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Abstract—A number of applications of wireless sensor net-
works require to know the location of the sensor nodes.
Typically, however, mainly due to costs and limited capacity of
the batteries powering the sensor nodes, only a few nodes of the
network, denoted anchor nodes in the literature, are endowed
with their exact positions. Thus, given a number of anchor
nodes, the problem of estimating the locations of all the nodes
of a wireless sensor network has attracted a large interest in
the last years. The localization task is based on the estimated
distances between pairs of nodes in range of each other and
is particularly hard in the most appealing scenario, that is,
when the network connectivity is quite low. In a recent paper,
we have proposed to tackle the localization problem as a two-
objective optimization task with the localization accuracy and
the number of connectivity constraints that are not satisfied
by the candidate geometry as the two objectives. In this
paper, we aim to evaluate the behavior of five state-of-the-art
multi–objective evolutionary algorithms (MOEAs) in solving
the localization problem on different network topologies. We
show that one of these MOEAs, namely PAES, statistically
outperforms the others in terms of localization error.

Keywords-Stochastic Optimization; Multi–objective Evolu-
tionary Algorithms; Range Measurements;

I. INTRODUCTION

Wireless Sensor Networks (WSNs) consist of several low–
cost nodes communicating among themselves for appli-
cations like environment monitoring, precision agriculture,
vehicle tracking, etc. Tiny nodes are generally deployed
in an area to be monitored, spanning potentially large
geographical regions. The small size and low cost of sensor
nodes impose several practical limitations: as they mount
small and cheap memory and microprocessor units, tasks
like large data storing and complex computations become
unfeasible. At the same time, nodes are usually battery–
powered, thus the network lifetime constitutes an important
issue [1], [2].

In the aforementioned applications, knowledge about the
location of sensor nodes may be essential. Although in
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principle the use of a Global Positioning System (GPS)
could enable such “location awareness”, this solution is not
always viable in practice. First, in indoor and underground
WSN deployments the communication with satellites may be
unavailable; moreover the cost and the power consumption
of a standard GPS receiver are generally not affordable by
cheap, battery–powered nodes.

These limitations have motivated alternative approaches to
the problem as reviewed in [3]. Among these, fine–grained
localization techniques arise as a flexible option. In these
schemes, only a few nodes of the network (termed anchor
nodes) are endowed with their exact positions through GPS
or manual placement, while all nodes are able to estimate
their distances to nearby nodes by using some measure-
ment technique. These distance–related techniques include
Received Signal Strength (RSS) measurements, Time of
Arrival (ToA), Time Difference of Arrival (TDoA), etc.
Thus, assuming that the coordinates of anchor nodes are
known, the fine–grained localization problem consists of
determining the positions of all non–anchor nodes, by ex-
ploiting pairwise distance measurements among the nodes.
This task has proved to be rather difficult: determining
the locations of the nodes from a set of pairwise distance
estimates is a nonconvex optimization problem; moreover,
the measurements available to nodes are invariably corrupted
by noise; finally, even if the distance estimates were perfectly
accurate, sufficient conditions for the solution to be unique
are not easily identified [4]. We will briefly discuss these
issues in the following.

Assuming a statistical characterization of measurement
noise (which will usually depend on the kind of measure-
ment technique [3]), Maximum Likelihood (ML) estima-
tion is the natural approach to the localization problem.
However, as previously mentioned, the ML formulation
results in a multivariable nonconvex optimization problem.
Three different approaches to this task can be found in
the literature, namely stochastic optimization, multidimen-
sional scaling, and convex relaxation. The first approach
attempts to avoid local maxima of the likelihood function
by resorting to global optimization methods, such as e.g.



simulated annealing [5]. Multidimensional scaling [6] is a
connectivity–based technique that, in addition to distance
measurements, exploits knowledge about the topology of the
network; this information imposes additional constraints on
the problem, since nodes within the communication ranges
of each other cannot be arbitrarily far apart. The third
approach relaxes the original nonconvex ML formulation
in order to obtain a Semi–Definite Programming (SDP)
or a Second–Order Cone Programming (SOCP) problems.
Global solutions to these relaxed, convex problems can be
then obtained with moderate computational effort [4] [7] and
constitute approximate solutions to the original nonconvex
problem. In [7] it was shown that the solutions obtained by
SOCP relaxation are less accurate than those obtained by
SDP relaxation.

In [8] we have modeled the localization problem as
a two-objective optimization problem. The first objective,
denoted CF, is given by the original nonconvex cost (the
sum of squared differences between the estimated and the
corresponding measured inter–node distances). The second
objective, denoted CV, exploits the connectivity–based a
priori information about the network, and is especially
useful in order to alleviate localizability issues. We have
tackled the optimization problem by using a multi-objective
evolutionary algorithm, namely PAES [9]. We have shown
that, on a variety of network topologies and connectivity
ranges, PAES outperforms another metaheuristic technique
based on simulated annealing [5]. In this paper, we apply
five different state-of-the-art MOEAs in solving the local-
ization problem on different network topologies. We show
that PAES statistically outperforms the other MOEAs in
terms of localization error, thus highlighting its particular
effectiveness in this specific optimization problem.

The remainder of this paper is organized as follows. In
Section II, we formulate the problem. Section III models
the localization problem as a two-objective optimization
problem. Section IV describes as the problem can be tackled
by exploiting a multi-objective evolutionary approach and
the five MOEAs used in the experiments. The experimental
results are discussed in Section V. Finally, in Section VI we
draw some conclusions.

II. PROBLEM FORMULATION

Let us consider a WSN with n nodes deployed in
T = [0, 1] × [0, 1] ⊂ R2. We assume that nodes 1, . . . ,
m, with m < n, are anchor nodes whose coordinates
pi = (xi, yi) ∈ T , i = 1, . . . , m, are known. Further, we
suppose that if two sensor nodes, say i and j, are within the
communication range of each other, then their inter–node
distance dij can be estimated by using some measurement
technique (see Section I). Distance measurements dij are
modeled as

dij = rij + eij (1)

where rij = ‖pi − pj‖ is the actual distance between
nodes i and j (‖·‖ denotes the Euclidean norm). Similar
to [4], [5], we assume that measurement errors eij follow
a zero–mean Gaussian distribution with variance σ2. It is
also assumed that the random variables eij and ekl are
statistically independent for (i, j) 6= (k, l).

As commonly used in the literature, we adopt a simple
disk model for network connectivity: nodes i and j can
communicate with each other if and only if rij ≤ R, where
R is the connectivity range. We refer to nodes j such that
rij ≤ R as first–level neighbors of node i. Further, we refer
to all nodes j which are not first–level neighbors of node i,
but which share at least a first–level neighbor with node i,
as second–level neighbors of node i. Let

Ni = {j ∈ 1 . . . n, j 6= i : rij ≤ R} (2)
N i = {j ∈ 1 . . . n, j 6= i : rij > R} (3)

be the set of the first–level neighbors of node i and its
complement, respectively. We assume that sets Ni and N i

are known for all i = 1, . . . , n. This is a reasonable
assumption, since each node can easily determine which
other nodes it can communicate with.

A. Geometrical constraints

The connectivity ranges and the positions of the anchor
nodes determine subsets of the overall search space where
each single non–anchor node can be positioned. These
subsets depend on the type of non–anchor node, and can be
defined by means of geometrical constraints. In [8], we have
adopted the following classification based on the position of
a non–anchor node with respect to anchor nodes:

• Class 1 node: a non–anchor node which is first–level
neighbor to at least one anchor node.

• Class 2 node: a non–anchor node which is second–level
neighbor to at least one anchor node.

• Class 3 node: a non–anchor node which belongs to
neither class 1 nor class 2.

The knowledge of the membership of a non–anchor node
to a class allows restricting the space where the node can
be located. This information can be exploited both in the
generation of the initial population of the MOEA and for
constraining the application of the mating operators during
the evolutionary process. Thus, by avoiding the generation
of solutions which certainly cannot be optimal, it is possible
to speed up the execution of the evolutionary algorithm.

III. MODELING THE LOCALIZATION PROBLEM AS A
TWO-OBJECTIVE OPTIMIZATION PROBLEM

With the aim of estimating the positions of the non–anchor
nodes as accurately as possible, in [8] we have proposed to
concurrently minimize two objectives. Let p̂i = (x̂i, ŷi), i =



m + 1, . . . , n be the estimated positions of the non–anchor
nodes i. The first objective CF is defined as

CF =

n∑
i=m+1

∑
j∈Ni

(
d̂ij − dij

)2 , (4)

where d̂ij is the estimated distance between nodes i and j
computed as follows:

d̂ij =


√

(x̂i − xj)2 + (ŷi − yj)2 , if node j is an anchor,√
(x̂i − x̂j)2 + (ŷi − ŷj)2 , otherwise.

(5)
A network is said to be localizable if there is only one pos-

sible geometry compatible with the data, that is, with the set
of anchor nodes and the inter–node distance measurements.
If the network is not localizable, then multiple minima will
be present in CF, with only one of them corresponding to
the actual geometry of the deployment. Thus, in settings
which are close to not being localizable, any localization
algorithm will become extremely sensitive to these false
minima of CF, resulting in very large localization errors
[10]. The simplest effect leading to lack of localizability is
the so–called flip ambiguity phenomenon, shown in Fig. 1.
The neighbors of node i (i.e. nodes j, k, l and m) are almost
collinear (double line in the figure), and thus, it is clear that
if the location of node i is flipped with respect to this line
to the new position denoted by i′, then the new geometry
so obtained is almost compatible with the original inter–
node distance measurements (it would be fully compatible
if nodes j, k, l and m were perfectly aligned). In Fig. 1, one
can observe that whereas the flipped position i′ is within
the communication range of node n (shown by the circle
in the figure), the actual position i is not, thus violating a
connectivity constraint. The number of such violations in a
candidate topology constitutes our second objective function
CV.

i
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Figure 1. The flip ambiguity problem.

Formally, CV counts the number of connectivity con-
straints which are not satisfied by the candidate geometry,
and is defined as

CV =

n∑
i=1

∑
j∈Ni

δij +
∑
j∈Ni

(1− δij)

 , (6)

where δij = 1 if d̂ij > R and 0 otherwise.

In order to evaluate the accuracy of the estimates, we
consider the normalized localization error (NLE), defined
as

NLE =
1

R

√√√√ 1

(n−m)

n∑
i=m+1

(
‖pi − p̂i‖2

)
× 100%. (7)

Thus, assuming that the estimate is unbiased, NLE can be
interpreted as the ratio of the standard deviation to the
connectivity radius.

IV. THE MULTI-OBJECTIVE EVOLUTIONARY APPROACH

We have compared the effectiveness of five different
MOEAs in tackling the localization problem in WSNs,
namely the Pareto Archived Evolution Strategy (PAES) [9],
the Strength Pareto Evolutionary Algorithm 2 (SPEA2) [11],
the Non–dominated Sorting Genetic Algorithm II (NSGA–
II) [12], the Multi–Objective Evolutionary Algorithm based
on Decomposition with Differential Evolution crossover
[13] (MOEA/D–DE) [14] and an asynchronous version
of the Multi–Objective Cellular algorithm 4 (aMOCell4)
[15]. In [8], we have already applied PAES to the specific
problem and have shown that PAES outperforms another
metaheuristic approach, namely SAL, based on simulated
annealing. Here, we aim to evaluate whether other different
MOEAs can outperform PAES.

PAES, SPEA2 and NSGA-II are well-known and very
popular MOEAs: they are often applied in the literature as
benchmarks when proposing a novel MOEA. Due to space
limitations, we will not describe these algorithms in detail.

The original MOEA based on decomposition (MOEA/D)
was introduced by Zhang and Li in [16]. It relies on con-
ventional aggregation approaches in which a multi–objective
problem is decomposed into a number of scalar objective
optimization problems (sub-problems). Each scalar objective
represents a weighted aggregation of the single original
objectives. Neighborhood relations among sub–problems are
defined based on the distances between their aggregation
weight vectors. Sub–problem i is considered a neighbor of
sub–problem j if the weight vector of sub–problem i is close
to that of sub–problem j. Each sub–problem is optimized
in the MOEA/D by using information mainly from its
neighboring sub–problems [17]. Zhang and Lin have also
proven in [14] that using a DE crossover operator rather than
classical simulated binary crossover (SBX) improves the per-
formance of MOEA/D. By performing several different trials
of the algorithms, we have verified that the parameter setup
suggested in [14] provides the best performance and that
MOEA/D with DE crossover (MOEA/D–DE) outperforms
MOEA/D with SBX. For the sake of brevity, we will not
discuss this experimentation in this paper.

Cellular genetic algorithms (CGAs) exploit the concept
of small neighborhood in the sense that an individual may
only interact with its nearby neighbors in the breeding loop.



The overlapped small neighborhoods help in exploring the
search space because the induced slow diffusion of solu-
tions through the population provides a kind of exploration
(diversification), while exploitation (intensification) takes
place inside each neighborhood by genetic operations. CGAs
have proven to be very effective tools for solving a wide
range of single objective optimization problems. Effective
variants for the multi–objective framework are, however,
still under development. One of the first attempts to extend
CGAs to the multi–objective framework has been MOCell
[18]. MOCell uses, like many other MOEAs, an external
archive to store the non-dominated solutions and selects
a fixed number of individuals from the archive to replace
the same number of randomly chosen individuals from the
population (archive feedback) at the end of each iteration
of the algorithm. This helps speeding up the convergence
by taking advantage of the search experience maturated in
the previous iterations. This type of replacement coexists
with the typical replacement of a canonical CGA, where the
newly generated individual replaces the current one if the
latter is worse than the former. In [15], the same authors of
MOCell have also proposed six different variants and have
concluded that the variant, namely aMOCell4, corresponding
to the asynchronous version of MOCell which replaces the
worst cell in the neighborhood and uses an individual from
the archive in the selection operator, allows achieving the
best results in their problem instances. We have tested the
six different variants in our localization problem and have
concluded that, also in our problem, aMOCell4 outperforms
the other variants. For the sake of brevity, we omit this
analysis.

A. The chromosome coding

In our optimization framework each chromosome encodes
the positions of all non–anchor nodes in the network. Thus,
each chromosome consists of n−m pairs of real numbers,
where each pair represents the coordinates x̂ and ŷ of a
non–anchor node. We enforce compliance with constraints
described in Section II-A in the initial population. Further,
whenever mutations are applied during the evolutionary
process, only mutated individuals satisfying these constraints
are generated. Each chromosome is associated with a vector
of two elements, which represent the values of the two objec-
tive functions CF and CV (Eqs. (4) and (6) in Section III).

B. The genetic operators

We have defined two mutation operators. The first mu-
tation operator, denoted Node Mutation (NM) operator,
performs a uniform–like mutation: the position of each non–
anchor sensor node is mutated with probability PU = 1/(n−
m). Positions are randomly generated within the geometrical
constraints imposed on the specific node location.

The second mutation operator, denoted neighborhood
mutation (NHM) operator, mutates, with probability PU =

1/(n − m), the position of each non–anchor sensor node
within the geometrical constraints determined for the specific
node, but unlike the first operator, it applies the same rigid
translation (RT ), which has brought the mutated node i from
the pre–mutation position to the post–mutation position, to
the neighbors of i with a certain probability. As we have al-
ready discussed in [8], NHM results to be particular suitable
for dealing with particular topological configurations.

Except for PAES (that only uses mutation) and MOEA/D–
DE (that uses DE crossover), the crossover operator used in
the MOEAs considered in this paper is the classical one–
point crossover operator, denoted CX . The common point is
chosen by picking a random integer from {1, (n−m)}. We
preferred the one–point crossover operator to more suitable
crossover operators for real coding to avoid to check for
each gene the compliance with the geometrical constraints.
On the other hand, we verified that the synergy between the
one-point crossover and the described mutation operators
allows us to perform an adequate exploration of the search
space.

V. EXPERIMENTAL RESULTS

A. Simulation setup

With the aim of comparing the five MOEAs, we built 10
different network topologies by randomly placing 200 nodes
with a uniform distribution in T = [0, 1] × [0, 1] ⊂ R2.
We fixed the percentage of anchor nodes to 10% and the
connectivity range R = 0.13. The distance measurements
between neighboring nodes were generated according to
the model (1). We assume that these distance estimates
are derived from RSS measurements, which are commonly
affected by log–normal shadowing with standard deviation
of the errors proportional to the actual range rij [3]. Thus,
the variance of eij is given by σ2 = α2r2ij . A value of
α = 0.1 was used in the simulations.

Table I
MAIN NETWORK INDICATORS FOR THE DIFFERENT NETWORK

TOPOLOGIES.

node degree Cl.1 Cl.2 0 anch. 3(or more) anch.
TOP0 9.34 108 61 72 14
TOP1 9.88 120 47 60 15
TOP2 9.34 129 46 51 7
TOP3 9.50 124 50 56 8
TOP4 9.70 121 57 59 8
TOP5 9.32 111 58 69 13
TOP6 9.15 126 48 54 6
TOP7 9.19 123 46 57 4
TOP8 9.21 100 66 80 12
TOP9 9.45 113 56 67 9

Table I shows, for each topology, the main network indica-
tors, namely the node degree (considering anchor and non–
anchor nodes), the number of non–anchor nodes classified
in Class 1 and Class 2, the number of non–anchor nodes
with no anchor node in their neighborhoods and the number



Table II
PARAMETER SETUP OF THE FIVE MULTI-OBJECTIVE EVOLUTIONARY

STRATEGIES. P, N, S, D AND C DENOTE, RESPECTIVELY, PAES,
NSGA–II, SPEA2, MOEA/D–DE AND AMOCELL4.

Parameter name Value P N S D C
Population size 20 X X X X
Archive size 20 X
External Archive size 100 X X
Number of regions 5 X
fitness evaluations 100,000 X X X X X
NM probability 0.9 X X X X X
RT probability 0.3 X X X X X
CX probability 0.9 X X X
DE probability 1.0 X

of non–anchor nodes having at least 3 anchor nodes in
their neighborhoods. The analysis of Table I reveals that the
localization problem may become rather complex: despite
a rather constant average node degree (9.40) the number
of non–anchor nodes with no anchor neighbor varies from
51 (in TOP2) to 80 (in TOP 8), while the number of non–
anchor nodes with 3 or more anchor neighbors varies from
4 (in TOP7) to 15 (in TOP1). For each scenario 30 trials of
the selected algorithms were executed, with parameter values
summarized in Table II. In the table, P, N, S, D and C denote,
respectively, PAES, NSGA–II, SPEA2, MOEA/D–DE and
aMOCell4. With the aim of performing a fair comparison,
we adopted a population size equal to the archive size.

Once the Pareto front approximation has been generated,
a solution must be chosen. In our experiments, we verified
that the variation interval of CF for the solutions on the
final Pareto front approximation is quite small. Thus, we
can assume that each solution on the Pareto front can
be acceptable with respect to the CF objective. We have
validated this hypothesis with a Wilcoxon test, by selecting
from each final archive the solutions characterized by the
minimum value of CV and the minimum value of CF
(in practice, the solutions on the extremes of the Pareto
front approximation). Since no statistical difference exists
in terms of NLE among the solutions in the final Pareto
front approximations, each solution can be actually selected
in order to perform a comparison. For the sake of brevity,
we take the solution characterized by the lowest value of
CV .

B. Performance analysis

Fig. 2 shows the boxplots of the NLE values achieved by
the five algorithms on the different scenarios. The different
colors of the boxplots have been used to represent the
results of a non-parametric test, namely the Kruskal-Wallis
test, applied to the NLE values for each scenario. The
Kruskal-Wallis test represents the nonparametric version of
the classical one–way ANOVA, and is an extension of the
Wilcoxon rank sum test to more than two groups [19].
Briefly, the test compares the medians of the samples, and
returns the p–value for the null hypothesis that all samples

are drawn from the same population (or equivalently, from
different populations with the same distribution). If the p-
value is lower than 0.05, we deduce that the null hypothesis
does not hold, that is, at least one sample median is signifi-
cantly different from the others. To determine which sample
medians are statistically different, we have applied the built–
in Matlab multiple comparison procedure. A white boxplot
denotes the best distribution of NLE values obtained for a
specific topology. A black boxplot identifies a distribution of
NLE values whose median is larger than the median of the
corresponding white boxplot with a statistical significance.
A gray boxplot denotes a distribution of NLE values whose
median is larger than the median of the corresponding white
boxplot, but the difference between the medians is not
statistically significant.

We can observe that PAES is always able to produce
the best NLEs results over the 10 scenarios. Moreover,
these results are almost always statistically significant when
compared to the other approaches, except for NSGA–II
and MOEA/D–DE in TOP1, and aMOCell4 in TOP8 and
TOP9, where the multi comparison procedure could not
reject the null–hypothesis that the distributions are statis-
tically equivalent with a confidence level of 95%. By the
analysis of the distribution of the thirty Pareto fronts for
each network topology, we realized that the good behavior
of PAES is mainly due to the stability of the algorithm for
this specific problem. Indeed, for each topology, the Pareto
fronts obtained in the thirty trials are always very close to
each other. On the contrary, the other algorithms are less
stable.

VI. CONCLUSIONS

In our previous work, the fine–grained localization prob-
lem in WSNs had been modeled as a two-objective optimiza-
tion problem and had been tackled by using a multi-objective
evolutionary algorithm, namely PAES. In this paper, we have
applied five different state-of-the-art MOEAs in solving the
localization problem on different network topologies. All the
experimented MOEAs have proved to be able to solve the
localization problem with high accuracy, thus confirming the
validity of the proposed approach. Further, we have shown
that PAES statistically outperforms the other MOEAs in
terms of localization error, thus highlighting its particular
effectiveness in this specific optimization problem.
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