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Abstract—Recently [1] proposed a dynamic spectrum leasing
(DSL) paradigm for dynamic spectrum access in cognitive radio
networks. In this paper, we formalize this concept by developing
a more general game theoretic framework for the dynamic
spectrum leasing and by carefully identifying requirements for
the coexistence of primary and secondary systems via spectrum
leasing. In contrast to hierarchical spectrum access, spectrum
owners in proposed dynamic spectrum leasing networks, denoted
as primary users, dynamically adjust the amount of secondary
interference they are willing to tolerate in response to the
demand from secondary transmitters. The secondary transmit-
ters in turn attempt to achieve maximum possible throughput,
or other suitably defined reward, opportunistically while not
violating the interference limit set by the primary users. The
new game-theoretic model, however, allows the secondary users
to encourage the spectrum owners to push the interference
cap upward based on demand. We have proposed a general
structure for utility functions of primary users and the secondary
users that allows the primary users to control the price and
demand for spectrum access based on their required Quality-of-
Service (QoS). We establish that with these utility functions the
DSL game has a unique Nash equilibrium to which the best-
response adaptation finally converges. Moreover, it is shown that
the proposed coexistence and best-response adaptations can be
achieved without having any significant interaction between the
two systems. In fact, it is shown that the only requirement is
that the primary system periodically broadcasts two parameter
values. We use several examples to illustrate the system behavior
at the equilibrium, and use the performance at the equilibrium
to identify suitable system design parameters.

Index Terms—Cognitive radios, DSL, dynamic spectrum ac-
cess, dynamic spectrum leasing, dynamic spectrum sharing, game
theory, power control.

I. INTRODUCTION

IN recent years, it has been observed that the scarcity

of radio spectrum is mainly due to the inefficiency of

traditional static spectrum allocation policies [2], [3]. This
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has prompted proposals for various dynamic spectrum access

(DSA) approaches, that can be grouped primarily into three

main classes: a) open-sharing, b) hierarchical-access, and c)

dynamic exclusive use [2], [4]. The open-sharing approach

advocates a model similar to the highly successful industrial,

science and medicine (ISM) bands. The hierarchical spectrum

access, on the other hand, attempts to improve the spectrum

utilization in current allocations. The hierarchical access in

which secondary users are allowed to opportunistically access

the spectrum on the basis of no-interference to the primary

(licensed) users, is arguably the method that has received the

most attention in recent literature. Various spectrum underlay

and overlay schemes have been proposed and investigated in

recent years to achieve such hierarchical DSA in cognitive

radio networks (see [5]–[10] and references therein). Cognitive

radios have been chosen as an enabling platform in realizing

such dynamic spectrum sharing due to their built-in cognition

that can be used to observe, learn from and adjust to the RF

interference environment [11]–[13].

In DSA, it is assumed that there is a primary system that

owns the spectrum rights. The existing literature in underlay

and overlay based secondary networks, however, impose the

burden of interference management mainly on the secondary

system. In particular, it is assumed that there is a maximum

interference level that the primary system is willing to tolerate,

and the secondary powers/activity are to be adjusted within

this constraint. In [1], on the other hand, we proposed a new

concept of dynamic spectrum leasing (DSL) as an approach

for better spectrum utilization. Spectrum leasing is one of the

solutions that has been suggested under the third option of

dynamic exclusive-use model in which the spectrum licensees

are granted the rights to sell or trade their spectrum to third

parties [2], [4]. As opposed to passive spectrum sharing by

the primary users as in hierarchical DSA, leasing means that

the primary users have an incentive (e.g. monetary rewards

as leasing payments) to allow secondary users to access their

licensed spectrum. However, until [1], spectrum leasing has

only been identified as a static, or off-line, sharing technique,

with the possible exception of [14]. On the other hand, in [1]

we proposed to achieve dynamic spectrum leasing by allowing

the primary users to dynamically adjust the extent to which

they are willing to lease their spectrum. Thus, the proposed

DSL approach is well-suited for spectrum underlay systems

in which both primary and secondary systems are expected to

coexist simultaneously. However, unlike in hierarchical-access
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systems considered in existing literature, the primary users

in a DSL network actively adapt the maximum secondary

interference they are willing to tolerate, named the interference

cap, according to the observed RF environment and their

required Quality-of-Service (QoS). At this point it is also

worth pointing out that the spectrum leasing considered in

[14] differs from our DSL approach in several ways. Most

importantly, it relies on cooperative communication involving

primary and secondary systems whereas the proposed DSL

scheme does not.

In this paper, we formalize our proposed DSL framework

for cognitive radios [1]. Specifically, we first present a signal

and system model for coexistence of primary and secondary

systems under the dynamic spectrum leasing. Next, we develop

a more general game theoretic formulation to model the

interactions among primary and secondary systems that better

captures the realities of such a dynamic spectrum leasing

network. We propose a general structure for a suitable class

of utility functions for both primary and secondary systems

that reflect the demand for spectrum access by the secondary

users, their payoffs in terms of a suitable performance measure

and the primary user QoS requirements. We establish the con-

ditions under which the proposed game-theoretic formulation

has a unique Nash equilibrium to which both primary and

secondary best-response adaptations would converge.

Naturally, any DSL system requires each system to know

a certain amount of information about the other system.

While in hierarchical-access systems it is usually assumed

that only the secondary system needs to be aware of the

primary operation, in a DSL network both systems will be

aware of each other. However, it may arguably be desirable to

minimize the awareness the primary system needs to have on

the secondary operation. In this paper, we show that indeed

successful dynamic spectrum leasing can be achieved still

relegating most of the interference management burden to the

secondary system and primary system having to periodically

broadcast only two parameter values: Its tolerable interference

cap and the total interference it is currently experiencing

from the secondary transmissions. These are quantities that

are readily available at the primary users (or can be easily

estimated). Thus, we believe that the proposed DSL framework

is indeed a viable solution for active spectrum sharing in

cognitive radio networks.

The rest of this paper is organized as follows: In Section

II we introduce a signal and system model for the proposed

dynamic spectrum leasing network. Next, in Section III we

develop a non-cooperative game for dynamic spectrum leasing.

In this section we propose a general class of utility functions

suitable for DSL and establish conditions under which the

spectrum leasing game will converge to a Nash equilibrium.

In Section IV we use several example DSL systems to illustrate

the performance characteristics of the proposed game-theoretic

dynamic spectrum leasing scheme. Specifically, we investigate

the primary and secondary system coexistence within each

other’s required performance QoS constraints and based on

that provide design guidelines for a DSL network. We also

investigate the robustness of the best-response adaptations to

time-varying channel fading conditions and the effect of this

on the system equilibrium. Finally, Section V concludes the

paper by summarizing our results and discussing possible

future work.

II. SYSTEM MODEL FOR DYNAMIC SPECTRUM LEASING

We assume that there is one primary wireless communica-

tion system that owns the license rights to the spectrum band

of interest. The users in this primary system, however, may

not be using its spectrum completely all the time, or may

be able to tolerate a certain amount of additional co-channel

interference without compromising required QoS constranits,

leading to an inefficient utilization of radio spectrum. For

simplicity of exposition, we focus on a particular channel

in the primary system that is allocated to a single primary

user (for example, as in FDMA). Thus there is only one

primary transmitter of interest, and there are K secondary

transmitters who are interested in accessing this spectrum band

of interest to the maximum possible extent. The primary user

is denoted as user 0, and the secondary users are labeled as

users 1 through K . There are one primary receiver and one

secondary receiver of interest1. The channel gain between the

k-th transmitter (either primary or secondary) and the common

secondary receiver is denoted by hsk, and that between the

k-th transmitter and the primary receiver is denoted by hpk,

for k = 0, 1, . . . ,K . Throughout the analysis in this paper

we assume fading to be quasi-static, so that the coefficients

stay fixed for a certain duration of time after which they

change to new set of values. It should be mentioned that

quasi-static fading model is frequently used in modeling many

wireless communications environments [16]. Our model can

also be complemented with a channel estimation and tracking

algorithm to cope with slowly time-varying situations and as

we will show later, the performance of the proposed DSL

scheme is fairly robust against such time-varying fading.

The primary user is assumed to adapt its interference cap

(IC), denoted by Q0, which is the maximum total interference

the primary user is willing to tolerate from secondary transmis-

sions at any given time. By adjusting this interference cap Q0,

the primary user can control the total transmit power the sec-

ondary users impose on its licensed channel. The motivation

for the primary user can be, for instance, the monetary reward

obtained by allowing secondary users to access its licensed

spectrum. In essence, then, the interference cap determines

how much secondary user activity the primary user is ready

to allow, and thus its reward should be an increasing function

of the interference cap. However, we impose the realistic

constraint that the primary user should always maintain a

target signal-to-interference-plus-noise ratio (SINR) to ensure

its required transmission QoS. Moreover, an unnecessarily

large interference cap by the primary user could hinder both

the secondary system and other primary transmitters’ (though,

for simplicity, not included in the current model) performance

due to resulting high interference.

The goal of secondary transmitters is to capitalize on the

allowed spectrum activity by the primary system by fully

1Generalization to more than one secondary receiver is straightforward, and
is reported in [15].
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utilizing the interference margin. Each secondary user may

be assumed to act in its own interest to maximize its own

utility. However, their transmission powers must be carefully

regulated in order to ensure low interference to the primary

user (within the IC) as well as to other secondary users. We

use pk to represent the transmission power of the k-th user,

for k = 0, 1, . . . ,K .

Throughout this work, we will assume that both primary and

secondary receivers are equipped with conventional matched-

filter receivers2. The signal received at the primary and sec-

ondary receivers can be respectively written as

rp(t) = A0b0s0(t) +

K
∑

k=1

ΘkAkbksk(t) + σpnp(t) (1)

rs(t) =

K
∑

k=1

Bkbksk(t) +B0b0s0(t) + σsns(t) (2)

where n·(t) are additive white Gaussian noise with unit

spectral height, σ2
· are the variance of the receiver noise, Ak

and Bk, for k = 0, 1, . . . ,K , represent the received signal

amplitude at the primary and secondary receiver respectively,

and are defined as Ak
.
= hpk

√
pk and Bk

.
= hsk

√
pk. Θk is

a Bernoulli random variable such that Prob (Θk = 1) = qk
and Prob (Θk = 0) = 1− qk, representing the randomness in

secondary-user collisions with the primary transmission. In an

overlay dynamic spectrum access system, the secondary users

are prohibited from transmitting whenever primary users are

using the spectrum. Thus, in an overlay system the secondary

interference will be present at the primary receiver only when

a secondary transmitter makes a mistake in its white-space

detection procedure. Hence, qk can be interpreted as the

false-alarm probability of the white space detector at the k-

th secondary transmitter in an overlay system. On the other

hand, in an underlay dynamic spectrum sharing system, the

secondary users are allowed to transmit always without regard

to the timings of the primary transmissions albeit at a low

power level. In this case, the secondary interference is always

present at the primary receiver. We can use the above model

to capture this situation simply by assuming that qk = 1
(or Θk = 1 with probability 1). Hence, the model (1)-(2) is

general enough to be applicable for both underlay and overlay

cognitive operations, although we envision for DSL to be more

meaningful in spectrum underlay systems.

Assuming M discrete-time projections r
(p)
m =

< rp(t), ψ
(p)
m (t) >, for m = 1, 2, . . . ,M , of the continuous-

time received signal rp(t) on to a set of M orthonormal

directions specified by ψ
(p)
1 (t), . . . , ψ

(p)
M (t),and letting

r(p) = (r
(p)
1 , . . . , r

(p)
M )T , we obtain the following discrete-

time representation of the received signal at the primary

receiver:

r(p) = A0b0s
(p)
0 +

K
∑

k=1

ΘkAkbks
(p)
k + σpn

(p)

2The signal model below is general enough to allow for the extensions to
more sophisticated multiuser receivers, and will be considered in a follow-up
paper.

where s
(p)
k = (s

(p)
k1 , . . . , s

(p)
kM ), for k = 0, 1, . . . ,K , is

the M -vector representation of sk(t) in the M -dimensional

basis employed by the primary system, where s
(p)
km =

< sk(t), ψ
(p)
m (t) >, and n(p) ∼ N (0, IM ). Analogously a

discrete-time representation of rs(t) with respect to an N -

dimensional orthonormal basis ψ
(s)
1 (t), . . . , ψ

(s)
N (t) used by

the secondary system can be written as

r(s) =

K
∑

k=1

Bkbks
(s)
k +B0b0s

(s)
0 + σsn

(s)

where r(s) = (r
(s)
1 , . . . , r

(s)
N )T , r

(s)
n = < rs(t), ψ

(s)
n (t) >, for

n = 1, 2, . . . , N , is the projection of the received signal at

the secondary receiver on to the the n-th orthonormal basis

function ψ
(s)
n (t), s

(s)
k =

(

s
(s)
k1 , . . . , s

(s)
kN

)

, for k = 0, 1, . . . ,K ,

is the N -vector representation of sk(t) with respect to the

N -dimensional basis employed by the secondary system with

s
(s)
kn =< sk(t), ψ

(s)
n (t) >, and n(s) ∼ N (0, IN).

With the conventional matched-filter (MF) detector at the

primary and secondary receivers, we have that decisions are

taken in base to the matched-filtered signals y
(p)
0 = (s

(p)
0 )T r(p)

and y
(s)
k = (s

(s)
k )T r(s) respectively. Note that

y
(p)
0 = A0b0 +

K
∑

k=1

Θkρ
(p)
0k Akbk + σpη

(p)

y
(s)
k = Bkbk +

K
∑

j=1,j 6=k

ρ
(s)
kj Bjbj + ρ

(s)
k0B0b0 + σsη

(s)
k

with ρ
(p)
0k = (s

(p)
0 )T s

(p)
k , ρ

(s)
kj = (s

(s)
k )T s

(s)
j , for j =

0, 1, . . . ,K . Note that the noise terms η(p) and η
(s)
k follow

a N (0, 1).
It is straightforward to observe that the total secondary in-

terference I0 from all secondary transmissions to the primary-

user is given by

I0 =

K
∑

k=1

Ã2
kpk (3)

where Ãk =
√
qkρ

(p)
0k hpk

is the effective channel coefficient

of the k-th secondary user as seen by the primary receiver.

Similarly, the total interference from all secondary users to the

k-th user signal, excluding the primary user, will be denoted

by

ik =

K
∑

j=1,j 6=k

(

ρ
(s)
kj

)2

h2
sjpj .

III. GAME MODEL FOR DYNAMIC SPECTRUM LEASING

A. Game model

In the proposed DSL-based cognitive radio network, the pri-

mary and secondary users interact with each other by adjusting

their interference cap and transmit power levels, respectively,

in order to maximize each others own utility. Hence, game

theory provides a natural framework to model and analyze

this system. In fact, we may formulate the above system as in

the following noncooperative game (K,Ak, uk(.)):



4

1) Players: K = {0, 1, 2, . . . ,K}, where we assume that

the 0-th user is the primary user and k = 1, 2, . . . ,K
represents the k-th secondary user.

2) Action space: P = A0 × A1 × · · · × AK , where

A0 = Q = [0, Q̄0] represents the primary user’s action

set and Ak = Pk = [0, P̄k], for k = 1, 2, . . . ,K ,

represents the k-th secondary user’s action set. Note

that Q̄0 and P̄k represent, respectively, the maximum

possible interference cap of the primary user and the

maximum transmission power of the k-th secondary user

(as determined by the system and regulatory consid-

erations). The lower limit of these actions sets being

zero indicate that at times, a secondary user may turn-

off its transmission or the primary user may not be

willing to tolerate any interference from the secondary

system at all. We denote the action vector of all users by

a = (Q0, p1, . . . , pK)T , where Q0 ∈ Q and pk ∈ Pk. It

is customary to denote the action vector excluding the

k-th user, for k = 0, 1, 2, . . . ,K , by a−k .

3) Utility function: We denote by u0 (Q0,a−0) the primary

user’s utility function, and by uk (pk,a−k), for k =
1, 2, . . . ,K , the k-th secondary user’s utility function.

At any given time, the primary user’s target SINR is defined

in terms of its assumed worst-case secondary interference:

γ̄0 =
h2

p0p0

Q0 + σ2
p

, (4)

Note that, since Q0 is the maximum possible interference

from secondary users the primary user is willing to tolerate,

γ̄0 represents the least acceptable transmission quality of the

primary user. On the other hand, the primary user’s actual

instantaneous SINR is given by

γ0 =
h2

p0p0
∑K

k=1 Ã
2
kpk + σ2

p

= γ̄0

(

1 +
Q0 − I0
I0 + σ2

p

)

. (5)

One of the main features of dynamic spectrum leasing

approach is to take into account the coupling of primary

system with the secondary-user system in terms of mutual

interference. However, the awareness of the primary system

to the secondary network must be kept low enough to avoid

an excesive overhead and complexity of the network.

The primary user is expected to obtain a reward from the

secondary network thus motivating the leasing of the owned

spectrum. Moreover, the reward function for the primary

system will be in general increasing with the demand seen

from the secondary network, as it ocurs in the trade market. On

the other hand, the reward is expected to grow with the allowed

interference, since the secondary system has more resources

in this case to exploit. With these points in mind, we introduce

the following utility function for the primary user:

u0 (Q0,a−0) =
(

Q̄0 − (Q0 − I0(a−0))
)

Q0 (6)

= u0 (Q0, I0) .

Note that (6) essentially assumes that the utility of the primary

user is proportional to both demand and its interference cap

Q0. The demand is taken to be increasing when the extra

interference margin Q0 − I0 decreases. This discourages the

primary user to swamp all other transmissions (both primary

and secondary), by setting too large an interference cap that

will lead to higher transmission power according to (4).

Additionally, the described reward function depends on just

the parameter I0 of the secondary system, which can be easily

estimated as we will see later in this section avoiding the

need of detailed channel state information from the secondary

network. We believe that this model for primary utility is

more sensible in a dynamic spectrum leasing cognitive radio

network compared to, for example, what was used in [1]. It is

also worth noting that this u0 is continuous in a and concave

in Q0.

At the secondary receiver, the received SINR of the k-th

secondary user, for k = 1, 2, . . . ,K , is given by

γk =
|hsk|2pk

ik + (ρ
(s)
k0 )2|hs0|2p0 + σ2

s

=
|hsk|2pk

ik + σ̃2
s

=
pk

Nk

where, as defined earlier ik is the total secondary interference,

σ̃2
s = (ρ

(s)
k0 )2|hs0|2p0 + σ2

s is the effective noise seen by the

k-th user and Nk = (ik + σ̃2
s)/|hsk|2.

The (selfish) objective of each secondary user is to maxi-

mize a given utility function (for example, throughput) that

depends on its own SINR without violating the primary

user interference cap. Observe from (5) that as long as the

secondary user interference I0 is below the interference cap

Q0 set by the primary user, the required QoS of the primary

user will be guaranteed. Therefore any utility function in a

reasonable communication system will be a monotonically

increasing function of the received SINR γk and it should

be a fast decaying function of I0 −Q0 when this difference is

positive. To ensure this the secondary utility function will be

formed by two terms: (i) a shelfish reward function depending

on the recived SINR and (ii) a penalization term depending

on I0 − Q0. Motivated by these arguments we propose the

following form for the secondary user utility function:

uk (pk,a−k) = (Q0 − λsI0)f(pk) (7)

= (Q0 − λsI0,−k − λsÃ
2
kpk)f(pk)

where f(.) is a suitable, non-negative reward function, λs

is a suitably chosen positive (pricing) coefficient, I0,−k =
∑K

j=1,j 6=k Ã
2
jpj is the total secondary interference to the

primary user excluding that from the k-th secondary user and

Ãk is, the effective channel coefficient of the k-th secondary

user at the primary receiver (see (3)). Note that the penalization

term has been chosen linear on I0 to allow simpler analytical

derivations. However, the global system behavior is similar for

other step like penalization functions. In (7) the coefficient

λs esentially controls how strictly secondary users need to

adhere to the primary user’s interference cap, and allows the

system designer to dimensionate the network for the maximum

expected number of secondary users as we will see in the

simulation section.
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The proposed utility function (7) leaves the performance

metrics of the secondary system to be arbitrary by allowing

for any reasonable reward function f(.) that will satisfy the

conditions to be set forth in the next section. Without loss

of generality, we may assume that the reward function f (pk)
satisfies f(0) = 0 and f ′(0) > 0, since when the received

SINR of a user vanishes no useful communication is possible

for that user.

B. Existence of a Nash equilibrium in the DSL game

In the following we investigate equilibrium strategies on

the proposed DSL game G = (K,Ak, uk), where users are

interested in maximizing the following utility functions:

primary-user utility: u0(Q0,a−0)

secondary-user utility: uk(pk,a−k) for k = 1, 2, . . . ,K.

The most commonly used equilibrium concept in non-

cooperative game theory is the Nash equilibrium:

Definition 1: A strategy vector a = (a0, a1, . . . , ak) is

a Nash equilibrium of the primary-secondary user dynamic

spectrum leasing game G = (K,Ak, uk) if, for every k ∈ K,

uk (ak,a−k) ≥ uk (a′k,a−k) for all a′k ∈ Ak.

In essence, at a Nash equilibrium no user has an incentive

to unilaterally change its own strategy when all other users

keep their strategies fixed. Hence, the Nash equilibrium can

be viewed as a stable outcome where a game might end up

when non-cooperative users adjust their strategies according to

their self-interests. In fact, the best response correspondence

of a user gives the best reaction strategy a rational user would

choose in order to maximize its own utility, in response to the

actions chosen by other users:

Definition 2: The user k’s best response rk : A−k −→ Ak

is the set

rk (a−k) = {ak ∈ Ak : uk (ak,a−k) ≥ uk (a′k,a−k)

for all a′k ∈ Ak}
Note that the primary user action set is of the form of

A0 = Q = [0, Q̄0], where Q̄0 is the maximum interfer-

ence cap that is determined by the required minimum QoS

and the maximum possible transmit power of primary user.

Clearly A0 is both compact and convex. Similarly, for all

k = 1, . . . ,K , the secondary user strategy sets are of the

form of Ak = Pk = [0, P̄k]. Again, it is easy to observe that

all secondary user action sets are convex and compact (being

closed and bounded real intervals). Further, both u0(a) and

uk(a) are continuous in the action vector a, and u0 is concave

in Q0. For the existence of a Nash equilibrium, the only other

condition that we need to ensure is the quasi-concavity of uk’s

in pk for pk ≥ 0, for k = 1, 2, . . . ,K .

Let us define

φk (γk) =
I0,−k

Q0
+
Ã2

kNk

Q0

(

γk +
g(γk)

g′(γk)

)

,

where g(γk) = f(Nkγk) is the reward function with respect

to SINR. Then, it can be seen that uk has a local maximum

that is indeed a global maximum if φk(γk) = 1
λs

has only one

solution for pk ∈ Pk. Clearly, φk(γk) = 1
λs

has a solution if

φk(0) ≤ 1
λs
< limγk→∞ φk(γk), and, moreover, this solution

is indeed a global maximum if in addition φ′k(γk) > 0 for

γk > 0. It can be easily verified that φ′k(γk) > 0 will be

true if the reward function is such that
g(γk)g′′(γk)

(g′(γk))2 < 2 for

all γk > 0. Note that, this is trivially true for any reward

function that is concave in γk since in that case g′′ ≤ 0.

Note also that φk(0) =
I0,−k

Q0
and limγk→∞ φk(γk) = ∞

if limγk→∞
g(γk)
g′(γk) > −∞. Hence, if reward function f (or,

equivalently, g) and the coefficient λs satisfy the following

conditions, uk indeed has a local maximum that is a global

maximum:

1. g(0) = 0, g′(0) > 0 and limγk→∞
g(γk)
g′(γk) > −∞

2.
g(γk)g′′(γk)

(g′(γk))2 < 2 for all γk > 0

3. 0 < λs ≤ Q0

I0,−k

Theorem 1: With Ak’s and uk’s as defined above the

dynamic spectrum leasing game has a Nash equilibrium if

conditions 1-3 are satisfied.

Proof: From the well-known result due to Debreu, Glicks-

berg and Fan [17], a Nash equilibrium exists in game G =
(K,Ak, uk), if, for all k = 0, 1, . . . ,K , Ak is a non-empty,

convex and compact subset of some Euclidean space R
N ,

uk (p) is continuous in p and quasi-concave in pk. Thus

from the above discussion it follows that the above primary-

secondary user dynamic spectrum leasing game G will have

at least one Nash equilibrium.

Clearly, the above DSL game model is general enough

to allow for various secondary reward functions g that may

satisfy above conditions. In general, choosing the most suitable

secondary user performance metric and the associated reward

function in a cognitive radio network can itself be a non-

trivial task [18]. While we do not delve into this issue here,

for illustrative purposes, in the remainder of this paper we

consider the following two specific reward functions:

g
(1)
k (γk) = Wk log(1 + γk) and

g
(2)
k (γk) = Rk

CBSC (Pe(γk))

pk

,

where Wk and Rk are the bandwidth and data rate of user

k, respectively, Pe(γk) is the probability of bit error with

received SINR of γk and CBSC(Pe) is the capacity of a binary

symmetric channel with cross-over probability Pe which can

be written in terms of the binary entropy function H(Pe) =
−Pe log2 Pe−(1−Pe) log2(1−Pe) as CBSC(Pe) = 1−H(Pe).
Both these reward functions can be justified in a wide variety

of contexts. For example, g(1) is a measure of user k’s capacity

in the presence of all other users, and g(2) is a measure

of its throughput per unit power. The reward function g(1)

can be justified in a dynamic spectrum leasing application in

which the secondary users are mainly concerned with getting

access to the spectrum and their power consumption is not

a major concern. On the other hand, g(2) is suitable when

secondary users are interested in achieving best throughput per

unit energy spent. Note that the function g(2) proposed here

is arguably better than a similar utility function proposed in

[19] and often used by many thereafter. For example, the utility

function defined in [19] is based on an efficiency function that
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was defined in an ad-hoc way in order to avoid a degenerate

behavior as the user transmit power vanishes. However, the

proposed reward function g(2) avoids this degeneracy and has

the natural meaning of throughput per unit energy as was

intended in [19]. Indeed it can be shown that

g
(2)
k (0) = lim

γk→0
g
(2)
k (γk)

= − lim
γk→0

P ′
e(γk)H ′(Pe)

Nk

= 0,

since H ′(Pe) = log2
1−Pe

Pe
, Pe(0) = 1

2 and P ′
e(0) < ∞

for any practical communications receiver. For concreteness,

throughout the remainder of this paper, we will assume that

Pe(γk) = 1
2 exp(−γk) (i.e. BPSK modulation with a matched-

filter receiver).

C. Best response adaptations and implementation issues

Primary user. Since the best response by a player in a

game is a strategy that maximizes its own utility given all

other players actions, the best response of the primary user in

the above DSL game is obtained by setting u′0(Q0) = 0. The

unique interior solution is given by

Q∗
0(I0) =

Q̄0 + I0
2

Note that, since u0(Q0) is monotonic increasing for Q0 <
Q∗

0, if the maximum interference cap is such that Q̄0 < Q∗
0,

the best response of the primary user would be to set the

interference cap to Q0 = Q̄0. Hence, the primary user’s best

response is given by

r0 (a−0) = r0 (I0) = min
{

Q̄0, Q
∗
0(I0)

}

.

We observe that in order to determine its best response for a

chosen power vector a−0 by the secondary users, the only

quantity that the primary user needs to know is the total

secondary interference at the primary receiver denoted by

I0 given in (3). This parameter can indeed be estimated at

the primary receiver by using any standard SNR estimation

algorithm, either data aided if the primary is able to decode

its own signal or non-data aided in other case.

Secondary users. On the other hand, the best response of

the k-th secondary user to the transmit powers of the other

secondary users as well as interference cap set by the primary

user is given by the (unique) solution pk = p∗k(Q0, I0,−k, ik)
to the equation

φk (γk) − 1

λs

= 0.

Since uk is quasi-concave in pk, if p∗k(Q0, Ip,−k) > P̄k where

P̄k is the k-th user’s maximum possible transmit power, its

best response is to set its transmit power to pk = P̄k. Hence,

we have the best response of k-th secondary user, for k =
1, 2, . . . ,K:

rk (a−k) = min
{

P̄k, p
∗
k(Q0, I0,−k, ik)

}

.

Observe that, in general, the best response of the k-th

secondary user is a function of the primary interference cap

Q0, the residual interference I0,−k from all other secondary

users to the primary user, and the total interference from all

secondary and primary users to the k-th user’s received signal

at the secondary receiver ik. Like in the primary case, the

secondary system can estimate ik withoput much difficulty

using standard SNR estimation algorithms. To obtain the

knowledge ofQ0 and I0,−k we assume that the primary system

periodically broadcasts Q0 and I0. Note that this is the only

interaction that the primary system will need to have with

the secondary system. Since these two quantities are readily

available to the primary system, we believe that the periodic

broadcast of these quantities, informing the secondary system

what it needs to know in order to avoid severe conflicts with

primary transmissions, is a reasonable expectation for a future

cognitive radio system that expects to harvest spectrum leasing

gains. Observe that knowing I0, each secondary user can

compute the residual interference I0,−k = I0 − Ã2
kpk if it can

estimate the channel state information Ãk. This quantity may

be estimated if the reverse link signals are available in the same

band. Otherwise the secondary receiver does not necessarily

need the CSI of its link with the primary receiver, as we will

demonstrate in our simulation results, since the approximation

I0,−k ≈ I0 performs well in practice, especially when the

number of secondary users K is sufficiently large.

In the above discussion, we have assumed the quasi-static

fading in which fading realizations stay fixed for a period of

duration and then change to new values. This facilitated the

Nash equilibrium analysis without having to deal with time-

varying channel coefficients. While quasi-static assumption

may be justified in certain channel environments, sometimes

it is likely that the channel coefficients may slowly vary in

time. It is easy to see that for the best-response adaptations

to converge to a Nash equilibrium, the rate of adaptations

need to be faster than the time-variations of the channel. One

may expect that in the presence of channel variations, the

convergence may be slowed, or even not occur. However, as we

will demonstrate in the next section, the proposed DSL-game

has the desired property of being tolerant towards slow time-

variations of the channel state. Moreover, the Nash equilibrium

of the proposed DSL-game is robust against small channel

estimation errors. This is also a desired property since in

practice the channel coefficients need to be estimated, and

these estimations are almost always not perfect.

IV. PERFORMANCE ANALYSIS OF A DYNAMIC SPECTRUM

LEASING SYSTEM

In the following we consider a dynamic spectrum leasing

cognitive radio system that employs the proposed game-

theoretic framework for their interactions. Our goal is to

investigate the behavior of the primary and secondary systems

at the equilibrium. It is to be noted that the Nash equilibrium

can reasonably be expected to be the natural outcome of the

system when it reaches steady-state. Thus, the performance of

the system is to be considered as its performance at the Nash

equilibrium.

To illustrate the characteristics of the Nash equilibrium in

this primary-secondary user dynamic spectrum leasing game,

we first consider a simplified scenario with identical secondary
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Fig. 1. Primary user utility u0 for a fixed secondary interference I0 in a
single-user secondary system.

users. This scenario allows to analytically determine the Nash

equilibrium state and its general behavior. We analyze next a

more general scenario with non-identical secondary users and

fading channels by means of simulations.

A. Stationary system with identical secondary users

When all secondary user’s have the same cross-correlation

coefficients it is posible to characterize the best response

correspondences of primary and secondary users to graphically

visualize the Nash equilibrium. If ρ
(p)
0k = ρ

(p)
0 , ρ

(s)
k0 = ρ

(s)
0 ,

ρ
(s)
kj = ρ(s), for all k, j = 1, 2, . . . ,K , same collision

probabilities qk = q, for all k and all channels are additive

white Gaussian noise (AWGN): hsk = hpk = 1 for all

k = 0, 1, . . . ,K . Then Ãk = Ã for all k. By symmetry, in this

case all secondary users must have the same power pk = p∗ at

the Nash equilibrium (equivalently, the same SINR γk = γ∗).

Thus the Nash equilibrium is characterized by the intersection

(Q∗
0, p

∗) of the following two curves:

Q0 = r0(p) =
Q̄0 +KÃ2p

2
(8)

p = rs (Q0) (9)

= (solution to equation ψQ0
(p) = 0)

where

ψQ0
(p) = Kp+

f(p)

f ′(p)
− Q0

λsÃ2
. (10)

Combining (8) and (9), the Nash power p∗ of the secondary

users is given by the solution to the equation

K

(

1 − 1

2λs

)

p+
f(p)

f ′(p)
− Q̄0

2Ã2λs

= 0 (11)

Figure 1 shows the primary utility function for fixed sec-

ondary network actions in a single secondary user system,

that is K = 1, assuming that Q̄ = Qmax = 10, P̄1 = 12,

W1 = 1, q1 = 1, ρ
(p)
01 = ρ

(s)
10 = 1, λs = 1, γ̄0 = 1, q1 = 1,

hp1 = 1 = hp0 = hs0 = hs1 = 1 and σ2
s = σ2

p = 1.
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Fig. 2. Secondary utility and the best response functions in a single secondary
user dynamic spectrum leasing network with f(γ) = f(1)(γ) = log(1+ γ).
(a) Secondary user utility uk for a fixed primary interference cap Q0. (b)
Primary and secondary user best-response functions in a single secondary-
user dynamic spectrum leasing system when f(γ) = f(1)(γ) = log(1 + γ)
and λs = 1.
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Fig. 3. Secondary utility and the best response functions in a single
secondary user dynamic spectrum leasing network when f(p1) = f(2)(p1) =
R1

p!
CBSC (Pe(γ1)) and λs = 1. (a) Secondary user utility for a fixed

primary interference cap (b) Corresponding best-response functions.

On the other hand, for the setup described, secondary utility

and best response depends on the considered reward function

g(γ). First Figs. 2(a) and 2(b) assume the secondary reward

function g(γ) = g(1)(γ) = log(1 + γ). In Fig. 2(a) we can

see the concavity of the secondary utility function for fixed

primary response, and thus the existence of a best response.

The primary and secondary best response curves Q0 = r0(p1)
and p1 = r1(Q0) for the setup described are presented

in Fig. 2(b). Of course, the intersection of these two best

response curves specifies the Nash equilibrium for this system:

(Q∗, p∗1) = (6.505, 3.010).

Similarly, Figs. 3(a) and 3(b) show the secondary user utility

for a fixed primary interference cap and the best response

functions, respectively, when the secondary utility function is

chosen to be g(γ) = g(2)(γ) = RCBSC(Pe(γ))
p

with R1 = 1 and

all other parameters being the same as in the previous figures.

From 3(a) we observe that the secondary utility function is

still concave in secondary power. The best response curves in

Fig. 3(b) are characterized by (9) and (8) where, now, g(γ) =
g(2)(γ). Figure 3b shows that the Nash equilibrium in this

system is (Q∗, p∗1) = (6.325, 2.650). Note that this NE shows

that due to the penalty for increasing transmit power in the

secondary system, the secondary user now settles for a slightly

lower transmit power level compared to the earlier situation

in which it was not concerned with power expenditure. As a

result, the primary user is also better off by slightly lowering

its interference cap so that it keeps the demand high.
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Fig. 4. System performance of the DSL game at the Nash equilibrium, with both exact CSI and using the approximation I0,−k ≈ I0, as a function of

secondary system size K , assuming identical secondary users, when f(p) = f(1)(p). (a) Game outcome. (b) Primary user utility. (c) Sum-rate and the
per-user rate achieved by the secondary system at the Nash equilibrium.

It is of interest to investigate the equilibrium behavior

of this dynamic spectrum leasing system as a function of

the secondary system size K . In Fig. 4(a) we show the

allowed interference cap Q0 and the actual secondary inter-

ference I0 at the system equilibrium for a system such that

f(p) = f (1)(p) = log(1 + p
N(p) ) where N(p) = Nk =

(K − 1)p+ ρsp(Q0 + σ2
p) + σ2

s , Q̄ = 10, P̄k = 10, Wk = 1,

Rk = 1, γ̄0 = 1, qk = 1, ρ
(p)
0k = ρ

(s)
kj = 1, hpk = hsk = 1

for all k, and σ2
s = σ2

p = 1. From Fig. 4(a) we can observe

how the total interference I0 increases with increasing K , and

how, in turn, the primary user also increases its interference

cap to maximize its utility. It is also of interest to note that the

safety margin Q0 − I0 is large for smaller number of users,

and seems to monotonically decrease with increasing K . This,

we believe, is essentially due to the fact that the number of

degrees of freedom in a multiuser system is being proportional

to the number of users. When the number of secondary users

K is large, the interference generated by the secondary system

I0 is close to the interference cap Q0, yet, as desired, is always

below it. Figure 4(a) shows the game outcomes when exact

channel state information for the primary system is available

at each secondary user (via estimation) so the exact I0,−k is

used in its best response adaption, as well as when this channel

state information to the primary is not available, so that the

secondary user employs the approximation I0,−k ≈ I0. As

we may observe from Fig. 4(a), the system that does not rely

on the knowledge of channel state information demonstrates

the same performance trends at the equilibrium. In particular,

still the DSL game converges to a Nash equilibrium that does

not violate the primary interference cap. It seems that the

only effect of not having the exact I0,−k is that the safety

margin Q0 − I0 at the equilibrium is slightly larger. This is

essentially due to the fact that each secondary user believes an

exaggerated residual interference I0,−k making it to decrease

its power.

Figures 4(b) and 4(c) show the primary and secondary

utilities at the Nash equilibrium of the system considered in

Fig. 4(a) as a function of the secondary system size. Again

we have shown the utilities achieved when exact channel

state information for the primary system is available at each

secondary user (via estimation) so the exact I0,−k is used

in its best response adaptation, as well as when this channel

state information to the primary is not available, so that the

secondary user employs the approximation I0,−k ≈ I0. In

particular, as seen by Fig. 4(b) the primary utility u∗0 at

the Nash equilibrium typically increases with the number of

secondary users K . However, the rate of increase decreases

with increasing K . Thus, from a design point of view we

may argue that the primary user might prefer the system to

operate at a point where its rate of utility increase is above a

certain threshold value. However, the primary system cannot

impose this explicitly on the secondary system and indeed it

is not a requirement. The only requirement is that I0 ≤ Q0.

However, as we see next from Fig. 4(c) the secondary system

has the incentive to keep K not too high. It is also observed

from Fig. 4(b) that the equilibrium utility of the primary

user is decreased when exact channel state information is not

available at the secondary users.

Fig. 4(c) shows both the sum-rate
∑K

k=1 fk(p∗k) as well

as the the per-user rate 1
K

∑K
k=1 fk(p∗k) achieved by the

secondary system, with and without exact channel state in-

formation. As was the case with primary utility, the secondary

utilities are also reduced slightly in the absence of channel

state information. However, as we observe from Fig. 4(c),

this performance degradation seems to be small when the

secondary system size is sufficiently large. Note that, from

a system point of view the secondary system would prefer to

maximize the sum-rate. As we see from Fig. 4(c), the sum-

rate monotonically increases with K both with and without

CSI. Thus, at a first glance, allowing more secondary users

to operate simultaneously seems to be the preferred solution.

However, Fig. 4(c) also shows that the per-user rate is mono-

tonically decreasing in K , leading to decreasing incremental

gains in sum-rate as additional secondary users are added

to the system. Depending on the application and the QoS

requirement of the secondary system, each secondary user will

have a minimum required rate (in bits per transmission) below

which the transmissions would be useless. Thus we note that

this QoS requirement will determine the maximum number

of secondary users K the secondary system would want to

support at any given time. For example, if the minimum per-

user rate required is 0.1 bps, the optimal K would be K∗ = 4,
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Fig. 5. System performance of the DSL game at the Nash equilibrium, with both exact CSI and using the approximation I0,−k ≈ I0, as a function of

secondary system size K in the presence of Rayleigh distributed quasi-static channel fading when f(p) = f(1)(p) and λs = 1. (a) Game outcome. (b)
Primary user utility. (c) Sum-rate and the per-user rate achieved by the secondary system at the Nash equilibrium.
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assuming exact CSI. If, on the other hand, the rate threshold

was reduced to 0.025 bps, the secondary system may allow

up to K = 18 secondary users to simultaneously operate.

B. DSL network under quasi-static fading channels

In the presence of wireless channel fading, the Nash equi-

librium power profile of the dynamic spectrum leasing system

will depend on the observed channel state realization. In

particular, it is expected that in this case the Nash equilibrium

transmit powers of individual secondary users will be different

for each user. In Fig. 5(a) we have shown the game outcome

at the Nash equilibrium in the presence of channel fading as

a function of number of secondary users K , both with and

without CSI (when there is no channel state information, again,

we use the approximation I0,−k ≈ I0). Note that Fig. 5(a)

assumes f(pk) = f (1)(pk) with Q̄ = 10, P̄k = 10, Wk = 1,

Rk = 1, γ̄0 = 1, qk = 1, ρ
(p)
0k = ρ

(s)
kj = 1, and σ2

s = σ2
p = 1 as

before. Figures 5(b) and 5(c) show the corresponding primary

and secondary user utilities achieved at the Nash equilibrium

in the presence of channel fading. In obtaining Fig. 5 we

have assumed all channel gains in the system to be Rayleigh

distributed with all channel coefficients normalized so that

E{h2} = 1. This essentially allows us to consider, without

any loss in generality, the transmit powers pk to be equal to

the average received power (averaged over fading). Note that,

due to interference averaging in the presence of fading, in this

case the secondary system is able to achieve better sum- and

per-user rates compared to those with non-fading channels.

Note that, when the reward function f = f (1), the re-

ward for a secondary user is the capacity (in bps) it can

achieve assuming all other transmissions (both primary and

secondary) are purely noise. In the presence of channel fading,

this capacity is a random quantity determined by the fading

coefficients of all users. As we saw earlier with identical

users, the per-user reward is typically a decreasing function

of the increasing secondary system size. The interpretation

is simple: Essentially, all secondary users in the system must

share the allowed interference level set by the primary system.

As we mentioned earlier, a secondary user may require a

minimum capacity to ensure at least an acceptable QoS for

its applications. In Fig. 6 we show the maximum secondary

system size (i.e. K) in the presence of fading for different

quality of service requirements in the secondary system as a

function of the (weighting) coefficient λs. Note that in Fig.

6 we have set Wk = W = 1 so that the secondary reward

with f = f (1) has the meaning of spectral efficiency in bits-

per-second-per-Hertz (or the normalized capacity). All other

parameter values are the same as that assumed in Fig. 5. The

minimum transmission quality for the secondary system is

defined as the average (over fading) minimum reward achieved

by a user at the equilibrium. We denote this minimum required

QoS for user k as fmin,k and in all simulation results below

assume that fmin,k = fmin for all secondary users.

As one would expect, as the minimum QoS requirement

fmin increases, the number of secondary users who can

simultaneously transmit decreases. In addition, the maximum

secondary system size also decreases, albeit slowly, as the

pricing coefficient λs increases. As we may observe from

Fig. 6 the greatest impact of the coefficient λs is on the

primary system. We have included in Fig. 6 the maximum

tolerable secondary system size by the primary system before
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Fig. 7. System performance of the DSL game at the Nash equilibrium in the presence of slow time-varying channel fading when f(p) = f(1)(p) using
the approximation I0,−k ≈ I0. (a) Game outcome. (b) Primary user utility. (c) Sum-rate and the per-user rate achieved by the secondary system at the Nash
equilibrium.

the interference cap is exceeded at the equilibrium. Figure

6 shows that when λs < 1 there is a high likelihood that

the interference cap might be exceeded by even a relatively

smaller size secondary systems. While smaller λs would result

in higher utilities for the primary system (we have not shown

these plots to save space), this comes at the price of violating

the interference condition. Thus the risk with smaller λs values

is that, depending on the secondary QoS requirement fmin,

the secondary system may opt to operate at a number of

simultaneous users K that could easily violate the interference

condition. However, as we observe from Fig. 6 when λs ≥ 1,

the number of secondary users who simultaneously transmit

without violating the primary interference condition dramati-

cally increases, leaving the primary system with enough safety

margin in case the secondary system opts for large number of

simultaneous users. Thus we believe that in a proposed DSL

network, the primary system must set the pricing coefficient λs

based on how strictly it want the secondary users to adhere

to the maximum interference cap condition. If the primary

system is also based on a certain amount of cognition, it is

reasonable to expect that it may adjust its (pricing) coefficient

λs to maximize its profits by dynamically adapting optimal λs

based on its estimation of how many secondary users are in

the secondary system.

On the other hand Fig. 6 shows the maximum number of

secondary users who can on average coexist while achieving

a minimum required transmission quality. However, at times

depending on the fading statistics a particular user may or

may not meet the minimum transmission quality at the system

equilibrium. When this occurs we say that the user is in outage

and thus the probability of outage for user k is defined as

Pr (fk(p∗k) < fmin,k).

C. DSL network under time varying fading channels

In the previous section we have assumed that the fading

coefficients are essentially quasi-static so that they remain con-

stant during the best-response adaptations. However, in prac-

tice these fading coefficients may slowly change during the

best-response iterations. In these circumstances, transceivers

may need to employ a channel tracking algorithm to update

the estimated fading coefficients. In Fig. 7 we investigate

the effect of slowly-varying channel coefficients on the DSL

game. We model the variations of the channel coefficients with

a first order Gauss-Markov process [20], so that the fading

coefficients of the (n + 1)-th best-response adaptation are

related to those of the n-th iteration as below:”

h
(n+1)
·k =

√

1 − ε2h
(n)
·k + εw

(n)
·k , (12)

where w
(n)
·k is a complex white Gaussian random process of

variance σ2
h·k

, independent among channel coefficients h·k, ε
is a parameter indicating the temporal variation rate of the

channel and initial h
(0)
·k is chosen to be complex Gaussian.

It is easy to verify that
√

1 − ε2 represents the temporal

correlation of the channel coefficients between two best-

response iterations. Figure 7(a) shows the DSL game outcome

when the coefficients are time-varying with an ε = 0.1 as

compared to a quasi-static system in which fading is constant

throughout (i.e. ε = 0). It is assumed that the slowly time-

varying system only updates the fading coefficients once in

every L = 10 iterations (of course, the quasi-static system

always has exact coefficients since they stay fixed throughout

the iterations and thus correspond to L = 1). Figure 7(a) shows

that the primary interference cap is basically insensitive against

assumed slow channel variations. However, the corresponding

secondary interference I0 at the NE is usually larger in the

presence of channel variations, especially for large number of

secondary users. The reason for this is that the game response

falls somewhat behind compared to the channel variations. Of

course, this effect could be reduced by allowing more frequent

channel adaptations (i.e. small L). The effect of this increased

I0 is to reduce the safety margin (Q0−I0) the primary receiver

has in terms of its tolerable interference level. However, as Fig.

7(a) shows, unless the number of secondary users is relatively

large, still the interference cap Q0 is not violated by the

increased interference I0. Thus, we conclude that as long as

the channel variations are sufficiently slow and/or coefficient

adaptations are fast enough, the DSL game can still reach an

acceptable equilibrium state.

Figures 7(b) and (c) show the corresponding primary and

secondary utilities in the presence of slowly time-varying

channel fading at the NE outcome shown in Fig. 7(a). Figure

7(b) shows that the primary utility at the Nash equilibrium is
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Fig. 8. Outage probability Pr
(

fk(p∗
k
) < fmin

)

of a typical secondary user
at the Nash equilibrium of the DSL game in both quasi-static (lines) and slow
time-varying (marks) fading channels, as a function of secondary system size
K for a required Quality-of-Service requirement fmin.

slightly increased when fading is slow time-varying compared

to that with static channels. This is a direct consequence of the

increased interference level I0 seen in Fig. 7(a) that reduced

the safety margin. From primary utility function (6) we can see

that the reduced safety margin may lead to increased primary

utility. However, it is to be noted that this itself may not be

a good outcome if the number of secondary users is too large

since the secondary interference may violate the interference

cap. As can be seen from Fig. 7(c), both the sum and per-user

rates achieved by the secondary system is reasonably robust

against slow time variations in fading.

Figure 8 shows the outage probability of a typical secondary

user as the system size increases with both quasi-static as well

as slow time-varying (according to (12)) channel fading. It is

seen from Fig. 8 that the outage probability increases with K
as well as with the minimum QoS requirement. However, as

one may have predicted from the insensitivity of secondary

user utilities to slow channel variations observed in Fig. 7(c),

the outage probabilities are robust against the channel time-

variations. The maximum secondary system size which can

be supported according to Fig. 6 thus needs to be interpreted

in conjunction with the outage probabilities shown in Fig. 8.

For example, although as shown by Fig. 6 about 5 secondary

users can on average meet the fmin= = 0.1 QoS requirement,

according to Fig. 8 each of these users may be in outage about

70% of time. This of course is the price of operating as a

secondary system.

V. CONCLUSION

In this paper we have proposed the concept of dynamic

spectrum leasing as a new paradigm for dynamic spectrum

access in cognitive radio networks. As opposed to the hi-

erarchical dynamic spectrum access networks, the proposed

dynamic spectrum leasing networks provide an incentive for

the primary users who owns the spectrum to actively allow

secondary spectrum access whenever it is feasible. In our

proposed framework, this is achieved by defining a utility

function for the primary system that is proportional to both

demand (for interference) as well as the amount of total

interference it is willing to tolerate. The rationale behind the

proposed utility is that the more the secondary interference

the primary user is willing to tolerate, the higher must be

its reward. On the other hand, if the interference cap set

by the primary user is higher than the actual secondary

interference that exists in the system, then the demand for

interference by the secondary system must decrease, and the

primary utility must be proportional to this demand. For the

secondary users, their utility must be proportional to a suitably

chosen reward function f as well as the achieved interference

margin with respect to the primary system. The higher the

interference margin, the safer the secondary operation without

violating the primary QoS. Hence, the rationale for its utility

to be proportional to the interference margin. We formulated

the dynamic spectrum leasing cognitive system as a non-

cooperative DSL game between the primary and the secondary

users and established a basic result on the existence of a

unique Nash equilibrium. Specifically, we have established the

general condition on the reward function f so as to ensure the

existence of an equilibrium.

Next, we considered several example cognitive radio DSL

networks in detail to investigate the behavior of the proposed

system. In particular, we showed that in the case of identical

users the proposed DSL game can be solved to obtain the

Nash equilibrium action profile as the solution to a single

equation. In such a system we observed that the proposed

dynamic spectrum leasing naturally leads to a design that will

determine the maximum number of secondary users based on

required minimum QoS criteria. In the presence of fading,

we observed that the achieved secondary sum-rate could be

considerably higher than that without fading. This was due to

interference averaging effect due to fading that de-emphasized

the interference among users leading to better SINR.
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