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Abstract. Scaling attacks are well-known to be some of the most harm-
ful strategies against quantization-based watermarking methods, as they
desynchronize the decoder, completely ruining the performance of the
watermarking system with almost non perceptually altering the water-
marked signal. In this paper we propose a new family of quantization-
based methods, based on both Dither Modulation and Spread Trans-
form Dither Modulation, oriented to deal with those attacks, and which
presents another outstanding property: they produce perceptually shaped
watermarks.

1 Introduction

After that Chen and Wornell [1] showed that the capacity of an Additive White
Gaussian Noise could be achieved in a scenario where the state channel is known
by the encoder but not known by the decoder using quantization-based tech-
niques, this kind of techniques has been paid increasing interest by the data
hiding researcher community. Nevertheless, when non-additive channels are em-
ployed the performance of quantization-based techniques could be worse that
the classic spread-spectrum based methods. This is the case, for example, of the
scaling attacks, that have also the good property of producing a reduced per-
ceptual distortion, explaining why the interest on quantization-based methods
robust to scaling is awakening. Although some proposals are already available
in the literature [2, 3], some of them based on a non-linear transformation (e.g.,
A-law compansion) previous to the embedding [4], this is still an open topic that
we will study in this paper from an innovative approach: the watermark will
be embedded in the logarithmic domain using a quantization based system; the
cases where a projection is performed previously to the quantization, and where
the logarithmic transform of the host signal is not projected will be compared.

⋆ This work was partially funded by Xunta de Galicia under projects PGIDT04
TIC322013PR, PGIDT04 PXIC32202PM, and Competitive research units program
Ref. 150/2006; MEC project DIPSTICK, reference TEC2004-02551/TCM and Eu-
ropean Comission through the IST Programme under Contract IST-2002-507932
ECRYPT. ECRYPT disclaimer: The information in this paper is provided as is,
and no guarantee or warranty is given or implied that the information is fit for any
particular purpose. The user thereof uses the information at its sole risk and liability.



2

The followed notation, as well as the description of the proposed methods are
provided in Sect. 2. Those methods are analyzed from power and probability of
error perspectives in Sect. 3 and 4, respectively. The projection based versions of
these schemes are presented in Sect. 5, whereas in Sect. 6 we deal with their per-
ceptual properties, and some interesting links with multiplicative watermarking
are established. Finally, conclusions and future lines are given in Sect. 7.

2 Method description

2.1 Notation and Framework

In this section we introduce our proposed methods to solve the problems due to
the valumetric attack. In order to do so, we previously need to introduce some
notation. We will denote scalar random variables with capital letters (e.g., X)
and their outcomes with lowercase letters (e.g. x). The same notation criterion
applies to random vectors and their outcomes, denoted in this case by bold
letters (e.g. X, x). The ith component of a vector X is denoted as Xi. In this
way, the data hiding problem can be summarized as follows: the embedder wants
to transmit a symbol b, which we assume to be binary (b ∈ {0, 1}), to the decoder
by adding the watermark w to the original host vector x, both of them of length
L. Merely for analytical purposes, we will model these signals as realizations of
random vectors W, and X, respectively, being the components of the last one
i.i.d.. Let Q∆(·) be the base uniform scalar quantizer, with quantization step
∆, and D denote the dithering vector, D ∼ U [−∆/2, ∆/2)L. The power of the

original host signal will be denoted by Dh , 1
L

∑L
i=1 σ2

Xi
, where σ2

Xi
, Var{Xi},

whereas the power of the watermark is given by Dw , 1
L

∑L
i=1 E{W 2

i }. The
resulting watermarked signal can be written as y = x + w. On the other hand,
the decoder receives the signal z = y+n, where n is a noise vector, which can be
seen as realization of random i.i.d. vector N, with Dn , 1

L

∑L
i=1 E{N2

i }. Finally,
the decoder estimates the embedded symbol with a suitable decoding function.

In order to compare the power of the host signal and the watermark, we
use the Document to Watermark Ratio (DWR), defined as DWR = Dh/Dw;
similarly, the Document to Noise Ratio (DNR) is defined as DNR = Dh/Dn.

2.2 Proposed methods

The proposed techniques are based on the quantization of the original host signal
in the logarithmic domain. Firstly, we will address the logarithmic version of
Dither Modulation (DM) [1], whose embedding function is given by

log(|yi|) = Q∆

(

log(|xi|) −
bi∆

2
− di

)

+
bi∆

2
+ di.

A further step toward a scaling resistant scheme would be a differential water-
marking method in the logarithmic domain, where the embedding procedure can
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be described as

log(|yi|) = Q∆

(

log(|xi|) − log(|yi−1|) −
bi∆

2
− di

)

+ log(|yi−1|) +
bi∆

2
+ di,

being log(|y0|) an arbitrary number shared by embedder and decoder. In both
cases

yi = sign(xi) · elog(|yi|). (1)

3 Power Analysis

Given that the components of the involved vectors are assumed to be i.i.d., the
power of the watermark, both for the differential and non-differential methods,
is given by

Var{w} , σ2
W =

1

∆

∫ ∆/2

−∆/2

(

∞
∑

m=−∞

∫ em∆+∆/2+τ

em∆−∆/2+τ

(|x| − em∆+τ )2f|X|(|x|)dx

)

dτ.

If the host signal follows a zero-mean Gaussian distribution, then we can write

σ2
W =

1

∆

∫ ∆/2

−∆/2

2





∞
∑

m=−∞

∫ em∆+∆/2+τ

em∆−∆/2+τ

(x − em∆+τ )2
e
− x2

2σ2
X

√

2πσ2
X

dx



 dτ.

Defining x1 , log(x) − τ and x2 , τ − log(σX), we can write

σ2
W =

1

∆

∫ ∆/2−log(σX )

−∆/2−log(σX )

2 ·
[

∞
∑

m=−∞

∫ m∆+∆/2

m∆−∆/2

σ2
Xe2x2(ex1 − em∆)2

e−
e2(x1+x2)

2

√
2π

ex1+x2dx1

]

dx2.

Denoting by g(x2) the function inside the brackets in the last formula, it is clear
that σ2

W would be proportional to σ2
X

1 if g(x2) were a periodic function with
period ∆, for any given value of ∆. In fact,

g(x2 + ∆) =

∞
∑

m=−∞

∫ m∆+∆/2

m∆−∆/2

σ2
X(ex1+x2+∆ − em∆+x2+∆)2

e−
e2(x1+x2+∆)

2

√
2π

ex1+x2+∆dx1,

which making x3 = x1 + ∆, yields

∞
∑

m=−∞

∫ (m+1)∆+∆/2

(m+1)∆−∆/2

σ2
X(ex3+x2 − e(m+1)∆+x2)2

e−
e2(x3+x2)

2

√
2π

ex3+x2dx3,

showing the periodicity of g(x).

1 This would imply that the Document to Watermark Ratio (DWR) would be inde-
pendent of σ2

X , and therefore just a function of ∆.
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Fig. 1. Comparison of the exact DWR and the obtained approximation as a function
of ∆.

3.1 Computation of an approximation to the embedding distortion

for small values of the quantization step

Taking into account that the dither is independent of the host, and uniformly dis-
tributed in [−∆/2, ∆/2)L, log(|yi|)− log(|xi|) will be also uniformly distributed
in [−∆/2, ∆/2)L, regardless of the value of x. This implies that we can write
log(|y|) = log(|x|) + v, where v is uniform in [−∆/2, ∆/2)L, so |yj| = |xj |evj ,
with 1 ≤ j ≤ L. Therefore, the power of the watermark, both for the differential
and non-differential methods, is given by

σ2
W =

1

∆

∫ ∆/2

−∆/2

∫ ∞

−∞

[x(1 − ev)]2fX(x)dxdv. (2)

For small values of ∆, i.e. ∆ << 1, which is reasonable due to imperceptibility

constraints, we can approximate 1 − ev ≈ −v, so 1
∆

∫ ∆/2

−∆/2(1 − ev)2dv ≈ ∆2

12 ,

yielding σ2
W ≈ σ2

X
∆2

12 , for any distribution of the original host signal. The actual
values of the DWR can be compared with the previous approximation in Fig. 1,
showing the good behavior of the proposed approximation whenever ∆ << 1.

4 Probability of error

4.1 Non-differential scheme

Considering the periodic nature of the decision region in the logarithmic domain,
it is straightforward to show that the probability of decoding error when the
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minimum distance decoder is used is given by

Pe = Pr

{

| log(|Zi|) − Di − Q∆(log(|Zi|) − Di)| ≥
∆

4

}

= Pr{|[log(|Zi|) − Di] mod ∆| ≥ ∆/4} , (3)

where we have assumed, without loss of generality in the obtained results, that
b = 0. Noticing that log(|Yi|) = Di + m∆, with m ∈ Z, such probability of error
can be rewritten as

Pe = Pr

{

|[log(|Zi|) − log(|Yi|)] mod ∆| ≥ ∆/4

}

= Pr

{

∣

∣

∣

∣

log

(∣

∣

∣

∣

1 +
Ni

Yi

∣

∣

∣

∣

)

mod ∆

∣

∣

∣

∣

≥ ∆/4

}

.

Given that both N and Y are i.i.d., we will disregard the subindex, and write
log(|N/Y |) = log(|N |)− log(|Y |). If both the host signal and the noise are Gaus-

sian we have that flog(|X|)(x) = 2√
2πσ2

X

e
− e2x

2σ2
X ex, and similarly for flog(|N |)(n),

so taking into account that log(|Y |) = log(|X |) + V , where V follows a uniform
distribution on [−∆/2, ∆/2), the pdf of log(|N/Y |) = log(|N |) − log(|X |) − V
can be written as

flog(|N/Y |)(x) =
1

∆

∫ ∞

−∞

2
√

2πσ2
N

e
− e2(x−τ2)

2σ2
N ex−τ2

∫ ∆/2

−∆/2

2
√

2πσ2
X

e
− e2(−τ2−τ1)

2σ2
X e−τ2−τ1dτ1dτ2

=
2
[

arccot
(

e−∆/2+xσX

σN

)

− arccot
(

e∆/2+xσX

σN

)]

π∆
.

For large values of σX/σN , the ratio |N/Y | will take small values with high
probability, so in practical scenarios we can approximate | log(|1 + N/Y |)| ≈
|N/Y |, where we have used the fact that log(|1+x|) ≈ x, for |x| << 1. Therefore,

f| log(|1+N/Y |)|(x) ≈
2

»

arccot

„

e−∆/2xσX
σN

«

−arccot

„

e∆/2xσX
σN

«–

π∆x .
Assuming that ∆ << 1 and σX/σN >> 1, and considering that arccot(x) ≈

1/x when |x| >> 1, the last expression can be approximated for those values
relevant for the computation of the probability of error by f| log(|1+N/Y |)|(x) ≈

2σN

σXπx2 so we can write Pe ≈∑∞
m=1

2σN

(−3∆/4+m∆)σXπ − 2σN

(−∆/4+m∆)σXπ .

4.2 Differential Scheme

Following a reasoning similar to that described for the non-differential case, it is
straightforward to see that the probability of error is now

Pe = Pr

{

∣

∣

∣

∣

[

log

(∣

∣

∣

∣

1 +
Ni

Yi

∣

∣

∣

∣

)

− log

(∣

∣

∣

∣

1 +
Ni−1

Yi−1

∣

∣

∣

∣

)]

mod ∆

∣

∣

∣

∣

≥ ∆/4

}

.
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Fig. 2. (a) Empirical and theoretical decoding error probabilities as a function of σX ,
for both the differential and non-differential logarithmic versions of DM. σN = 1,
∆ = 0.5, and both X and N are Gaussian distributed. (b) Empirical and theoretical
decoding error probabilities as a function of σN , for both the differential and non-
differential logarithmic versions of DM. σX = 100, ∆ = 0.5, and both X and N are
Gaussian distributed.

In this case we will use the fact that the distribution of Y , and therefore the
distribution of N

Y , is asymptotically independent of ∆ for small values of ∆, so
we can approximate the distribution of log(|N/Y |) as

flog(|N/Y |)(x) ≈ flog(|N/X|)(x) =

∫ ∞

−∞

2
√

2πσ2
N

e
− e2τ

2σ2
N eτ 2

√

2πσ2
X

e
− e2(τ−x)

2σ2
X eτ−xdτ

=
2σXσNex

π (σ2
Xe2x + σ2

N )
,

and given that |N/Y | ≈ |N/X | << 1, we can write log(|1 + N/Y |) ≈ N/Y ≈
N/X , so f| log(|1+N/Y |)|(x) ≈ 2σXσN

π(σ2
Xx2+σ2

N)
, x ≥ 0. Be aware that for large values

of σX/σN the last formula can be approximated by 2σN

πσXx2 , which coincides
with the approximation to the pdf of | log(|1 + N/Y |)| obtained in Section 4.1.
Considering that N/Y will take positive and negative values with the same
probability it follows that

flog(|1+N/Y |)(x) ≈ σXσN

π (σ2
Xx2 + σ2

N )
, for all x ∈ R. (4)

From the last equation, it can be shown that the pdf of xdiff , log
(∣

∣

∣1 + Ni

Yi

∣

∣

∣

)

−

log
(∣

∣

∣1 + Ni−1

Yi−1

∣

∣

∣

)

can be approximated by fxdiff
(x) ≈ 2σ3

Xσ2
N x

π(4σ2
Xσ3

N x+σ4
XσN x3)

, which

assuming that σX >> σN , it can be approximated as fxdiff
(x) ≈ 2σN

πσXx2 , so the
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Fig. 3. Empirical and theoretical decoding error probabilities as a function of ∆, for
both the differential and non-differential logarithmic versions of DM. σX = 100, σN =
1, and both X and N are Gaussian distributed..

probability of decoding error can be written as

Pr {|xdiff mod ∆| ≥ ∆/4}

≈
∞
∑

m=−∞

2σN

(−3∆/4 + m∆)σXπ
− 2σN

(−∆/4 + m∆)σXπ

= 2

(

∞
∑

m=1

2σN

(−3∆/4 + m∆)σXπ
− 2σN

(−∆/4 + m∆)σXπ

)

.

This is nothing but twice the probability of decoding error obtained for the non-
differential scheme, implying that for a given value of ∆, and therefore a fixed
value of DWR, the WNR needed for achieving a certain probability of decoding
error is increased by 6 dB (compared with the non-differential one) when the
differential scheme is used. On the other hand, the differential scheme makes the
resulting scheme completely invulnerable to valumetric attacks using a constant
scaling factor, and even robust to attacks where that factor changes slowly. In
Figs. 2(a), 2(b) and 3, we can see the good fit of the empirical results with the
obtained approximations, especially for the specified asymptotic values.

5 Logarithmic STDM

A further step in the side-informed logarithmic data hiding techniques intro-
duced in this paper is the adaptation of classical projection and quantization
based techniques, e.g. Spread Transform Dither Modulation (STDM) [1]. These
techniques have been extensively studied in several works in the literature [5, 6],
analyzing their embedding distortion, robustness to additive attacks, to quanti-
zation and to valumetric attacks. This last attack was shown to be really harmful
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to STDM techniques [6], so it seems reasonable to think of of a logarithmic ver-
sion of STDM which could simultaneously deal with this problem and produce
perceptually shaped watermarks.

The embedding process for logarithmic STDM in a M -dimensional projected
domain using uniform scalar quantizers can be described for the non-differential
case as

xp , ST log(|x|),

ypi = Q∆

(

xpi −
bi∆

2
− di

)

+
bi∆

2
+ di, 1 ≤ i ≤ M,

log(|y|) = log(|x|) + S(ST S)−1(yp − xp),

where S is a L × M projection matrix, D is now uniformly distributed in
[−∆/2, ∆/2)M and (1) is still applied for computing the samples of the wa-
termarked signal in the original domain. Correspondingly, for the differential
case the projected watermarked signal in the logarithmic domain is computed as
ypi = Q∆

(

xpi − ypi−1 − bi∆
2 − di

)

+ypi−1 + bi∆
2 +di, where yp0 is again assigned

an arbitrary number shared by embedder and decoder.
For the sake of simplicity, through this section we will assume that S is a

scaled orthonormal matrix, so ST S = K1IM×M , K1 > 0, where IM×M denotes
the M -dimensional identity matrix. Additionally, we will require S to verify
∑M

i=1 s2
j,i = K2, K2 > 0, for all 1 ≤ j ≤ L, i.e., all its rows will have the same

Euclidean norm. These two assumptions imply that M · K1 = L · K2.

5.1 Power Analysis

Similarly to the logarithmic DM scheme, the subsequent power analysis is valid
for both the non-differential and differential logarithmic STDM schemes.

Defining V , S(STS)−1(Yp − Xp) = 1
K1

S(Yp − Xp), we can see that
(Yp − Xp) is independent of X due to the dither vector D being uniformly
distributed on [−∆/2, ∆/2)M ; therefore, the average power per dimension of V

can be computed as

1

L
E{||V||2} =

1

K1 · L
E{||(Yp − Xp)||2} =

M

K1 · L
∆2

12
. (5)

Based on the independence of X and V, on the fact that all the rows of S

have the same Euclidean norm, and on the value of the power per dimension of
V, we can recover (2) to write in this case

σ2
W =

∫ ∞

−∞

∫ ∞

−∞

[x(1 − ev)]2fX(x)fV (v)dxdv.

For ∆ << 1 it is reasonable to approximate 1 − ev ≈ −v, so whenever that
condition is verified (as it will be the case in most practical applications) we can
write

σ2
W ≈

[∫ ∞

−∞

v2fV (v)dv

] [∫ ∞

−∞

x2fX(x)dx

]

=
M

K1 · L
∆2σ2

X

12
,
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for any distribution of the original host signal.
In order to compare this result with previous ones in the literature, we can

refer to [1] and [5], where the classical STDM scheme is studied. In [1] the
projecting vector is assumed to be normalized in power (i.e., K1 = 1), so the

embedding distortion is given by σ2
W = ∆2M

12·L . On the other hand, in [5] M = 1
and K1 = L, yielding a watermark power σ2

w = 1
L2 ∆2 ·I(σX , ∆), where I(σX , ∆)

accounts for the non-uniformity of the host within the quantization cells, and
takes values in the interval [1/16, 1/12]. In the present case, we are assuming
that uniform dither is used, so I(σX , ∆) = 1

12 for all pairs (σX , ∆). These results
agree with (5); nevertheless, for logarithmic STDM, as it also happens for the
logarithmic DM, the embedding power is given by (5) multiplied by the power of
the original host signal, so the DWR is just a function of ∆ for any distribution
of the original host signal.

5.2 Probability of error

Non-differential scheme In this case, the probability of error of the minimum
distance decoder is similar to (3), taking the value

Pe = Pr {| (Zpi − Di) mod ∆| ≥ ∆/4} ,

with Zp = ST log(|Z|). Reasoning in the same way as in Sect. 4.1, one can see
that Ypi = Di + m∆, so the probability of error can be rewritten as

Pe = Pr

{

|(Zpi − Ypi) mod ∆| ≥ ∆/4

}

= Pr







∣

∣

∣

∣

∣

∣





L
∑

j=1

sj,i log

(∣

∣

∣

∣

1 +
Nj

Yj

∣

∣

∣

∣

)



 mod ∆

∣

∣

∣

∣

∣

∣

≥ ∆/4







.

In order to obtain analytical forms for the last formula, hereafter we will
consider the case where sj,i ∈ {−1, 0, +1}, for all 1 ≤ i ≤ M and 1 ≤ j ≤ L.

Under that assumption, the constraint stating that STS = K1IM×M on the
beginning of this section can be interpreted as all the columns of S having
K1 = LK2

M non-zero elements. Therefore, we can define

Ti ,

K1
∑

k=1

sji(k),i log

(∣

∣

∣

∣

1 +
Nji(k)

Yji(k]

∣

∣

∣

∣

)

, 1 ≤ i ≤ M,

with ji(k) the index of the k-th element of the i-th column which is non-zero. As
it was discussed in Sect. 4.2 for small values of ∆ and large values of σX , log(|1+

Nj/Yj|) goes asymptotically to Nj/Xj, so we have Ti ≈
∑K1

k=1 sji(k),i
Nji(k)

Xji(k)
, 1 ≤

i ≤ M . Therefore, for the Gaussian case the pdf of Ti is asymptotically the
convolution of K1 i.i.d. random variables, each of them with pdf

flog(|1+N/Y |)(x) ≈ σXσN

π (σ2
Xx2 + σ2

N )
, for all x ∈ R, (6)
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so we can write

fTi(x) ≈ K1σXσN

π (σ2
Xx2 + K2

1σ2
N )

. (7)

Given that the pdf (6) is just an approximation of the true pdf, the exactness of
(7) will decrease when K1 is increased, i.e. when the number of these approxi-
mated pdfs which are convoluted is increased. On the other hand, the larger σX ,
the smaller ∆, and the smaller σN , the more accurate (7) will be.

Finally, taking into account (7), the probability of decoding error is given by

Pe ≈
∞
∑

m=−∞

∫ −∆/4+m∆

−3∆/4+m∆

K1σXσN

π (σ2
Xx2 + K2

1σ2
N )

=

∞
∑

m=−∞

1

π

[

arctan

(

σX · (−∆/4 + m∆)

K1σN

)

− arctan

(

σX · (−3∆/4 + m∆)

K1σN

)]

..(8)

Be aware that in this case we have not disregarded the variance of the attacking
noise σ2

N , as it was done in the computation of fxdiff
(x) in Sect. 4.2, since in the

current case this variance is multiplied by the number of non-zero elements in
each column of S, i.e. K1.

In order to perform a fair comparison between the performance of the non-
differential version of STDM and the non-differential version of DM, we will
choose a value of ∆ for STDM yielding the same embedding power than that

obtained for DM, so ∆STDM =
√

L·K1

M ∆DM. On the other hand,

∞
∑

m=−∞

arctan (x(−1/4 + m)) − arctan (x(−3/4 + m)) ,

is a decreasing function of x, so introducing the value of ∆STDM in (8), one
can easily see that the probability of decoding error is minimized by minimizing
K1. But K1 is equal to LK2

M , so its minimum value for a given value of M is
L
M ; this corresponds to the case where only one element per row of S is non-
zero, coinciding the computed probability of error with that obtained for the
logarithmic DM, independently of M . Therefore, given that small values of M
imply a reduction in the achievable rate, and the probability of decoding error
of the system is not modified by this parameter, one would be interested in
having a large value of M ; in fact, it turns out that in the current framework,
and upon the aforementioned approximations, the optimal strategy of STDM
is that with M = L and K1 = K2 = 1, which is nothing but DM without
the projecting operation. Therefore, although DM could be seen as a particular
case of STDM, we will focus in the remainder of the paper on DM, as it is the
optimal choice according to the former performance analysis. Finally, we would
like to emphasize that we have just taken into account the probability of error in
order to compare DM and STDM, disregarding other criteria that could be also
valuable when designing a watermarking method, as it might be the security of
the resulting scheme.
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Differential scheme For the differential scheme the probability of decoding
error is given by

Pe = Pr
{

|
(

Zpi − Zpi−1 − Di

)

mod ∆| ≥ ∆/4
}

,

so from the fact that Di = Ypi − Ypi−1 + m∆, with m ∈ Z, one can write

Pe = Pr
{

|
(

Zpi − Ypi − Zpi−1 + Ypi−1

)

mod ∆| ≥ ∆/4
}

(9)

= Pr
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For the sake of simplicity we will constrain our analysis to the case where the
assumptions on S introduced for the non-differential case are verified, i.e. sj,i ∈
{−1, 0, +1}, for all 1 ≤ i ≤ M and 1 ≤ j ≤ L. Therefore, (9) is equivalent to
Pe = Pr {|Ti mod ∆| ≥ ∆/4}, where

Ti ,

K1
∑

k=1

sji(k),i log

(∣

∣

∣

∣

1 +
Nji(k)

Yji(k)

∣

∣

∣

∣

)

−
K1
∑

k=1

sji−1(k),i−1 log

(∣

∣

∣

∣

1 +
Nji−1(k)

Yji−1(k)

∣

∣

∣

∣

)

,

with 1 ≤ i ≤ M .
Furthermore, whenever ∆ takes small values and σX takes large ones, Ti

can be approximated as Ti ≈ ∑K1

k=1 sji(k),i
Nji(k)

Xji(k)
− sji−1(k),i−1

Nji−1(k)

Xji−1(k)
. If S is

pseudorandomly computed depending on a secret key (as it will happen in most
of practical applications in order to improve the security of the resulting scheme),
verifying the constraints previously introduced, and if L is large, and K1 is small,
then the probability of finding a pair (k1, k2) such that ji(k1) = ji−1(k2), with
1 ≤ k1, k2 ≤ K1, will be small, so Ti can be approximated as the sum of 2·K1 i.i.d.
random variables, each of them following the pdf given by (6). Therefore, the
pdf of Ti can be approximated as fTi(x) ≈ 2K1σXσN

π(σ2
Xx2+4K2

1σ2
N)

, being still valid the

considerations about its accuracy discussed for the non-differential case. From
the last equation the probability of decoding error can be approximated as

Pe ≈
∞
∑

m=−∞

∫ −∆/4+m∆

−3∆/4+m∆

2K1σXσN

π (σ2
Xx2 + 4K2

1σ2
N )

=

∞
∑

m=−∞

1

π

[

arctan

(

σX · (−∆/4 + m∆)

2K1σN

)

− arctan

(

σX · (−3∆/4 + m∆)

2K1σN

)]

.

Finally, Figs. 4 and 5 show the empirical probability of decoding error, as well
as their theoretical approximations, for both the non-differential and differential
cases, showing the accuracy of the proposed approximations, and the validity of
our analysis.

6 Perceptual Masking

Another interesting characteristic of the proposed methods is the perceptual
shape of the obtained watermark; the quantization step in the original domain
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Fig. 4. (a) Empirical and theoretical decoding error probabilities as a function of σX ,
for both the differential and non-differential logarithmic versions of STDM. σN = 1,
∆ = 5, and both X and N are Gaussian distributed. (b) Empirical and theoretical
decoding error probabilities as a function of σN , for both the differential and non-
differential logarithmic versions of STDM. σX = 100, ∆ = 5, and both X and N are
Gaussian distributed.

is increased with the magnitude of the host, introducing a larger watermark
amplitude when the host signal takes large values. This effect makes sense from
a perceptual point of view, since the human visual system performs the so-
called contrast masking, the reduction of the visibility of one image component
in presence of another. This phenomenon, which is reflected on the perceptual
distortion measure introduced by Watson in [7], constitutes the motivation for
multiplicative spread spectrum data hiding techniques, where it is desirable that

larger host features bear a larger watermark [8]; recent works on video water-
marking have also chosen multiplicative methods based on perceptual consider-
ations [9]. Furthermore, these techniques, where the embedding process is given
by yi = xi(1+ ηsi), with s the spreading sequence and η a distortion controlling
parameter, can be interpreted in logarithmic terms, as for |ηsi| << 1 we can
approximate 1 + ηsi ≈ eηsi , and yi ≈ xie

ηsi . Therefore, we can say that mul-
tiplicative spread spectrum is to additive spread spectrum watermarking, what
the logarithmic techniques presented here are to Dither Modulation. In that
sense, the introduced methods can be considered as the side-informed version of
the previous multiplicative spread spectrum techniques.

Returning to the perceptual justification of logarithmic (or multiplicative)
techniques, in this section we will use Watson’s perceptual measure to illustrate
with some experimental results the performance advantages, for a given embed-
ding perceptual distortion, of the proposed techniques when they are compared
with the classical scalar DM data hiding technique. In order to perform this com-
parison, we embedded the watermark in the AC coefficients of the 8 × 8 block



13

0 1 2 3 4 5 6 7 8 9 10
10

−2

10
−1

10
0

∆

P
e

Empirical No Diff.
Theoretical No Diff.
Empirical Diff.
Theoretical Diff.

Fig. 5. Empirical and theoretical decoding error probabilities as a function of ∆, for
both the differential and non-differential logarithmic versions of STDM. σX = 100,
σN = 1, and both X and N are Gaussian distributed.

DCT of real images, using a repetition rate of 1/100,2 where the attack is i.i.d.
Gaussian noise with variance yielding a DNR = 35 dB. In Fig. 6 and 7 we can
see the achieved probability of error as a function of the perceptual distortion
measure introduced by Watson [7] due to the embedding. As expected, the non-
differential strategy clearly outperforms the differential one, although the ratio
between the probability of error for both cases somewhat differs from the theo-
retical one, due to the fact that DCT coefficients do not really follow a Gaussian
distribution, as it was assumed throughout the previous sections. Nevertheless,
one can also verify the good performance of the proposed logarithmic schemes
compared with the classical DM; this improvement is based on the fact that
for a given perceptual embedding distortion, DM will need a fixed (and small)
quantization step, whereas the logarithmic schemes introduced in this paper can
be seen as using increasing quantization steps for large values of the host signal,
yielding a perceptually shaped watermark, and therefore allowing a larger Mean
Squared Error (MSE) distortion for a fixed perceptual distortion.

7 Conclusions and Further lines

In this paper we have analyzed the performance of a new family of data hiding
schemes based on the quantization of the host signal in the logarithmic domain.
Both non-differential and differential strategies have been considered. The intu-
itive idea that the last ones are more sensitive to additive noise attacks has been
quantified; nevertheless, one should also consider that the differential schemes
are invulnerable to valumetric attacks.
2 For the analysis of the probability of error for DM based on uniform scalar quantizers

with repetition coding, and additive noise, the reader is referred to [10].
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Fig. 6. Probability of error vs. Watson’s perceptual embedding distortion for DM and
the proposed differential and non-differential schemes, when the watermarked signal is
attacked with i.i.d. Gaussian noise. Watermark introduced in the DCT domain. DNR
= 35 dB. Repetition rate = 1/100. Image Baboon 256 × 256.

Furthermore, we have analyzed those techniques that perform a projection
before the quantization, as well as those techniques that do not consider that
projection, obtaining the interesting result that, under some reasonable assump-
tions on the projecting matrix, the performance of the latter is better than that
of the former.

The usefulness of the proposed techniques is also proved by some empirical
results that show the perceptual advantages of the logarithmic schemes. This
goodness is based on the fact that the logarithmic schemes proposed in this
paper are perceptually shaping the watermark, i.e. embedding a larger amplitude
watermark in those coefficients where the original host signal is larger, so they
take advantage of contrast masking.

Finally, as future research lines it would be interesting to study generalized
versions of the proposed schemes, including their distortion compensated, or
their lattice based versions. Another open question is the study of improved de-
coding strategies: it is straightforward to see that the decoding strategy followed
in this paper, i.e. minimum distance decoding, is not the optimal one, since even
if the attacking noise were Gaussian, it would not longer have that distribution
after applying the logarithmic transformation.

References

1. Chen, B., Wornell, G.W.: Quantization index modulation: A class of provably good
methods for digital watermarking and information embedding. IEEE Transactions
on Information Theory 47(4) (May 2001) 1423–1443



15

0 10 20 30 40 50 60 70 80 90
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

D
Watson

P
e

DM
Log. No−diff.
Log. Diff.

Fig. 7. Probability of error vs. Watson’s perceptual embedding distortion for DM and
the proposed differential and non-differential schemes, when the watermarked signal is
attacked with i.i.d. Gaussian noise. Watermark introduced in the DCT domain. DNR
= 35 dB. Repetition rate = 1/100. Image Man 1024 × 1024.

2. Abrardo, A., Barni, M.: Informed watermarking by means of orthogonal and quasi-
orthogonal dirty paper coding. IEEE Transactions on Signal Processing 53(2)
(February 2005) 824–833
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