

e
−(x

j
i
)2

2σ2
X dx1

i · · · dxNo

i





·
(

∫
∑No

l=1 xl
k

σ2
X

No
∏

l=1

1
√

2πσ2
X

e
−(xl

k
)2

2σ2
X dx1

k · · · dxNo

k

)

= 0, for all i 6= k,

so, we can conclude FIM(θ) = No

σ2
X

INv
.

5 Be aware that this is the case described in Sect. 4.1 for Nc = 1, after multiplying

the j-th observation by (−1)M
j
1 . In that case, the parameter to be estimated is U1.
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