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Signal Theory and Communications Department
University of Vigo, Vigo 36310, Spain

{lpfreire, pcomesan, fperez}@gts.tsc.uvigo.es

Abstract. In this paper a novel theoretical security analysis will be pre-
sented for data hiding methods with side-information, based on Costa’s
dirty paper scheme. We quantify the information about the secret key
that leaks from the observation of watermarked signals, using the mutual
information as analytic tool for providing a fair comparison between the
original Costa’s scheme, Distortion Compensated - Dither Modulation
and Spread Spectrum.

1 Introduction

In this paper a novel theoretical security analysis of data hiding methods based
on Costa’s capacity-achieving scheme [1] is presented. Security in this schemes is
introduced by parameterizing the codebook by means of a secret key Θ, in such
a way that an unauthorized agent, who does not know that key, will not be able,
for instance, to decode the embedded message, because he does not know what
particular codebook has been used in the embedding stage. The motivation for
the analysis we will present here is the fact that information about the secret
key may leak from the observation of watermarked signals, and this information
leakage can be exploited by an attacker to refine his knowledge about the key
Θ, in order to gain access to the decoding of secret embedded messages, removal
of the watermark with low attacking distortion, or even generation of forged
watermarked signals. In this sense, our analysis is inspired by Shannon’s work
[2] in the field of cryptography. A previous security analysis in the field of data
hiding following this rationale has been accomplished in [3], but only for spread
spectrum methods, and using the Fisher Information Matrix as analytic tool.
Instead, our approach relies on the framework presented in [4], using the mutual
information to measure the information leakage about the secret key, which in
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Fig. 1. Block diagram of Costa’s schemes.

turn can be used to calculate the residual entropy (equivocation in Shannon’s
nomenclature) or ignorance about the key for the attacker after a certain number
of observations.

We will distinguish two different scenarios where the security will be assessed:
in the first scenario, the attacker only has access to No signals watermarked with
the same key, so the measure of information leakage will be given by the mu-
tual information I(Y1,Y2, . . . ,YNo ;Θ), where Yi denotes the i-th watermarked
vector observed (the superscript will be omitted when only one observation is
considered, for simplicity of notation). In the second scenario, the attacker has
also access to the embedded messages, hence the information leakage in this case
is measured by I(Y1,Y2, . . . ,YNo ;Θ|M1,M2, . . . ,MNo). In the rest of this pa-
per, capital letters will denote random variables, whereas its specific values will
be denoted by italicized lowercase letters, and boldface letters will indicate vec-
tors of length Nv. Both scenarios have already been considered in the analysis in
[3] for spread spectrum, under the names of Watermarked Only Attack (WOA),
and Known Message Attack (KMA), so we will adopt here the same terminology.

In the following section, the security analysis of Costa’s scheme will be ac-
complished, whereas Section 3 will be devoted to the analysis of Distortion Com-
pensated - Dither Modulation (DC-DM) [5], which is a practical (suboptimal)
implementation of Costa’s scheme using structured codebooks. In Section 4,
a comparison between the two analyzed schemes and spread spectrum will be
given, and the main conclusions will be summarized.

2 Random codebooks (Costa’s construction)

In Fig. 1 the considered framework is represented. In Costa’s construction, the
codebook is random by definition; however, this randomness can be parameter-
ized by a secret key Θ, resulting in a codebook U = f(Θ). Depending on the
sent message m, one coset in the codebook will be chosen, namely Um = g(U ,m).
Taking into account the host signal X and the distortion compensation param-
eter α (which belongs to the interval [0,1]) the encoder will look for a sequence
U = h(Um,X) belonging to Um such that |(U−αX)tX| ≤ δ, for some arbitrarily
small δ. The watermark signal will be W = U−αX, and the watermarked signal
Y = X+W. Finally, the decoder will observe Z = X+W +N, where N is the
channel noise, independent of both X and W.

For the sake of simplicity, in this section we will focus on the analysis of this
system when a single observation is available. We will also assume X, W and



N to be i.i.d. random vectors with distributions N (0, σ2
XINv

), N (0, P INv
) and

N (0, σ2
NINv

), respectively, where INv
denotes the Nv-th order identity matrix.

The embedding distortion is parameterized by the Document to Watermark Ra-

tio, defined as DWR = 10 log10(σ
2
X/P ), and the distortion introduced by the

attacking channel is parameterized by the Watermark to Noise Ratio, defined as
WNR = 10 log10(P/σ2

N ).

2.1 Known Message Attack

Since knowledge of the secret key and the sent symbol implies knowledge of the
coset in the codebook (i.e., Um), we can write

I(Y;Θ|M) = h(Y) − I(Y;M) − h(Y|UM ).

In App. A.1, we show that if α > 0.2, then

I(Y;Θ|M) =
Nv

2
log

[

P + σ2
X

(1 − α)2σ2
X

]

,

so

h(Θ|Y,M) = h(Θ) −
Nv

2
log

[

P + σ2
X

(1 − α)2σ2
X

]

. (1)

Since each component of each sequence U follows a Gaussian distribution with
power P + α2σ2

X , and all of them are mutually independent, it follows that

h(Θ) =
|U|Nv

2
log

[

2πe(P + α2σ2
X)

]

,

where |U| = eI(U;Z) =
(

[P+σ2

X+σ2

N ][P+α2σ2

X ]

Pσ2

X
(1−α)2+σ2

N
(P+α2σ2

X
)

)Nv/2

.

Eq. (1) shows that the higher the DWR is, the higher the residual entropy
becomes, because the host signal is making difficult the estimation of the secret
key. On the other hand, the larger α, the smaller the residual entropy will be,
since the self-noise is reduced and the estimation becomes easier. In Fig. 2,
theoretical results are plotted for different values of the DWR.

2.2 Watermarked Only Attack

Again, knowledge of the secret key and the sent symbol implies knowledge of
the coset in the codebook (i.e., Um). Therefore, we can write

I(Y;Θ) = h(Y) − I(Y;M |Θ) − h(Y|UM ). (2)

In App. A.2, it is shown that if α > 0.2

I(Y;Θ) =
Nv

2
log

[

(P + σ2
X)

(

Pσ2
X(1 − α)2 + σ2

N (P + α2σ2
X)

)

P (P + σ2
X + σ2

N )(1 − α)2σ2
X

]

. (3)
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Fig. 2. I(Y;Θ|M) for Costa in nats vs. α , for different values of DWR and Nv = 1.

Be aware that we are assuming that the watermarker transmits at the maxi-
mum reliable rate allowed, thus the power of the channel noise will affect the
information leakage (this is further explained in App. A.2). For instance, when
σ2

N = 0, the supremum of the maximum reliable rate is achieved, so the uncer-
tainty about the sent symbol is also maximum, which complicates the attacker’s
work, yielding in this case I(Y;Θ) = 0 (perfect secrecy in the Shannon’s sense
[2]). In any case, using (3) we can write

h(Θ|Y) = h(Θ) −
Nv

2
log

[

(P + σ2
X)

(

Pσ2
X(1 − α)2 + σ2

N (P + α2σ2
X)

)

P (P + σ2
X + σ2

N )(1 − α)2σ2
X

]

. (4)

Theoretical results are plotted in Fig. 3, showing their dependence on the DWR,
the WNR and α. Since I(Y;Θ) depends on the transmission rate and this de-
pends in turn on the WNR, the WNR has been fixed in order to plot the results.
Under the light of these plots, several conclusions can be drawn:

– The information leakage increases with α, because a smaller self-noise power
is introduced.

– Conversely, the information leakage decreases for growing DWR’s, because
the uncertainty about the watermarked signal given the chosen U sequence
is increased.

– The larger the WNR, the smaller the mutual information, because the em-
bedder can achieve a higher reliable rate, thus increasing the uncertainty of
the attacker about the sent symbol, which makes more difficult his job.

3 Distortion Compensated - Dither Modulation

We will focus on the scalar version of DC-DM [5] (also known as Scalar Costa
Scheme, SCS [6]), for two reasons: first, for simplicity of the analysis, and second,
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Fig. 3. I(Y;Θ) vs. α in Costa, for different values of DWR and WNR = 0 dB (a), and
for different values of WNR, setting DWR = 30 dB (b). In both plots, Nv = 1.

because it provides the fundamental insights into structured quantization-based
methods. In DC-DM, embedding is made component-wise, hence, following the
notation of Fig. 1, the codebook for the k-th component in DC-DM is given by
the lattice

Utk
=

|M|−1
⋃

l=0

(

α∆Z + αl
∆

|M|
+ αtk

)

, (5)

being |M| the number of different symbols, k = 0, . . . , Nv − 1, and tk is the
pseudo-random dither signal introduced to achieve randomization of the code-
book. Each coset is chosen as a sublattice of (5), resulting in

Um,tk
= g(Utk

,m) = α∆Z + αm
∆

|M|
+ αtk.

In DC-DM, αxk is quantized to the nearest uk ∈ Um,tk
, where xk is the k-th

component of X, which is assumed to be independent and identically distributed
(i.i.d.). Thus, the expression of the k-th component of the watermarked signal is

yk = xk + uk − αxk, which can be rewritten as yk = xk + α
(

QΛm,tk
(xk) − xk

)

,

where QΛm,tk
(·) is an Euclidean quantizer with uniform step size ∆ with its

centroids defined by the shifted lattice Λm,tk
, according to the to-be-transmitted

message symbol m:

Λm,tk
= ∆Z + m

∆

|M|
+ tk. (6)

The dither signal t may be any deterministic function of the secret key θ, i.e. t =
f(θ). If function f is unknown, the only observation of watermarked vectors will
not provide any information about θ, thus the target of the attacker is to disclose
the dither signal used for embedding, or equivalently the location of the centroids.
As it is usual in the analysis of quantization-based methods for data hiding [5],
[6], we will assume a low-embedding-distortion regime, thus we can consider that



the host pdf is uniform inside each quantization bin and all centroids occur with
similar probabilities. This assumption (which we will refer to in the sequel as the
flat-host assumption) implies that we can restrict our attention to the modulo-
∆ version of Yk without any loss of information, considerably simplifying the
theoretical analysis. The security level of the system will depend, obviously, on
the statistical distribution of the dither. We show in App. B that the entropy
of the watermarked signal Y only depends on the modulo-∆ version of the
dither, and furthermore the distribution which maximizes the residual entropy
is the uniform over the quantization bin; thus, hereafter we will assume that
Tk ∼ U(−∆/2,∆/2) with i.i.d samples.

3.1 Known Message Attack

This is the simplest case to analyze. When only one watermarked vector is
observed (No = 1), the following equalities hold

I(Y;T|M) =

Nv
∑

i=1

Nv
∑

j=1

I(Yi;Tj |Yi−1, . . . , Y1, Tj−1, . . . , T1,M) (7)

=

Nv
∑

i=1

I(Yi;Ti|Mi) = NvI(Yi;Ti|Mi), (8)

where Yi denotes the i-th component of vector Y, (7) follows from the chain rule
for mutual informations [7], and (8) follows from the fact that the pairs Yi, Tj

and Yi,Mj are independent ∀ i 6= j, and furthermore {Yi}, {Ti}, {Mi} are i.i.d.
processes. From the definition of mutual information we have

I(Yi;Ti|Mi) = h(Yi|Mi) − h(Yi|Ti,Mi) (9)

= h(Yi|Mi = 0) − h(Yi|Ti = 0,Mi = 0), (10)

where (10) follows from the flat-host assumption introduced above. Further-
more, due to this assumption, the entropies of (10) can be easily calculated by
considering one period of the watermarked signal. Finally, (8) results in

I(Y;T|M) = NvI(Yi;Ti|Mi) = Nv (log(∆) − log((1 − α)∆))

= −Nv log(1 − α) nats , (11)

so the residual entropy is

h(T|Y,M) = h(T|M) − I(Y;T|M) = Nv log((1 − α)∆) nats . (12)

Fig. 4 shows the result for the mutual information when Nv = 1. For the gen-
eral case of No observations one may be tempted to upper bound the mutual
information by assuming that all observations will provide the same amount of
information, but this bound will be too loose in most cases. For example, we can
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Fig. 4. Mutual informations for scalar DC-DM, in KMA and WOA cases with Nv = 1

calculate the exact mutual information when α ≥ 0.5, yielding (see Appendix
C.1 for details)

I(Y1, . . . ,YNo ;T|M1, . . . ,MNo) = Nv

(

− log(1 − α) +

No
∑

i=2

1

i

)

nats . (13)

It can be seen in Fig. 5-(a) that the first observations provide most of the infor-
mation about the secret dither signal. In Fig. 5-(b), numerical results are shown
for α < 0.5 up to 10 observations, showing that the linear upper bound gets
tighter (at least for a small number of observations) when α is decreased.

3.2 Watermarked Only Attack

In this case, the only information at hand for the attacker is the watermarked
vector; hence, we must calculate the mutual information I(Y;T). By reasoning
as in the KMA case we can write

I(Y;T) = NvI(Yi;Ti) = Nv (h(Yi) − h(Yi|Ti)) . (14)

Although it is always possible to obtain a theoretical expression for (14), we will
calculate it here only for the case of binary signaling (Mi = {0, 1}), for the sake
of simplicity. We have that h(Yi) = log(∆), as in the KMA case, whereas for the
term h(Yi|Ti) we have h(Yi|Ti) = h(Yi|Ti = 0). Thus, we can write

I(Yi;Ti) = log(∆) − h(Yi|Ti = 0),

For calculating h(Yi|Ti = 0) we must take into account that, for α < 0.5, the
pdf’s associated to adjacent centroids overlap. It is easy to show that

h(Yi|Ti = 0) =

{

log(2(1 − α)∆) , for α ≥ 1
2

log((1 − α)∆) (1−2α)
1−α + log(2(1 − α)∆) α

(1−α) , for α < 1
2
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Fig. 5. Mutual information as a function of the number of observations for scalar DC-
DM in the KMA case, for Nv = 1, and α = 0.7 (a), and α < 0.5 (b).

With the above expressions, derivation of the equivocation is straightforward.
In Fig. 4, results for 2 and 3 transmitted symbols are shown. It can be seen
that when α = 0.5 (for the binary case, |M| = 2) the information leakage is
null 1, thus achieving perfect secrecy, in the sense that the attacker can not
gain knowledge about the dither, regardless the number of observations; this is
because the pdf of the host and that of the watermarked signal are the same.
When α < 0.5 the information leakage is very small due to overlaps between
adjacent centroids. For the case of multiple observations and α ≥ 0.75 we have
(see App. C.2 for details)

I(Y1, . . . ,YNo ;T) = Nv

(

− log(1 − α) − log(2) +

No
∑

i=2

1

i

)

nats .

Then, the loss with respect to the KMA case is exactly log(2) nats (i.e. one bit),
which is in accordance with the term I(Y;M |Θ) of Eq. (2) obtained for Costa’s
scheme. For α < 0.75, only numerical results have been obtained.

4 Comparison and conclusions

Fig. 6-(a) shows a comparison between the information leakage in Costa and
DC-DM, for several values of α. Notice that two different plots are shown for
DC-DM: one with the theoretical results obtained in Section 3 under the flat-host
assumption (DWR = ∞), and another plot with results obtained via numerical
integration by considering finite DWR’s 2; it can be seen that both plots coincide

1 It can be shown that for the general case of D-ary signalling, the values of α = k/D,
with k = 0, . . . , D − 1 yield null information leakage.

2 The exact pdf of the watermarked signal has been numerically computed for finite
DWR’s by following the guidelines given in [8]
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Fig. 6. Comparison of information leakage (a) and residual entropy (b) for different
data hiding schemes, with Nv = 1 and No = 1.

for any DWR of practical interest, thus supporting the validity of the flat-host
assumption. The other remarkable result is the large resemblance between be-
tween Costa and DC-DM with finite DWR’s.

An analysis similar to that carried out in Sections 2 and 3 is accomplished
for spread spectrum data hiding in [4]; in this case, the secret parameter is the
spreading sequence s used in the embedding stage, which will be assumed to
be Gaussian with variance σ2

S . The analysis for a single observation (No = 1)
yields the mutual information I(Y;S|M) = Nv

2 log
(

1 + σ2
S/σ2

X

)

and the residual

entropy h(S|Y1, · · · ,YNo ,M) = Nv

2 log
(

2πeσ2
Sσ2

X/(σ2
X + σ2

S)
)

.

Fig. 6-(a) shows that, when compared under the same conditions, the in-
formation leakage for the informed embedding methods is larger than those of
spread spectrum. However, note that the security level is not only given by the
information leakage but depends also on the entropy of the secret key, yielding
values for the residual entropy which are compared in Fig. 6-(b), where we can
see that the theoretical Costa’s scheme provides much larger residual entropies
for practical values of the DWR. Similar comparisons could be made for the
WOA attack.

Summarizing, we have shown in this paper that an attacker can take ad-
vantage of the observation of watermarked signals to gain knowledge about the
secret key (when all observations were generated with the same key), and that
knowledge of the embedded messages can simplify the attacker’s work. Theoreti-
cally, the attacker needs, in general, an infinite number of observations to achieve
perfect knowledge of the secret key, but in practice this is not necessary, since
he only may be interested in obtaining an estimate of that key; in this sense,
one can exploit the relationship between the residual entropy and the estimation
error in order to find appropriate thresholds which define a given security level,
but this path will not be explored here due to lack of space.



Appendix

A Mutual information for a single observation in Costa’s
scheme

A.1 Known Message Attack (KMA)

The mutual information between the received signal and the secret key when
the sent message is known by the attacker can be written as

I(Y;Θ|M) = h(Y|M) − h(Y|Θ,M) = h(Y) − I(Y;M) − h(Y|UM ). (15)

Studying the second term, I(Y;M) = h(Y) − h(Y|M), it can be seen to be 0
whenever fY(y) = fY|M (y|M = m) for all the possible values of m. Taking into

account that Y = f1(Θ,M,X), this will be true in several cases. For example,
if UM is a lattice shifted by a random variable uniform over its Voronoi region
(as in [9]); since the value of that random variable is not known by the attacker,
the former equality is verified and I(Y;M) = 0. This will be also the case when
UM is a random codebook [1]; the attacker could know exactly all the u’s in
U , but if he does not know the value of M corresponding to each of them, the
best he can do is to apply his a priori knowledge about P (M = m), implying
I(Y;M) = 0 again; this is the scenario studied here. Nevertheless, in the general
case 0 ≤ I(Y;M) ≤ I(Y;M |Θ).

To compute h(Y|UM ) we will focus on the implementations using random
codebooks. In those schemes every u in UM has the same probability of being
chosen. In order to facilitate the analysis, we will see y as the combination of
a scaled version of u and a component orthogonal to u, y = cu + u⊥; recalling
that u = w + αx, we can write u⊥ = x + w− cw− cαx. Therefore, the value of
c can be computed taking into account that σ2

X + P = c2(P + α2σ2
X) + σ2

X(1 −
cα)2 + P (1 − c)2; after some trivial algebraic operations, one obtains

c =
P + ασ2

X

P + α2σ2
X

.

Since all the variables are Gaussian, if Nv is large enough the samples of y will

be very close to a sphere with radius
√

NvVar{U⊥} centered at some cuo; these

spheres will be disjoint if3 Var{U⊥

}
c2 < P , which is true for any DWR if α > 0.2. If

this is the case, then we can write h(Y|UM ) = h(Y|U) + log(|UM |). Concerning
log(|UM |), it is easy to see that

|UM | ≈ eI(U;X) =

(

P + α2σ2
X

P

)Nv/2

. (16)

On the other hand,

h(Y|U) = h(U⊥) =
Nv

2
log

[

2πe
(1 − α)2Pσ2

X

P + α2σ2
X

]

, (17)

3 It can be shown that this is a sufficient, but not necessary, condition.



so,

h(Y|UM ) =
Nv

2
log

[

2πe
(1 − α)2Pσ2

X

P + α2σ2
X

]

+
Nv

2
log

[

P + α2σ2
X

P

]

=
Nv

2
log

[

2πe(1 − α)2σ2
X

]

. (18)

Note that this value is just an upper bound when the spheres described above
are not disjoint.
Finally, the information leakage is given by

I(Y;Θ|M) =
Nv

2
log

[

2πe(P + σ2
X)

]

−
Nv

2
log

[

2πe(1 − α)2σ2
X

]

=
Nv

2
log

[

P + σ2
X

(1 − α)2σ2
X

]

. (19)

A.2 Watermarked Only Attack (WOA)

In this case, the mutual information between the observations and the secret key
is

I(Y;Θ) = h(Y) − h(Y|Θ) = h(Y) − I(Y;M |Θ) − h(Y|Θ,M)

= h(Y) − I(Y;M |Θ) − h(Y|UM ) = I(Y;Θ|M) − I(Y;M |Θ).

The only term that has not been analyzed yet is I(Y;M |Θ), which is the
reliable rate that can be reached when the codebook is known. Note that the fact
of not knowing the transmitted message produces a decrease in I(Y;Θ) equal
to the transmission rate I(Y;M |Θ), since the increase in the uncertainty of the
sent symbol complicates the attacker’s work. In [1] it is shown that

I(Y;M |Θ) =
Nv

2
log

[

P (P + σ2
X + σ2

N )

Pσ2
X(1 − α)2 + σ2

N (P + α2σ2
X)

]

. (20)

So in this case, assuming again α > 0.2, we can write

I(Y;Θ) =
Nv

2
log

[

2πe(P + σ2
X)

]

−
Nv

2
log

[

P (P + σ2
X + σ2

N )

Pσ2
X(1 − α)2 + σ2

N (P + α2σ2
X)

]

−
Nv

2
log

[

2πe(1 − α)2σ2
X

]

=
Nv

2
log

[

(P + σ2
X)

{

Pσ2
X(1 − α)2 + σ2

N (P + α2σ2
X)

}

P (P + σ2
X + σ2

N )(1 − α)2σ2
X

]

. (21)

B Optimal distribution for the dither in DC-DM

First, we show that for scalar DC-DM

I(Y;T) = I(Y;T mod ∆). (22)



We will assume without loss of generality that Y and T are scalars. Let fT (t)
and fY (y|T = t) denote the pdf of the secret key and the pdf of the watermarked
signal conditioned on the dither, respectively. Taking into account that, due to
the periodicity of the embedding lattices (6), fY (y|T = t) = fY (y|T = t+i∆) ∀ i,
then it is possible to write

fY (y) =

∫

t

fY (y|T = t)fT (t)dt =

∫ ∆

0

fY (y|T = t)

∞
∑

i=−∞

fT (t + i∆)dt

=

∫ ∆

0

fY (y|T = t)fTmod∆(t)dt, (23)

where fTmod∆(t) is the pdf of the modulo-∆-reduced version of T , hence equality
(22) inmediately follows, whatever the distribution of the host and the dither.

Now, we consider what is the best choice for the dither from a security point
of view. For simplicity of notation we define the random variable Z , T mod ∆.
It is a known fact that the uniform distribution maximizes the entropy in an
interval [7], but the watermarker is interested in maximizing the residual entropy

h(Z|Y ) = h(Z) − h(Y ) + h(Y |Z). (24)

In the following discussion we will make use of the flat-host assumption intro-
duced in Section 3, thus we will consider that −∆/2 ≤ Y < ∆/2. We have that
h(Y |Z) = h(Y |Z = z) ,∀ z, thus the rightmost term of (24) does not depend
on the distribution of Z. Then, we must find fZ(z) such that {h(Z) − h(Y )} is
maximum. Let us define a random variable V such that fV (v) , fY (y|Z = 0).
Under the flat-host assumption we have that fY (y) = fV (v) ⊛ fZ(z), where ⊛

denotes cyclic convolution over [−∆/2,∆/2). Hence, the maximization problem
can be written as

max
fZ(z)

{h(Z) − h(V ⊕ Z)} ,

where ⊕ denotes modulo-∆ sum. We have the following lemma:

Lemma 1. h(Z) ≤ h(V ⊕ Z), with equality if Z ∼ U(−∆/2,∆/2).

Proof. Consider that fṼ (ṽ) is the periodic extension of fV (v) over n bins, prop-
erly scaled to ensure that fṼ (ṽ) is still a valid pdf, i.e.

fṼ (ṽ) =
1

n

n/2−1
∑

i=−n/2

fV (v + i∆),

and that the same applies for fZ̃(z̃). Now, define Q̃ , Ṽ + Z̃. This way, fQ̃(q̃)
will be also periodic with period ∆ in n − 2 bins. Notice that

h(Z̃) = h(Z) + log(n). (25)



Assuming that for sufficiently large n we can neglect the border effects, if we
denote by Q the modulo-∆ version of Q̃, we have that

h(Q̃) = h(Q) + log(n). (26)

We know that h(Z̃) ≤ h(Q̃) [7], hence by (25) and (26) we have h(Z) ≤ h(V ⊕Z).
To achieve equality it is sufficient to choose Z such that Z ∼ U(−∆/2,∆/2). ⊓⊔

The proof of the lemma shows that the uniform over the quantization bin max-
imizes the residual entropy.

C Mutual information for multiple observations in
DC-DM

C.1 Known Message Attack (KMA)

Assuming that the flat-host assumption introduced in Section 3 is valid, we
will use the modulo-∆ version of the pdf of Yi, hence −∆/2 ≤ Yi < ∆/2.
Without loss of generality, we consider that the transmitted symbol is the same
(Mi = 0) in the No observations. In the following, YNo

k will denote a vector of No

observations of the k-th component of Y, and Yk,i will be the i-th observation
of that component. The mutual information after No observations is given by

I(YNo

k ;Tk|M
No

k ) =

No
∑

i=1

I(Yk,i;Tk|M
No

k , Yk,i−1, . . . , Yk,1) (27)

=

No
∑

i=1

(

h(Yk,i|M
No

k , Yk,i−1, . . . , Yk,1) − log((1 − α)∆)
)

.(28)

The problem here is the calculation of the leftmost conditional entropy term in
(28), since the pdf of the i-th observation depends on the previous ones. However,
the observations are independent when the dither is known, so we can write 4

f(y1, y2, . . . , yNo
) =

∫

tint

No
∏

i=1

fYi
(yi|T = t)fT (t)dt

=
1

(1 − α)No−1∆No

∫

tint

fYNo
(yNo

|T = t)dt, (29)

with fT (t) = U(−∆/2,∆/2), and tint is the region of integration, given by

tint = t ∈ (−∆/2,∆/2] such that f(yi|T = t) 6= 0 ∀ i ≤ No − 1, (30)

which may be composed of disjoint intervals, in general. The obtention of the
conditional pdf’s by relying on (29) is straightforward, and the conditional en-
tropy of (28) can be calculated as

h(Yi|M
No , Y1, . . . , Yi−1) =

∫

h(Yi|M
No , Y1 = y1, . . . , Yi−1 = yi−1)dy1 . . . dyi−1.

(31)

4 We will obviate subindex k in the following discussion, for simplicity of notation.



The integration limits in (30) can be specialized for α ≥ 1/2, resulting in

tint =

{
[

max
i

{yi − µ},min
i
{yi + µ}

)

, if |yi − yj | < 2µ ∀ i, j < No

0 , otherwise
(32)

where µ = (1 − α)∆/2. For α > 1/2 there is no overlapping between adjacent
centroids, and the pdf of Yi conditioned on the previous observations can be
analytically calculated, and the following conditional entropy is obtained

h(Yi|M
No , yi−1, . . . , y1) =

a

(1 − α)∆
+ log ((1 − α)∆) nats , (33)

where a is half the volume of tint. Substituting (33) into (31), we obtain

h(Yi|M
No , Yi−1, . . . , Y1) = log((1 − α)∆) +

1

(1 − α)∆
Ef(y1,...,yi−1)[a], (34)

with

a =
1

2
((1 − α)∆ + min{y1, . . . , yi−1} − max{y1, . . . , yi−1}). (35)

Hence, the conditional entropy depends on the mean value of the integration
volume.

Analytical evaluation of (34) can be simplified by assuming that the received
samples yi are all independent but uniformly distributed around an unknown
centroid 5 t: Yi ∼ U(t− (1−α)∆/2, t + (1−α)∆/2). Under this assumption, let
us define the random variable

X , min(Y1, Y2, . . . , YNo
) − max(Y1, Y2, . . . , YNo

).

The pdf of X for N observations can readily be shown to be

fX(x) = N(N − 1)
(−x)N−2

((1 − α)∆)N
[(1 − α)∆ + x],

with x ∈ (−(1 − α)∆, 0]. Hence, the mean value of a results in

EfX(x)[a] =
(1 − α)∆

2

(

1 −
N − 1

N + 1

)

,

and substituting it in (34), after some algebra, we finally obtain the following
expression for the conditional entropy

h(Yi|M
No , Yi−1, . . . , Y1) = log((1 − α)∆) +

1

i
nats , for i > 1. (36)

Substituting (36) in Eq. (28), we have the final expression for the mutual infor-
mation

I(YNo

k ;T |MNo) = − log(1 − α) +

No
∑

i=2

1

i
nats . (37)

5 This simplification is possible since the chosen random variable yields the same mean
value as the true distribution.



C.2 Watermarked Only Attack (WOA)

For the WOA case, we must take into account that the observations may be
associated to any of the possible cosets; however, with binary signaling (M =
{0, 1}) and α > 0.75 there is no overlapping between the adjacent cosets, so the
conditional pdf’s can be calculated similarly to the case of KMA. Under these
assumptions, it is possible to show that

h(Yi|Mi, Yi−1, . . . , Y1) = log((1 − α)∆) +
1

i
+ log(2) nats ,

hence the mutual information in the WOA case for α > 0.75 is given by

I(YNo

k ;T ) = − log(1 − α) − log(2) +

No
∑

i=2

1

i
= I(YNo ;T |MNo) − log(2) nats .
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8. Pérez-Freire, L., Pérez-Gonzalez, F., Voloshinovskiy, S.: Revealing the true achiev-
able rates of Scalar Costa Scheme. In: IEEE Int. Workshop on Multimedia Signal
Processing (MMSP), Siena, Italy (2004) 203–206

9. Erez, U., Zamir, R.: Achieving 1

2
log(1+SNR) over the Additive White Gaussian

Noise Channel with Lattice Encoding and Decoding. IEEE Transactions on Infor-
mation Theory 50 (2004) 2293–2314


