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Abstract. The sensitivity attack is considered as a serious threat to
the security of spread-spectrum-based schemes, since it provides a prac-
tical method of removing watermarks with minimum attacking distor-
tion. This paper is intended as a tutorial on this problem, presenting
an overview of previous research and introducing a new method based
on a general formulation. This new method does not require any knowl-
edge about the detection function nor any other system parameter, but
just the binary output of the detector, being suitable for attacking most
known watermarking methods. Finally, the soundness of this new ap-
proach is tested by attacking several of those methods.

1 Introduction

In its early years, digital watermarking was conceived as a solution to the prob-
lems of illegal copy control and intellectual property rights (IPR) protection.
Perhaps for this reason and the analogies commonly made to the field of cryp-
tography, watermarking was declared as synonymous to security [1]. However,
watermarking research until now has much more to do with robustness than with
security : roughly speaking, watermarking security [2] may be related to attacks
which try to gain knowledge about certain secret parameters of the watermark-
ing system, whereas robustness is more concerned with attacks whose aim is to
degrade the performance of the watermarking system.

In watermarking for IPR protection and copy control, the aim is to distin-
guish whether the digital media at hand contains a certain watermark or not.
This problem is known as watermark detection,1 and is commonly modeled as
a binary hypothesis testing problem. In a general setup, the watermarking of a
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1 Watermark detection and watermark decoding must be regarded as different prob-
lems, since in the latter (which is often referred to as data hiding) the objective is
to decode the embedded message .



digital document x, which is arranged as a column vector of dimension n, can be
expressed as y = x + w, with w the watermark. Hence, the hypothesis testing
problem can be written as

H0 : y = x

H1 : y = x + w
.

In detection, we must adapt this test to take into account that the watermarked
signal could have been attacked; this attack will be modeled as the addition of
a vector t, yielding a signal z = y+ t. Note that w may be made key-dependent
in order to improve the security of the system. The optimal solution to the
hypothesis test is given by the likelihood ratio test, i.e.,

l(z) =
fZ|H1

(z|H1)

fZ|H0

(z|H0)

H1

>
≤
H0

η, (1)

where fZ|Hi

(z|Hi) is the pdf of Z conditioned to hypothesis Hi and η is a

threshold which can be adjusted so as to optimize a certain criterion (Neyman-
Pearson, Bayes, etc.). We will denote by D ∈ H = {H0,H1} the output of the
detector. The detection function given by (1) divides the subspace R

n in two
disjoint regions, R and Rc, termed acceptance or detection region and rejection

region, respectively, such that R
n = R∪Rc, which are defined as

R = {z ∈ R
n : l(z) > η};Rc = {z ∈ R

n : l(z) ≤ η}.

Unfortunately, an analytical derivation of the likelihood ratio test is not
always feasible, so we will consider instead a more general family of detection
functions. Thus, the test performed by the detector is

g(z,θ)

H1

>
≤
H0

η,

where θ is the secret key used in the detection process. Be aware that the re-
sulting detector will be optimal only when g(z,θ) coincides with the likelihood
ratio l(z).

In the considered scenarios, the watermark detector is often made public,
generally in the form of a tamper-proof black box which only provides binary
outputs, in such a way that an observer can check whether g(a,θ) is larger or
smaller than η, but he can not know its actual value. This scenario gives raise to
the so-called oracle attacks, where the attacker can use the detector outputs to
some selected inputs in order to gain knowledge about secret information used
in the detection process (for instance, the detection key). Intuitively speaking,
the detector acts as an oracle, responding yes or no to the inputs provided by
the attacker. The most popular oracle attack is the so-called sensitivity attack,



introduced for the first time in [3]. At the time this attack was proposed, ad-

ditive spread spectrum methods [4] constituted the state of the art in digital
watermarking, so this attack was suited to this particular scenario. For additive
spread spectrum under the assumption of a Gaussian host, the likelihood ratio
has a well-known closed-form solution, given by l(z) = zT w, so the optimal
detector in this case must apply the following test:

zT w

H1

>
≤
H0

η. (2)

Detectors that implement the test given by (2) are termed linear correlator

detectors. Essentially, the sensitivity attack (specialized to the case of digital
images) for this kind of detectors consists of the following steps [3]:

1. The algorithm starts from a watermarked image y of dimension n. The first
step is the modification of y so as to obtain a new image z near the boundary
of R, which according to (2) is a hyperplane in an n-dimensional subspace,
perpendicular to w.

2. For the i-th pixel of z, a random vector ti = [0, · · · , 0, ti, 0, · · · , 0]T is added
to z observing how the sign of ti affects the outputs of the detector and,
hence, gaining knowledge about the polarity of the watermark in each pixel.
Since z is near the detection boundary, small changes are likely to toggle the
detector response. This procedure is repeated for all i = 1, · · · , n.

3. At the end of the previous step, by combining the results for all pixels, the
attacker has a rough estimate ŵ of the watermark vector and, thus, of the
detection boundary, which in the considered case is perpendicular to w.

According to the classification introduced at the beginning of this section,
the sensitivity attack clearly falls into the category of attacks to security, since
the attacker is trying to disclose the boundary of the detection region (which is
supposed to be secret to unauthorized users). Of course, once the attacker has es-
timated this boundary, he can use his knowledge to devise smart attacks against
watermarked contents: for instance, once the estimate ŵ has been obtained, the
attacker can generate an attacked image z with small distortion, capable of fool-
ing the detector, just by subtracting a suitably scaled version of ŵ. Before the
sensitivity attack was proposed, it was believed that the complexity of an attack
disclosing the watermark was O(2n) (by means of a brute force approach), but
the proposed strategy showed that it would be feasible in a number of iterations
which is linear with the dimensionality of the watermarked image, i.e., the com-
plexity of the attack was reduced to O(n). Hence, it is easy to realize that this
attack represented a serious threat to any watermarking scheme with a public
detector available, and it raised up the problem of security in watermarking.

This paper is concerned with a generalization of the sensitivity attack, pro-
viding a formulation that encompasses most known watermark detection scheme
with parameterizable and differentiable (but unknown to the attacker) detection



boundaries; in fact, our approach is suitable even for attacking QIM schemes,
whereas the sensitivity attacks that had been devised so far were only aimed
against spread spectrum methods. The rest of the paper is organized as follows:
Section 2 provides an overview of previous works dealing with the characteriza-
tion of this attack and the countermeasures proposed to increase the security of a
watermarking system where public detectors are available. In Section 3, our new
formulation of the problem is presented, and its application to some examples is
given in Section 4.

2 Previous work and improvements

The sensitivity attack for detectors based on linear correlation, i.e., those given
by (2), was extensively studied in [5] and [6]. Starting from the formulation
of the attack given in [4], which was explained in the Introduction, the work
in [5] proposes a countermeasure based on the randomization of the detection
boundary: the basic idea is to define a region around the points that satisfy
zT w = η where the decision of the detector is made random, in order to reduce
the sensitivity of the detector to small changes in its inputs. Thus, the detection
function is modified as follows:

D =







H1, if zT w > η2

H0, if zT w < η1

H1 with probability p(zT w), if η1 ≤ zT w ≤ η2

, (3)

where the two new thresholds η1 and η2 must be close to η so as not to degrade
significantly the performance of the detector, and p(r) verifies p(η1) = 0 and
p(η2) = 1. The internal behavior of the detector is such that its outputs are deter-
ministic, i.e., the response of the detector is always the same for a fixed input sig-
nal z, in order to avoid the estimation of p(r) simply by feeding the same z to the
detector repeatedly. Anyway, estimation of the watermark is still possible. Let z′

be a vector such that η1 ≤ (z′)T w ≤ η2, and ǫ a random vector. For sufficiently
small ǫi, i = 1 · · ·n, and z = z′ + ǫ, we have that p(zT w) = p((z′)T w + ǫ

T w) ≈
p((z′)T w), so after trying a sufficiently large number of different vectors ǫ, the
value of p((z′)T w) can be estimated simply by counting the number of outcomes
that yield D = H1. Similarly, for ti = [0, · · · , 0, ti, 0, · · · , 0]T and zi = z′+ti +ǫ,
we have (zi)T w = (z′)T w + tiwi + ǫ

T w ≈ (z′)T w + tiwi = (z′)T w ± tiδ,
where in the last equality we have assumed that wi ∈ {±δ}. By means of a
first order approximation, and assuming that p(r) is differentiable, we can write

p((zi)T w) ≈ p((z′)T w ± tiδ) ≈ p((z′)T w) ± tiδp
′((z′)T w), where p′(r) ,

∂p(r)
∂r

is the derivative of p(r). Again, using enough different vectors ǫ, an estimate of
p((zi)T w) can be obtained. By comparing this estimate to the previous estimate
of p(yT w), the sign of wi can be inferred (as long as p(r) is a monotically in-
creasing function). In [5], the information leakage about the watermark provided
by the detector outputs is quantified in an information-theoretic sense, and the
shape of the optimum function p(r) for η1 ≤ r ≤ η2 that minimizes the informa-
tion leakage is given. It is easy to see that this countermeasure complicates the



sensitivity attack, but its complexity still remains linear with the dimensionality
of the images. In fact, a practical method for estimating the watermark in this
framework was devised in [6]. The method basically consists of the following
steps:

1. Starting from a valid watermarked image y, an image z′ which yields η1 ≤
(z′)T w ≤ η2 is constructed by iteratively degrading y.

2. The image z′ is perturbed by the addition of zero-mean random vectors t

with ti = {±δ}. If w and t are positively correlated, the detector will return
D = H1 with higher probability, so t will be taken as an approximation of
w; otherwise, if D = H0, then −t will be taken as an estimate of w.

3. By averaging the estimates obtained in the previous step, an approximation
of w is obtained.

Following this approach it is possible to obtain reliable estimates of w in a
number of iterations which is a small multiple of n, as it was shown in [6].

Another approach for performing a successful sensitivity attack was presented
in [7]. The method is able to estimate the boundary of the acceptance region by
modeling the attack as a classical adaptive filtering problem: it is easy to realize
that the linear detection function given in (2) for additive spread spectrum can
be thought of in terms of filtering z with a filter w̃ such that w̃i = wn+1−i ∀ i =
1, · · · , n; furthermore, the attacker knows that z ∗ w̃ = g(z,θ), where ∗ denotes
the convolution operator, so if he/she can access the values of g(z,θ), then using
this signal as reference he can manage to construct an estimate of w̃. The authors
propose in [7] the use of the Least Mean Squares (LMS) algorithm in order to
iteratively construct these estimates. Let ŵk be the estimate of w̃ in the k-th
iteration and {zk} a set of vectors near the detection boundary; each iteration
of the LMS algorithm consists of the following steps:

1. rk = zk ∗ w̃,
2. ek = g(zk,θ) − rk,
3. wk+1 = wk + µekzk,

where µ is the step-length. In a more realistic situation, the attacker only has
access to the detector outputs, D, so this algorithm must be properly modi-
fied. In this situation, the attacker must restrict the set {zk} to those vectors
lying near the detection boundary, because he still knows that g(zk,θ) ≈ η;
thus, the algorithm is complicated by the fact of computing the appropriate set
{zk}. The authors also propose some modifications in order to cope with the
countermeasure introduced in [5], which was explained above.

In view of the security flaws presented by traditional spread spectrum meth-
ods under sensitivity-like attacks, researchers put their effort in the design of
asymmetric schemes [8].2 One of the advantages offered by asymmetric schemes

2 Watermarking techniques can be roughly classified according to the role of the secret
key in the embedding/detection processes: those methods which use different keys
for embedding and detection are termed asymmetric, otherwise they belong to the
category of symmetric schemes.



against sensitivity attacks is the fact that the embedding and detection keys are
different, thus the impact of a successful attack revealing the detection bound-
ary is minimized (recall that disclosure of the watermark in traditional spread
spectrum methods allows to unwatermark legal contents, as well as generating
forged illegal documents). The other advantage of asymmetric watermarking is
the use of more involved detection regions, complicating the description of the
detection boundary; for instance, in [8], four asymmetric methods are analyzed
under a unified framework, showing that the detection function can be written
in terms of a quadratic form in R

n for all cases, i.e.

zT Az

n

H1

>
≤
H0

η.

The idea of increasing the security of the system against sensitivity attacks by
complicating the detection region is exploited by the family of detection functions
called JANIS [9], which use N -th order polynomial detection functions, i.e.

g(z,θ) =
1

n

n/N
∑

k=1

N
∏

j=1

zp[(k−1)·N+j] · ap[(k−1)·N+j],

where a is secret random ±1 vector and p is a secret random permutation vector.
Based on this detection function the watermark is obtained as w = γ∇g(x,θ),
where γ is a parameter to adjust the embedding distortion. Indeed it makes more
difficult the sensitivity attack, but obviously this is not the ultimate solution: for
example, a N -th order detection boundary can still be described by estimating
nN points on the detection boundary. This point was addressed in [7], showing
that the LMS attack can be properly modified in order to cope with this kind
of detection boundaries. A possible solution to this problem was proposed also
in [7] by means of non-parametric decision boundaries, i.e., by using decision
boundaries that can not be described by a finite number of parameters. An
example of such decision boundaries are those given by fractal curves like the
Peano curve, which is used in [7] to replace the original linear detection boundary
in a spread spectrum scheme. With a proper design, the proposed method can
invalidate sensitivity attacks with slight degradations in robustness.

Recently, an attempt to give a rigorous formulation of the sensitivity attack
was presented in [10]: first, the convergence of the algorithm proposed in [6] is
proven, using the law of large numbers; thereafter, a new non-iterative sensitivity
attack for detectors based on linear correlation is presented.3 The main steps of
this new algorithm are outlined in the following:

1. As in the former algorithms, the first step is the construction of a signal z′

near the boundary of the detection region.

3 As a further contribution, this new algorithm is also suitable for estimating
continuous-valued watermarks, whereas the algorithms previously proposed in [5]
and [6] assumed that the watermark could only take discrete values.



2. Now consider the set of vectors {ti}, i = 1, · · · , n, defined by the canonical
basis of R

n. For each ti, a signal z′′ = z′ +αit
i on the detection boundary is

constructed, by properly selecting the scaling factor αi. The search for this
value of αi must be accomplished by means of some numerical algorithm, so
it will be surely the most costly part of the algorithm.

3. For the detector under consideration, it holds that (z′′)T w =
∑n

k=1 z′′kwk +
αiwi = η, i = 1, · · · , n where η is the detection threshold and wi = (ti)T w.
Thus, a linear system with n equations and n unknowns has been defined.
By taking into account the special structure of this system, it is easy to show
that it can be solved in n + 1 elemental operations.

Another remarkable contribution of [10] is the extension of the sensitivity attack
in order to work with a more generic family of detection functions of the form
g(y,w); furthermore, this method has the advantage of return an estimate of the
watermark. Nevertheless, this approach presents several drawbacks: the attacker
needs to know the detection function and even the inverse of the gradient of
the detection function. Thus, the need for a new formulation which overcomes
these problems is justified; in the next section we will try to solve this problem,
achieving a solution which will be shown to work with a wider range of detection
functions. The method proposed has the following characteristics:

– It does not require knowledge about the detection function; it just needs to
know the binary output of the detection function for a given input. Due to
this, our method is indeed able to deal with watermarking methods which
use a secret detection key (different from the embedding key), in such a
way that the attacker has no access to the decoding function; these methods
are known under the generic name of asymmetric watermarking (see [8] and
[11]).

– The gradient of the detection function does not need to be inverted. As it
was said in the previous point, sometimes the detection function will not be
known by the attacker, so he/she will not be able to invert its gradient.

3 The Blind Newton Sensitivity Attack (BNSA)

Focusing on watermark detection, we will describe the detector output through
the function fbinary : R

n → H, with H = {H0,H1}. Without loss of generality,
we can define the following functions

f : R
n → R

m and (4)

gbinary : R
m → H,

with m ≤ n, in such a way that fbinary = gbinary ◦ f , and f is parameterized
by the secret key θ. This decomposition will be shown to be useful in the next
sections, since some of the most popular watermarking techniques perform em-
bedding/detection in a projected domain so f can be seen as the projection
function. Furthermore, in the schemes studied in this paper the output of gbinary



will be based on the output of a real function g and a threshold η, in such a way
that

gbinary(x) =

{

H0, if g(x) ≤ η
H1, if g(x) > η

, (5)

with g : R
m → R.

On the other hand, a distorsion measure has to be defined in order to quantify
the impact of the attacking signal t on the watermarked signal y: 4

dy : R
n → R

+

t → dy(t).

This distortion measure could be based on perceptual criteria (depending on
the nature of the host signal), although very often, and due to simplicity, the
squared Euclidean norm of t is chosen (i.e., dy(t) = ||t||22).

Recalling that the attacker tries to find the vector t which yields a “no
watermark” decision (i.e., fbinary(y + t) = H0) while minimizing the distortion
measure dy(t), his/her target can be formalized as

arg min
t:g◦f(y+t)≤η

dy(t). (6)

Let us assume that dy(t) is a continuous and convex function of t (for a
given watermarked signal y), which achieves its absolute minimum value at t0

(the squared Euclidean norm obviously fulfills these conditions), a vector that
belongs the set of attacking vectors yielding H1 (which we will denote by B),5

i.e., t0 ∈ B , {t : g ◦ f(t + y) > η}. Then, replacing B in (6), and denoting
by ∂B its boundary and by Bc its complement, it is straightforward to show
thatarg mint∈Bc dy(t) ∈ ∂B, so (6) is tantamount to

arg min
t:g◦f(y+t)=η

dy(t). (7)

This is a typical Lagrange’s multipliers problem, so the attacker could find a
theoretical solution if both d and g ◦ f were known by him/her; nevertheless,
this is not the case, since the last one depends on the secret key, which is unknown
for the attacker. Actually, he/she will have only access to the binary output of
the decoder. In Appendix A we will show that this is equivalent to

arg min
s∈Rn

d⋆
y(hy(s)), (8)

4 Ideally this measure should quantify the differences between the original host signal
and its attacked version; nevertheless, the attacker will have to design his/her strat-
egy taking into account the watermarked signal, since he/she has not access to the
original one.

5 Be aware that in most cases it is reasonable to consider that t0 = 0, since in that
case the attacked signal will be the watermarked one, so the distortion is minimized;
furthermore t0 is in B, since g ◦ f(y) will yield H1.



where d⋆
y the restriction of dy to the boundary of B, and hy is a surjection

which maps R
n onto the boundary of the decision region.

Since theoretical solutions to (8) are not in general possible due to the lack of
knowledge of the boundary of the decision region, numerical iterative methods
should be applied (in general) by the attacker in order to find the solution.
Concretely, in this paper we will use an adaptation of Newton’s method [12],
where the considered vector in the (k + 1)-th iteration is computed as

sk+1 = sk − ξk ·
[

∇2(d⋆
y ◦ hy)(sk)

]−1

· ∇(d⋆
y ◦ hy)(sk), (9)

where ξk ∈ R
+ is the step-length, whose computation requires (in general) a

line search [12]: a small value of ξk will imply a slow convergence, but with a
large one convergence cannot be assured. When the boundary to be estimated
is known to be an hyperplane we can adopt ξk = 1.

It is straightforward to see that ∇(d⋆
y ◦ hy)(sk) and ∇2(d⋆

y ◦ hy)(sk) cannot
be obtained in an analytic way, therefore they must be numerically approximated
by taking into account that

∂(d⋆
y ◦ hy)

∂si
(s) =

(d⋆
y ◦ hy)(s + δei) − (d⋆

y ◦ hy)(s)

δ
+ O(δ), and

∂2(d⋆
y ◦ hy)

∂si∂sj
(s) =

(d⋆
y ◦ hy)(s + δei + δej) − (d⋆

y ◦ hy)(s + δei)

δ2

+
−(d⋆

y ◦ hy)(s + δej) + (d⋆
y ◦ hy)(s)

δ2
+ O(δ),

with ei the i-th vector of the canonical basis. Another choice, which is especially
suitable for large-scale problems, is based on replacing the Hessian by a diagonal
matrix keeping the diagonal elements; in that way, an iteration of the algorithm
just requires (2 · n + 1) evaluations of (d⋆

y ◦ hy)(s) and (9) is computed with
n scalar divisions (if the complete matrix were used, a linear system with n
equations and n variables should be solved).

On the other hand, hy(s) is usually based on scaling s by a factor α ∈ R,
such that α · s ∈ ∂B. The existence of such an α is based on the fact that for
most of the known detection functions 0 ∈ B and β · s ∈ Bc for large values of
β, so α can be found by a dicothomy algorithm. Be aware that this method is
based on the binary output of the detector, without any other knowledge about
the detection function; this is why the algorithm is said to be blind.

4 Application to real methods

In this section we will particularize the proposed algorithm to some of the most
popular watermarking methods, showing the practical usefulness of this new
attack and comparing the performance of the different methods. In order to



y

y + sk

y + sk+1

Fig. 1. Example of an iteration of the algorithm. Given a watermarked signal y and the
attacking vector in the k-th iteration sk, the last one is slightly modified to estimate
the gradient and Hessian of d⋆

y ◦hy(sk). Once the descent direction and the step-length
have been computed, sk+1 is obtained. It can be seen that y + αk+1sk+1 is closer to
the boundary than y + αksk.

make a fair comparison, the value of the probability of false alarm Pfa
6 will be

fixed to 10−4, n = 2048 and the document to watermark ratio to 16 dB (with
σ2

W = 1) in order to ensure a reasonable probability of missed detection for all
the studied methods.6

4.1 Spread Spectrum

Detection of standard Spread Spectrum methods is based on the correlation
between the received signal z and the watermark w. Therefore, the function f ,
defined in (4), projects z onto a one-dimensional domain (m = 1), i.e. f(z) =
zT ·w, and g in (5) will be the identity function (g(x) = x, for all x ∈ R), so the
detection is given by

zT · w

H1

>
≤
H0

η,

6 The probability of false alarm Pfa is defined as Pr{gbinary ◦ f(x + t) = H1}. On the
other hand, the probability of missed detection Pm is defined as Pr{gbinary ◦ f(x +
w + t) = H0}.
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Fig. 2. Examples of decision regions: (a) Decision regions obtained taking into account
a lc-norm when c = 0.5. (b) AND Region for QPD. (c) OR Region for QPD.

in such a way that the boundary of the decision region (∂B) will be a hyperplane
and just one iteration will be needed to estimate its orthogonal vector, i.e. the
projecting vector, which is a scaled version of the watermark itself. Nevertheless,
due to the approximation of the Hessian by a diagonal matrix, about 4 iterations
are needed to meet a tolerance of 10−6 in the squared norm of the optimal
attacking vector. As it was said in Section 3, the line search is not necessary in
this case and ξk can be fixed to 1.

Comparing the cost of this method with that proposed by El Choubassi and
Moulin [10], the latter requires the knowledge of only n points in the border to
estimate the watermark, whereas we need 8 · n points.

Another alternative for the detection function is that proposed by Cox et al.

in [13]; in that case, f quantifies the angle between the received signal z and the

watermark vector w, i.e. f(z) = zT ·w
||z||·||w|| , and g is again the identity function,

yielding a decision region B which is a n-dimensional cone.

4.2 Side-informed methods

In Section 2 the JANIS methods were introduced. In order to make a comparison
with the other existing methods, we have fixed the order of the detection function
to 4, so

f(z) =
1

n

n/4
∑

k=1

4
∏

j=1

zp[(k−1)·N+j] · ap[(k−1)·N+j].

Quantization-based methods have been shown to be useful for data hiding
applications; nevertheless, and despite of their success in that application, very
little has been said about their use in detection scenarios. To the best of our
knowledge, the first work addressing the problem from this point of view was
[14], where the Scalar Costa Scheme is adapted to authentication purposes by

embedding a fixed message, yielding the detection function g(z,θ) =
fY(z)

fX(z) .

Note that in this case the sensitivity attack is straightforward, since it can be
done componentwise.



On the other hand, in [15] the received signal z is quantized with a lattice
Λ and the decision is made upon the squared norm of the quantization error.
Formalizing it, we can write f(z) = ||z mod Λ||2, and g is the identity function
again. In this way, the acceptance region is the union of n-dimensional hyper-
spheres centered at the centroids of Λ. From the point of view of attacking such
a system, this decision region assures that the attacker can produce a signal
yielding H0 by adding any noise vector with a given variance, as far as that
noise vector is independent of the self noise. Therefore, a sensitivity attack is
not really necessary in this case.

Another approach to this problem is Quantized Projection based Detec-
tion (QPD) [16], where uniform scalar quantizers are used to quantify a m-
dimensional projected version of the received signal z and the detection function
depends on the quantization error, introducing two different strategies: the AND
and OR detection regions, which can be formalized as

fi(z) =

n
∑

j=1

aijzj , 1 ≤ i ≤ m,

gAND(f(z)) = max
1≤i≤m

|(fi(z) mod ∆) − ∆/2|, and

gOR(f(z)) = min
1≤i≤m

|(fi(z) mod ∆) − ∆/2|,

where ∆ is the quantization step, aij are the secret projection matrix coefficients
and m the dimensionality of the projected subspace. Obviously, the optimal at-
tacking strategy will depend on the chosen decision region. The convergence of
the algorithm introduced in Section 3 for finding the optimal attacking vector
will be very much slower for the OR region, since the cost function has its min-
imum value at a non-differentiable point. In fact, in such case we will follow
a different strategy in which we try to estimate the m projecting vectors to
compute the optimal attacking vector as the sum of them, which implies the
complete disclosure of the secret key.

4.3 Comparison

In Fig. 4.3 the power needed to achieve an unwatermarked signal is plotted
versus the number of iterations of BNSA; we can see that the power needed
at iteration 0 (just randomly generated vectors) is much larger for SS based
on an hyperplane, but converges to that of angle-based SS when the number
of iterations is increased. In the same way, the most robust method against the
BNSA among those plotted in the figure is JANIS, even when the power required
for producing an unwatermarked signal is reduced in 24 dB after 10 iterations.
For QPD-AND, as soon as one of the projecting vectors has been estimated,
the power needed to yield an unwatermarked signal is significantly smaller than
in the other studied cases. Finally, for QPD-OR, the power required after 10
iterations is only −38 dB.
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Fig. 3. Power needed to yield an unwatermarked signal (in dB) averaged over 100
watermarked Gaussian vectors as a function of the number of iterations (0 when there
is not attack), for different decision regions: SS based on a hyperplane, SS based on the
angle, JANIS and QPD for AND regions. Iteration 0 corresponds to random attacking
vectors (without applying the proposed algorithm).

5 Final remarks

Following are some guidelines on how to measure the robustness of watermarking
methods against BNSA, the design of practical watermarking methods which are
BNSA-resistant, and the application of BNSA to new scenarios:

– The power needed to push a watermarked signal out of the detection region
after the BNSA can be seen as a measure of the robustness of a watermarking
method against this attack: the larger the power needed, the more robust the
method is. In this sense, JANIS could be said to be the most robust among
the studied methods, whereas the QPD methods show quite poor perfor-
mance. Note, however, that this measure does not provide full information
on the behavior of a particular method; for instance, QPD methods, which
been shown here to be quite weak against BNSA, have a very good Receiver
Operating Characteristic (see [16] for a comparison with SS).

– As a countermeasure against BNSA, one could design detection functions
for which component-wise modifications produce bounded increments, since
for this kind of functions the task of finding vectors on the boundary of
the detection function is considerably complicated. Interestingly, the ML
detection function for Generalized Gaussian distributed hosts (which is a
lc-norm, see [17]), fulfills this requirement whenever the shape parameter c
is such that c < 1.

– Taking into account that it just needs the binary output of the detector, the
BNSA is also suitable for zero-knowledge protocols [18], where, at the end,



regardless of the domain where the detection function is computed, there is
a detection region which can be estimated by the proposed algorithm.

– As a final remark, the approach presented in this paper can be also used in
the case of data-hiding systems, since the decoding process is nothing but
a multiple hypothesis test. In this case, any change of the decoder output
should be interpreted as if it were done by a change in the detector output;
this is equivalent to have the following binary hypothesis: a) the decoded
message is changed; b) the decoded message is unaltered.

A Appendix

In this Appendix we will show that (7) is equivalent to

arg min
s∈Rn

d⋆
y(hy(s)), (10)

with d⋆
y(t) the restriction of dy(t) to those t ∈ ∂B, i.e.,

d⋆
y(t) : ∂B → R

+

t → dy(t),

and hy(s) is a surjection from R
n to ∂B, i.e.,7 hy(s) : R

nrightarrow∂B, such
that hy(Rn) = ∂B, verifying that hy(s) = s for all s ∈ ∂B; we will also assume
that hy(s) ∈ C2, i.e., its second derivative exists and is continuous, in a neigh-
borhood of s (this last point is related to the differentiability of g ◦f). Note that
hy(s) just maps the vector s to a point on ∂B; following this approach the con-
straint in (7) is straightforwardly verified and we no longer have to care about
it. In this way, if t∗1 is a solution to (7), it will verify g ◦f(y+t∗1) = η, so t∗1 ∈ ∂B
and we can define the set of vectors S1 , {s∗1 ∈ R

n : hy(s∗1) = t∗1}. Taking into
account that hy is a surjection there will be at least one such vector s∗1 ∈ S1, so
d⋆
y(hy(s∗1)) = dy(t∗1), and s∗1 is a solution to (10). On the other hand, if s∗2 is a

solution to (10), we can define t∗2 = hy(s∗2), which minimizes d⋆
y(t) over ∂B, so

t∗2 also minimizes dy(t) for all t ∈ ∂B, and is a solution to (7).
Therefore, a vector s is a solution to (10) if and only if hy(s) is a solution

to (7), in such a way that we can restrict our problem to look for a function hy
and an algorithm which finds a solution to (10).
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