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Abstract—Rain attenuation is among the major impairments
for satellite systems operating in the K band and above. In
this paper, we investigate the impact of spatially correlated rain
attenuation on the performance of a multibeam satellite return
link. For a comprehensive assessment, an analytical model for
the antenna pattern that generates the beams is also proposed.
We focus on theoutage capacityof the link, and obtain analytical
approximations at high and low SNR. The derived approxima-
tions provide insights on the effect of key system parameters –
like the inter-user distance, the satellite beam radius, orthe rain
intensity– and simulation results show that it fits tightly to the
Monte Carlo results. Additionally, the derived expressions can
be easily particularized for the single-user case, providing some
novel insights.

Index Terms—Multibeam satellites, rain attenuation, satellite
communications, return link.

I. I NTRODUCTION

Rain attenuation is known to be one of the major impair-
ments of satellite and terrestrial communications in bands
above10GHz [2]. These links’ capacity [3] has been exploited
in many ways, but adaptive coding and modulation (ACM) has
proven to be the most efficient one.

Such capacity is becoming increasingly valuable: as increas-
ing volumes of multimedia contents are demanded through
satellite links, higher throughput and improved availability are
being sought, shifting the payload to higher bands, exploiting
multibeam coverages, and even envisaging joint multi-user
processing [4]–[9].

So far, studies on the performance of such systems have
assumed uncorrelated rain attenuation among different beams
[4], [5], which is considered to be accurate for large beam
diameters [4], [10]. However, spatial correlation of rain at-
tenuation is known to degrade performance of other wireless
systems, both satellite and terrestrial. In satellite communi-
cations, its impact has been widely studied in the context
of site diversity [11]–[13] and SIMO and MISO broadband
transmission [14]. For terrestrial applications, available stud-
ies include dual-hop relay systems [15], MIMO broadband
communications [16] and cellular systems [17].
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In this paper, we study the impact of spatially correlated
rain attenuation over a multibeam satellite return link with
full frequency reuse –all the beams using the same frequency
band. For a comprehensive assessment, we start by proposing
an analytical model for the antenna pattern that generates the
beams. Then, we briefly study theergodic capacityof the
link, showing that, at high signal-to-noise ratio (SNR), the
loss induced by rain tends to be constant, that is, independent
of the SNR value and dependent only on the rain statistics.
Ergodic capacity represents the maximum rate achievable with
arbitrarily low error probability as long as we can code over
a sufficiently large number of channel realizations.

However, this is not the case of rain-faded satellite links,
because codewords usually span only a few realizations of the
channel, a situation commonly known asslow fading; as an
example, [18, Eq. 11] suggests rain fading coherence times of
hundreds of seconds. In this case, ergodic capacity represents
the average rate at which we can transmit with perfect channel
state information (CSI) at the transmitter.

For this reason, in this paper we focus on theoutage
capacity of the link, which is the maximum transmission
rate at which the outage probability does not exceed a given
value ǫ. We derive high and low SNR approximations that
provide insights on the effect of key system parameters –
like the inter-user distance, the satellite beam radius, orthe
rain intensity. Analytical results are verified through extensive
Monte Carlo simulations. Additionally, the derived expressions
can be easily particularized for the single-user case, providing
some novel insights; note that the single-user case is relevant
for state-of-the-art multibeam systems employing partialfre-
quency reuse [10] –different portions of the available spectrum
are assigned to adjacent beams to reduce interference–, where
each beam is processed separately without exploiting the
residual interference.

A. Summary of contributions

The following is an outline of the contributions of the paper.

• We explicitly derive the probability density function
(PDF) of the rain attenuation innatural units (11), di,
which is the exponentiation of a log-normal random
variable (log-lognormal); then, after deriving an approxi-
mation of the Gaussian error function (50), we obtain an
analytical, closed-form expression for any moment of the
attenuation,E

[

dki
]

, k > 0 (14).
• For the multibeam antenna pattern, an analytical model

based on Wyner’s 2D cellular arrangement is obtained
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(3). Its isolation parameter is determined by emulating a
typical antenna’s radiation pattern through the method of
the Bessel functions (8).

• The ergodic capacity of the link is briefly studied, ob-
taining analytical expressions at low (23) and high (24)
SNR. The obtained expressions suggest a mild influence
of rain attenuation on the ergodic capacity.

• Regarding the outage capacity of the link, we derive
approximations for the high and low SNR regimes (31),
(36), which tightly fit simulation data1.

• The outage capacity results can be particularized to
the scalar, single-user channel. In such case, a general
expression for any SNR can be found (42), as well as
insightful particular versions for the low (44) and high
(45) SNR regimes.

• Table I summarizes the results obtained regarding outage
capacity (L and H stand for low and high SNR, respec-
tively).

B. Structure and notation

The structure of the paper is the following: Section II
describes the system model and details the proposed antenna
pattern; Section III contains the derivations of the ergodic
and outage capacity of the multibeam return link, along with
the particularization for a single beam; Section IV reports
simulation results to illustrate the accuracy of the derived
expressions; finally, Section V summarizes the main results.

Notation: bold uppercase faceA denotes matrices, bold
lowercasea denotes (column) vectors, andAH is the her-
mitean of A; diag(A) is a column vector formed by the
elements in the diagonal of matrixA, while diag(a) is a
diagonal matrix with elements given bya. log(x) stands for
the neperian logarithm ofx; base-b logarithms are denoted
as logb(x). E [X ] is the expectation operator over a random
variableX .

II. SYSTEM MODEL

This paper focuses on a multi-user uplink, where multi-
ple single-antenna terminals communicate towards a satellite
equipped with a multi-feed reflector. We propose a beam
pattern model and include the possibility of correlation among
the rain attenuations experienced by different users –both
dependent on the system geometry and inter-user distance.

Let us consider a multi-user channel withK single-antenna
terminals transmitting towards a single satellite equipped with
the same number of antennas (Figure 1), so that the signal
model reads as

y =
√
γHs+ n, (1)

where s ∈ CK×1 is the transmitted signal vector, such that
E
[

ssH
]

= I, y ∈ CK×1 is the received signal vector,
n ∼ CN (0, I) is the complex noise vector andγ is the
transmit power over receiver noise (SNR). MatrixH ∈ CK×K

represents the complex-valued channel and can be expressed
as [19]

H = BD (2)

1Although the resulting expression has been particularizedfor the proposed
antenna model, any other model could be used instead.

Figure 1. Diagram of the satellite return link under study.

whereB ∈ CK×K is a full column-rank matrix containing the
antenna radiation pattern, andD = diag(δ), D ∈ CK×K ,
is a diagonal matrix of random entries modeling the rain
attenuation coefficients.

We shall remark thatγ refers to a normalized power over
noise constant, which does not take interference into account.
Inter-user interference is present in matrixB, and in the
attenuation experienced by the different users throughD. This
will be made clearer through the following paragraphs.

A. Antenna pattern

In many practical instances, the antenna pattern is obtained
by means of specific software, which models real antennas and
components and yields the numerical entries of matrixB.

For analytical purposes, we will rather use a mathematical
model that allows to writeB as a function of key system
parameters, like the inter-user distance or the beam radius. In
short, we will resort to a well-known information theoretic
cellular model, namely Wyner’s 2D model [20], to describe
the geometry of the system. Using this model,B will be a
function ofa, theisolation parameterbetween adjacent beams;
to model this parameter, we will use the well-accepted Bessel
function antenna model for tapered-aperture antennas [21,p.
184], [22].

1) Wyner model:Similarly to [19], we describe the geom-
etry of the beam coverage using Wyner’s 2D arrangement of
cells. This arrangement is achieved by consideringL lines,
each ofM cells (so thatK = LM ), placed one on top
of another, whereeach cell is affected by a single tier of
interfering cells; this renders the channel matrix to a Toeplitz-
Block-Toeplitz (TBT) matrix of the form
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Table I
SUMMARY OF RESULTS INVOLVING OUTAGE CAPACITY

Single user Multiple users

Cǫ
L

log2

(

1 + γ · e−eσQ−1(ǫ)+β
) Cawgn · e−eσQ−1(ǫ)+β √

VL ·Q−1(1− ǫ) + Clow

H Cawgn − eσQ
−1(ǫ)+β · log2 e Cawgn − eQ

−1(ǫ)Ω+MH

µ, σ are the location and scale parameters of the rain distribution, γ the SNR,β = µ− 2.1617,Cawgn the capacity of an unfaded channel,Clow is the ergodic capacity at low
SNR,Ω,MH,VL are parameters of the obtained approximations, defined in (32), (33), (37), respectively.

B = T2D =






















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

, (3)

where

ST =























a a 0 . . . 0
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. . . 0
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0 . . . 0 a
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, (4)

and

T1D =























1 a 0 . . . 0

a 1 a
. . .

...

0 a 1
. . . 0

...
.. .

. . .
. . . a

0 . . . 0 a 1























(5)

wherea is the so-called isolation parameter, and withS ∈
R

M×M , T1D ∈ R
M×M andT2D ∈ R

LM×LM .
Remark: Assuming each cell to be affected by a single

tier of interfering cells is, in fact, more realistic in multibeam
satellite systems than in terrestrial scenarios, since in the
former interbeam interference is solely controlled by the
antenna design, and not by the terrain characteristics.

A drawback of the model above is that there is no closed-
form expression for the eigenvalues ofT2D. However, in the
limit when L,M → ∞, the eigenvalues of the TBT matrix of
(3) are given by [23]:

λ(l−1)M+m(T2D) = 1+

2a

(

cos

(

2πl

L

)

+ cos

(

2πm

M

)

+ cos

(

2πl

L
+

2πm

M

))

,

(6)

and we can exploit this for large systems.
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�

Figure 2. Example of fixed beam patterns with changing distance between
users;d0, a parameter that we will vary through the analysis, is the distance
between the centers of adjacent beamspots.

2) Modeling a: Using the Bessel function model for a
typical tapered-aperture antenna [21, p. 184], [22], the channel
gain from thei-th beam towards thej-th user is given by

gij(θij) = Gmax

(

J1(uij)

2uij
+ 36

J3(uij)

u3
ij

)2

(7)

as a function of the off-axis angle with respect to the beam’s
boresight,θij = arctan (dij/D), whereD is the distance from
the user to the satellite anddij is the distance between the
i-th beam boresight and thej-th user (or, equivalently, the
distance between the center of thei-th andj-th cells). In the
equation above,uij = 2.07123 sinθij/ sin θ3dB, J1 andJ3 are
the Bessel functions of the first kind, of order one and three
respectively,Gmax is the maximum axis gain of each antenna,
and θ3dB is the angle associated to the beam’s3 dB radius,
θ3dB = arctan (R/D), with R the beam’s radius.

For the sake of the analysis, the following approximations
can be made: we will assume that the Earth curvature is neg-
ligible, that the slant ranges among all users are identicaland
equal to the GEO satellite elevation distance,D = 36, 000Km,
that all users are placed in the centers of the beams, and that
each beam’s radiation pattern is fixed: as the distance between
users changes, so will the centers of the fixed radius beams
(see Figure 2).

Under the aforementioned assumptions, and since the dis-
tance among users is much smaller than the satellite altitude,
the relative distanced is translated into an angle simply via
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Figure 3. Evolution of the antenna pattern with respect to the beam center
for different beam radius. Different link budgets have beenused to enforce
the same maximum gain.

θ ≈ d
D , and we finally have (see Figure 3):

a =

√

g(θ)

Gmax
=

J1(u)

2u
+ 36

J3(u)

u3
, (8)

u ≈ 2.07123 · d/R. (9)

B. Rain attenuation

The elementsδi of the diagonal rain attenuation matrixD =
diag(δ) follow [24]

−20 log10 (δi) ∼ LN (µi, σi) (10)

whereµi andσi are the log-normal location and scale parame-
ters, respectively, expressed in dB. Under this assumption, both
δ and δ2 follow a double log-normal distribution, as defined
below.

Definition 1. Let Y be a log-normally distributed random
variable with location parameterµ and scale parameterσ,
Y ∼ LN (µ, σ). Then, a random variableX = A−αY is
said to be a double log-normal or log-lognormal random
variable with scale parameterσ and location parameter
β

·
= µ+ log logA+ logα, X ∼ L2N (β, σ).

Lemma 1 (PDF and CDF of aL2N random variable). The
PDF of a double log-normal random variable is given by [25]

fX(x) = − 1√
2πσx log x

· e− 1
2σ2 (log(− log x)−β)2 (11)

with 0 < x < 1, while the CDF is given by

FX(x) = Q

(

log (− log x)− β

σ

)

(12)

with Q(x) representing the widely used GaussianQ-function.

Proof: Consider the functiong(x) = A−αx, and that we
wish to obtain the PDF of the transformationg(Y ); the result

follows immediately after considering that the inverse trans-
formation is given by−1/(α logA) log x, while its derivative
equals1/ (αx logA).

From the definitions above, it is clear thatδ corresponds to
α = 1/20 andδ2 to α = 1/10.

The moments ofδ2 are not available in closed-form, since
this would require solving

∫ 1

0

xk−1

log x
· e− 1

2σ2 (log(− log x)−β)2 dx. (13)

However, a closed-form expression can be obtained after
resorting to a sigmoid approximation of the error function,as
shown below.

Lemma 2. Assume a tight approximation of the error func-
tion in the interval [0, u/

√
2), u > 0, given byerf(x) ≈

∑Nc

i=1 aie
−bix and the sets of coefficients{ai}Nc

i=1, {bi}Nc

i=1.
Then, the k-th moment of the random variableX ∼
L2N (β, σ), MX(k), can be approximated as shown in (14),
whereςj

·
=

bj√
2σ

andΓ (a, x) is the upper incomplete Gamma

functionΓ(c, x) =
∫∞
x tc−1e−tdt [26, Eq. 6.5.3].

Proof: see Appendix A.

C. Rain spatial correlation

Once characterized the marginal statistics of the rain coeffi-
cientsdi, the main interest is to evaluate their correlation and
the corresponding impact on the return link capacity. Taking
into account correlation,δ verifies

−20 log10 (log δ) ∼ N (µ, diag(σ)R diag(σ)) (15)

whereµ andσ are the location and scale parameter vectors,
respectively, andR = {r′ij} is the matrix of correlation
coefficients among the so-called reduced Gaussian variables
ui = (−20 log10 (log δi)− µi) /σi.

There are many different models forr′, as summarized in
[27]. Here we will use the two-exponential model

r′ij = pb(dij)
·
= 0.94e−

dij
30 + 0.06e

−
(

dij
500

)2

, (16)

which was adopted by ITU in ITU-R P. 618-10 [28], although
introducing any other model would be straightforward.

In what refers to the associated log-normal random vari-
ables, their correlation is given by [18]

ρij =
eσiσjpb(dij) − 1√
eσi − 1

√
eσj − 1

. (17)

We will further imposeµi ≈ µ, σi ≈ σ ∀i, so that the above
equation simplifies to2

ρij =
eσ

2pb(dij) − 1

eσ2 − 1
. (18)

Differently from the antenna pattern, for the rain correlation
we will consider the influence of all the cells, and not only

2In reality, the values ofµ and σ measured in relatively close areas
experience some small differences. However, since we will focus on the
case where some degree of correlation exists among the rain attenuation
coefficients, it is sensible to assume that the marginal statistics will be very
similar.
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2MX(k) ≈ e−k·eβ−uσ

− e−k·eβ+uσ

+
L
∑

j=1

aj

(

keβ
)ςj

(

Γ
(

1− ςj , ke
β
)

− Γ
(

1− ςj , ke
β+uσ

)

+
(

keβ
)

−2ςj
Γ
(

1 + ςj , ke
β
)

−
(

keβ
)

−2ςj
Γ
(

1 + ςj , ke
β−uσ

)

) (14)

the adjacent ones. The distance between the centers of any
i-th andj-th cells is given by

dij = 3d0

√

(xj − xi)2 + (yj − yi)2 + (xj − xi)(yj − yi)

(19)
with

xi =

⌊

i

M

⌋

+ 1, yi = i−
⌊

i

M

⌋

M (20)

andd0 the distance between the centers of adjacent hexagons,
as shown in Figure 2.

Let P be the matrix of correlation coefficients,Pij = ρij .
For notational convenience, we will writeP as

P =
1

eσ2 − 1
(A− 1) (21)

with Aij
·
= eσ

2pb(dij).

III. PERFORMANCE UNDER CORRELATED RAIN

ATTENUATION

We will start by briefly addressing the ergodic capacity of
a multibeam satellite system; as we will see, rain correlation
has no effect on this metric. We will then study the outage
capacity of the channel, and assess the impact of the system’s
geometry and of the rain characteristics.

A. Ergodic capacity

For the channel under discussion, ergodic capacity is
obtained by the well-knownlogdet formula Cerg =
ED

[

log2 det
(

I+ γD2BHB
)]

. The expectation of the log-
arithm of the determinant is difficult to obtain, since it would
require an analytical characterization of the (stochastic) eigen-
values of the productD2BHB; instead, we will focus on the
high and low SNR regimes.

Theorem 1. The achievable sum rate can be approximated at
low SNR by:

Clow = γ ·Mδ(2) trace
(

BHB
)

log2 e (22)

which, for the antenna model proposed in Section II-A, par-
ticularizes to

Clow =γ ·Mδ(2) log2 e

×
(

2a2(3LM − 2L− 2M + 1) + LM
) (23)

with a2 from (8) ;Mδ(2) = E
[

δ2
]

can be obtained from (14).
On the other hand, at high SNR it would read as

Chigh = Cawgn − log2 10

10
K · eµ+σ2/2 (24)

with Cawgn obtained either numerically fromB, or by (25)
for large systems.

Proof: At low SNR, usinglog (1 + x) ≈ x, the achievable
sum rate is

Clow = γE
[

trace
(

D2BHB
)]

log2 e

= γE
[

δ2
]

trace
(

BHB
)

log2 e
(26)

where the last equality follows from assuming the same
attenuation statistics in all the paths; the extension to different
statistics is straightforward and can be found in [1].

In what refers totrace
(

BHB
)

, its value can be computed
in closed form and results into (see Appendix B for the proof)

trace
(

BHB
)

= 2a2 (3LM − 2L− 2M + 1) + LM, (27)

so that substituting the value ofa2 completes the proof.

Remark: The high SNR approximation holds whenever
I << γD2BHB, that is, when the system is not noise
limited. For future satellite systems using strong frequency
reuse, the system becomes strongly interference limited, and
as a consequence high SNR analysis tend to be more relevant.

We have just shown how ergodic capacity can be expressed
in a rain faded channel: at high SNR, it exhibits a constant
loss with respect to the unfaded capacity, while at low SNR
it amounts to a scaling of such unfaded capacity which
depends on the rain statistics and antenna characteristics;
similar problems had been tackled, among others, in [29], in
that case by upper bounding capacity. However, we should
question the importance of this metric for the channel under
discussion.

It is well-known that, as the codeword length approaches
infinity, the maximum rate at which reliable communication
is possible approachesE

[

log2 det
(

I+ γD2BHB
)]

[30]. But
this is not the case of rain-faded satellite links, because code-
words usually span only a few realizations of the channel3; this
is calledslow fading. In this case, ergodic capacity represents
only the average rate at which we can transmit if we have
perfect CSI at the transmitter (and without assuming any power
allocation over time).

Also, note that the multiuser case has an additional motiva-
tion for further analysis: from the derived expressions (23) and
(24), the correlation among the users rain attenuation has no
effect on the ergodic capacity. As a consequence, this metric
does not allow us to assess the induced system degradation.
For these reasons, we will focus our analysis on the outage
capacity of the link.

Before going further into the outage analysis, Figure 4 plots
the evolution of the average and instantaneous capacity for
different levels of correlation; the mean is always the same,
but the dispersion of the dots is much higher for the case with

3This could be fixed by introducing an arbitrarily large interleaver, but this
would come at the price of an arbitrarily large delay, unaffordable in our
scenario.
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Cawgn ≈
L
∏

l=1

M
∏

m=1

(

1 +

(

1 + 2a

(

cos

(

2πl

L

)

+ cos

(

2πm

M

)

+ cos

(

2π

(

l

L
+

m

M

))))2
)

(25)
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I+ γD2
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)

for two levels of
correlation of the entries inD, and fixingB.

higher correlation (left). In short, the average rate will not be
much lower but the availability of the link will suffer the most.
We will now analyze all these effects in more detail.

B. Outage capacity

As stated, correlation among the diagonal elements inD

has no effect on ergodic capacity because it does not affect
the expectation

Cerg =
∑

i

ED

[

log2(1 + γλi

{

D2BHB
}

)
]

(28)

where λi denotes thei-th largest eigenvalue of a matrix.
However, other metrics are greatly affected by the fluctuations
of the random variableI =

∑

i log2(1 + γλi

{

D2BHB
}

).
In a slow fading channel, for a given rateR, the probability

that the instantaneous capacity is lower thanR is given by the
outage probability

pout(R)
·
= P [I < R] (29)

whereI is the instantaneous capacity.
Also of highly practical significance is theǫ-outage capac-

ity, that is, the largest transmission rate at which the outage
probability is less thanǫ [30], [31]. In other words: the
maximum rate the channel will allow with probability1− ǫ.

In our case, from (29), we have thatCǫ is the maximum
value satisfying

P
[

log2 det
(

I+ γD2BHB
)

< Cǫ

]

= ǫ. (30)

Let us analyze this expression for the high and low SNR
regimes.

Theorem 2. At high SNR, the outage capacity can be approx-
imated by

CH
ǫ = CH

awgn − eQ
−1(ǫ)Ω+MH (31)

with

Ω2 = log

(

eσ
2

+
2

K
S

)

− logK, (32)

MH = µ+
σ2

2
− 1

2
log

(

eσ
2

+
2

K
S

)

+
3

2
logK + log

(

log2 10

10

)

,

(33)

S
·
=
∑

i,j

i<j

Aij . (34)

Proof: See Appendix C.
What (31) tells us is that, at high SNR, rain induces a

constant loss also in terms of outage capacity. This loss
depends onS in (34), which is a function of the inter-user
distance and of the rain geometry model used, but it does
not depend on the SNRγ. In particular, the loss grows with
S, which is a sum of elements which increase exponentially
with the correlation value. As a consequence, decreasing the
distance (increasing correlation) makes the loss grow sharply,
as we will see in Section IV. However, decreasing the distance
would also affectB. The overall effect thus depends also on
the particular beam pattern under use. Note that these same
expressions would hold for any other model, as long as we
are able to compute the summation that leads toS.

Following the model we proposed,Cawgn also depends on
B. Since in (31) the contributions of the antenna pattern and of
the rain are decoupled, it would be easy to extend the analysis
to any other antenna model. We will exploit this to illustrate
the influence of rain alone in Section IV.

A final remark concerns the case with only one user: noting
that K = 1 andS = 0, we can easily particularize (31) and
obtain

CH
ǫ = CH

awgn − eQ
−1(ǫ)σ+µ+log( log2 10

10 ) (35)

which, interestingly, is the expression of the outage capacity
for a single-user channel impaired by rain attenuation at high
SNR, as we will show in the next section.

Theorem 3. At low SNR, and under moderate correlation, the
outage capacity can be approximated by

CL
ǫ ≈

√

VL ·Q−1(1− ǫ) + Clow (36)

whereClow is given by (22), and with

VL = (log2 e)
2γ2

×






Mδ(4)

K
∑

i=1

||bk||4 + 2
∑

i,j

i<j

ϕi,j · ||bi||2||bj ||2






− C2
low,

(37)
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ϕi,j , E [δiδj ] =

∫ ∞

−∞

∫ ∞

−∞
10−

1
10 (e

σx+µ+eσy+µ)

× f(x, y) dxdy,

(38)

and f(x, y) the PDF of a bivariate Gaussian distribution,

f(x, y) =
1

2π
√

1− (r′ij)
2
· e

− 1
2(1−(r′

i,j
)2

(x2+y2−2r′i,jxy)
.

(39)

Proof: See Appendix D.
The valueQ−1(1 − ǫ) is negative forǫ < 0.5. Thus,

increasingVL decreases the outage capacity.
Remark: Differently from the high SNR case, here the

effect of the distance cannot be easily separated in antenna
effects and correlation effects. Note that decreasing the dis-
tance will increase the valuesϕi,j = E [δiδj ], and will thus
tend to decrease the outage capacity; however, decreasing the
distance at the same time increases the values of||bi|| and
of Clow. Summarizing: Theorem 3 is valid for any antenna
pattern, but the shape ofCL

ǫ as a function of the distance will
depend on its particular values.

Remark: As explained in the appendix, the result above re-
lies on approximatingtrace

(

D2BHB
)

by a Gaussian random
variable, which proves to be accurate whenever the correlation
among the elements inD is not very high. For this latter
case, the trivial approximationD ≈ δI, with δ a single log-
lognormal random variable, should be used instead.

C. The single-user case

So far, we have tackled the multi-antenna, multiuser case,
showing that the outage induced by rain is constant at high
SNR, and that it is larger when the rain correlation is stronger.
The obtained results are relevant for systems employing full
frequency reuse and joint multiuser detection.

In this section, we will explore the simplified case with
only one user and one receiving antenna. Apart from yielding
very illustrative results, this scenario has great operational
significance, as it corresponds to the multibeam scenarios in
which partial frequency reuse is employed; in such cases,
adjacent beams are assigned different frequencies and it is
customary to operate the link without exploiting the residual
interference.

At time instantk, the signal model would be

yk =
√
γ · hksk + nk (40)

where yk and sk are the received and transmitted symbols,
respectively,hk is the channel coefficient,nk is a complex
standard normal noise sample,nk ∼ CN (0, 1), and γ is a
variable that denotes the SNR taking into account all the
deterministic coefficients of the link budget, including the
noise power, the path losses, and any other attenuation in the
transmission chain.

Solving (29) forpout = ǫ yields

Cǫ = log2
(

1 + F−1 (ǫ) · γ
)

(41)

whereF denotes thecumulative distribution functionof |h|2,
so that substituting (12) in (41) we obtain

Cǫ = log2

(

1 + γ · e−eσQ−1(ǫ)+β

)

. (42)

0.8
1

1.2
1.4 −2.5

−2
−1.5

−1
−0.5
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20
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60

 

µσ 

ε=0.01

ε=0.001

Figure 5. Evolution of∆P as a function ofσ andµ for different values of
ǫ.

An immediate conclusion from (41) is that, to obtain the
same rate as in an AWGN channel –but with an outage
probability of ǫ instead – we will need an extra power of

∆P
·
= −10 log10 F

−1(ǫ)

= eσQ
−1(ǫ)+β · 10 log10 e dB.

(43)

We can see that an increase in the location parameterµ,
present inβ, exponentially increases the power loss term. The
same behavior holds for the scale parameterσ, but this is
amplified by the value ofQ−1(ǫ), which grows larger asǫ
decreases; this can be seen on Figure 5.

Even though the extra power margin needed is the same
regardless of the power regime, the effect of fading on the
outage capacity does change with the SNR, as we will see in
the following.

Theorem 4. The outage capacity at low SNR can be approx-
imated by

CL
ǫ ≈ Cawgn · e−eσQ−1(ǫ)+β

, (44)

while at high SNR it reads as

CH
ǫ ≈ Cawgn − eσQ

−1(ǫ)+β · log2 e. (45)

Proof: Both identities can be proven by applyinglog2(1+
x) ≈ x/ log 2 when0 < x << 1 (low SNR) andlog2(1+x) ≈
log2(x) (high SNR).

From the expressions above, it is easy to check that (45) is
the same as (35) by substituting the expression ofβ; note that
this equality happens even though in the multiuser case we
had used an additional approximation, assuming that a sum
of log-normally distributed random variables can be fit by a
single log-normal random variable. Also, (44) tells us thatthe
rain effect is quite different at low SNR: it scales capacityby
a double exponential ofσQ−1(ǫ) + β.

IV. N UMERICAL RESULTS

In this section, we report some numerical results illustrating
the behavior of a correlated rain-faded satellite return link.
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Figure 6. Capacity as a function of distance for the unfaded channel.

Simulations have been carried out withµ = −1.013, σ =
1.076, as obtained in [32] for the city of Aarhus;R = 100Km;
andL = 10, M = 10, so thatK = 100.

Figure 6 shows the evolution of capacity as a function of the
inter-user distance for different values of SNR (γ), in a setup
with no rain attenuation; the aim of this figure is to depict
only the influence of the deterministic antenna pattern, which
resembles that shown in [19].

Now we wish to assess the outage capacity in the presence
of spatially correlated rain attenuation; to start with, Figure 9
depicts the outage capacity as a function of distance for the
high and low SNR cases. Judging from Figures 9 and 6, it
would seem that outage capacity as a function of inter-user
distance is affected mostly by changes in the antenna pattern,
which lead to changes inCH

awgn. This, however, does not have
to be true for every antenna pattern: other patterns could exist
for whichCH

awgn had a value comparable to−eΩQ−1(1−ǫ)+MH .

Figure 10 shows the CDF of the instantaneous capacity at
high and low SNR for different distance values. We can see the
effect of inter-user distance in the way the curves are shifted,
and also that the derived analytical approximations tightly fit
the Monte Carlo simulation.

To illustrate the influence of rain alone at high SNR,
Figure 7 shows the evolution of the term−eQ

−1(ǫ)Ω+MH ,
which is theǫ-capacity loss induced by rain attenuation, for
different values ofǫ; we can see that, for example, with
ǫ = 10−4 and d = 100Km, the total loss equals about
42bps/Hz, which roughly means0.42bps/Hz on average per
user. Note that these losses are independent of the antenna
pattern.

We can also get some insights on the behavior of outage
capacity for the whole SNR range. Figure 8 shows its behavior
for ǫ = 10−3, illustrating also the ranges of validity of the high
and low SNR approximations. To this end, recall that the high
SNR range is probably the most relevant, since it corresponds
also to an interference limited case.

Before reporting the single user results, we will briefly
analyze the effect of correlation over the rate of specific
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Figure 7. Outage capacity loss induced by rain as a function of d0 for different
values ofǫ.
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Figure 8. Outage capacity versus SNR,ǫ = 10−3.

users, rather than on the overall sum rate. For this purpose,
Figure 11 shows the outage probability of the minimum and
maximum rate –that is, of the rate of the user in the worst
and best conditions, respectively– obtained after simulating
the successive decoding of the users. For this simulation, we
have selected in each iteration the userj with the largest
value of ||hj ||2, obtained its rate, and then removed thej-
th column from the channel matrix. Correlation can be seen
to have almost no effect on the minimum rate, but rather a
significant impact on the maximum rate.

Finally, we present some results regarding the single-user
scenario; we will rather depictCǫ/Cawgn. Figure 12 shows the
derived approximations together with the original curve. We
can see that, with the same power as in clear sky conditions,
ensuring an availability of99.999% would imply reducing the
rate down to a10% at low SNR, and even as low as30% for
moderate SNR values like10dB.
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V. CONCLUSIONS

We have studied the effect of spatially correlated rain
attenuation on a multibeam satellite return link from the point
of view of outage capacity.

Results have shown that inter-user distance affects both
the antenna pattern and the correlation among the beams.
Focusing only on the latter, we have seen that correlation
induces noticeable losses on the outage capacity of the system.
For example, withǫ = 10−4, an inter-user distance of100Km
and a beam radius of100Km, the total loss equals about
42bps/Hz, which roughly means0.42bps/Hz in average per
user.

For the particular case of a single user, single antenna link,
results have shown that ensuring an outage probability of10−3

requires an extra power offset of about15dB for common rain
profiles. In terms of outage capacity, this means reaching only
10% of the unfaded capacity at low SNR and65% at high
SNR if we do not increase the power margin.
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APPENDIX A
APPROXIMATION OF THE MOMENTS OF THE

LOG-LOGNORMAL DISTRIBUTION

Here, we derive a semi-analytical formula for the moments
of X , which needs of a tight approximation of the error

functionerf(x) in the positive interval; once the approximation
is available, the expression of the moments follows in closed
form.

Before starting, let us state an important property of the
log-lognormal distribution: ifX ∼ L2N (β, σ), then for any
k > 0 it holds that

Xk ∼ L2N (β + log k, σ) . (46)

This property will be very useful for the computation of the
momentsE

[

Xk
]

.
To start with, let us reformulate the problem in a more

convenient way.

Lemma 3. Let MX(k) be thek-th moment of the random
variable X . If X follows a log-lognormal distribution, then
its computation can be rewritten as

MX(k) =
1

2
− 1

2

∫ ∞

0

erf

(

β + log k − log z√
2σ

)

e−z dz. (47)

Proof: Recall that the expectation of a non-negative
random variable can be written as [33, Eq. (5-53)]

E [X ] =

∫ ∞

0

(1− FX(x)) dx. (48)

Now, noting that Q(x) = 1/2 − 1/2 · erf
(

x/
√
2
)

and
erf(−x) = −erf(x), we arrive at

E [X ] =

∫ 1

0

(

1−Q

(

log (− log x)− β

σ

))

dx

=
1

2
− 1

2

∫ 1

0

erf

(

β − log (− logx)√
2σ

)

dx.

(49)

The proof concludes by using (46) and applying the change
of variableslog x = −z.

Unfortunately, the integral in (47) still appears to be in-
tractable. At this point, we will look for a good substitute
for erf(x) in an interval of the form[0, r) that allows to
compute the integral in closed form and, at the same time,
offers good accuracy; the idea of focusing in a reduced
interval is precisely to improve the accuracy by dealing with
the asymptoteerf(x) = 1 separately. Well-known accurate
existing approximations of theQ function, or of the error
functions, involve exponentials of quadratic argument or poly-
nomials (see [34] and references therein). Inspired in partby
[35], we developed an approximation given by a sum ofNc

exponentials ofx:

erf(x) ≈
Nc
∑

i=1

aie
−bix 0 ≤ x < r (50)

for Nc > 1.
Recall that looking for an approximation in a reduced

interval [0, r) aims at improving the accuracy in the curvy
parts of the function; the almost constant values oferf(x)
when x grows large could be handled separately by setting
r to a small value, as we will show. Table II shows the
optimized coefficients, which were obtained by applying non-
linear mean-squared optimization in Matlab©, for different
values ofNc andr = 5/

√
2.
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Table II
COEFFICIENTS OF THE APPROXIMATION(50) OF erf(x) FROM0 TO 5/

√
2

Nc Coefficients

2 a1 = −1.295, a2 = 1.24, b1 = 1.346, b2 = 0.06363

4
a1 = 0.0027151, a2 = −1.026, a3 = 2, a4 = −1.02

b1 = −1.20, b2 = 0.9814, b3 = 0.2306, b4 = 0.9814

Once an approximation of the error function of the form
of (50) is available, the moments ofX can be computed in
closed form: Let us focus on the casek = 1, since any other
case would follow by a simple change of variables. We start
by splitting the definite integral into two parts, so that the
argument oferf(x) is always positive, thus resulting into

2MX(1) = 1−
∫ eβ

0

erf

(

β − log z√
2σ

)

e−z dz

+

∫ ∞

eβ
erf

(

−β − log z√
2σ

)

e−z dz

= 1− I1 + I2.

(51)

We further split each integral to separate the part in which
erf(x) ≈ 1:

I1
·
=

∫ eβ

0

erf

(

β − log z√
2σ

)

e−z dz

= 1− e−eβ−uσ

+

∫ eβ

eβ−uσ

erf

(

β − log z√
2σ

)

e−z dz

(52)

The same operation applied on the second integral yields

I2
·
=

∫ ∞

eβ
erf

(

−β − log z√
2σ

)

e−z dz

= −e−eβ+uσ

+

∫ eβ+uσ

eβ
erf

(

−β − log z√
2σ

)

e−z dz.

(53)

The two unsolved integrals can be worked out in the same
way. Picking the first one, we can apply the exponential sum
approximation (50) to obtain

∫ eβ

eβ−uσ

erf

(

β − log z√
2σ

)

e−z dz

≈
Nc
∑

j=1

aj

∫ eβ

eβ−uσ

e
−bj

β−log z√
2σ

−z
dz

=

Nc
∑

j=1

aje
−ςjβ

∫ eβ

eβ−uσ

zςje−z dz

=

Nc
∑

j=1

aje
−ςjβ

(

−Γ
(

1 + ςj , e
β
)

+ Γ
(

1 + ςj , e
β−uσ

))

(54)

where the last equality follows from the definition of the upper
incomplete Gamma function.

Applying the same procedure to the integral inI2 and
substituting in (51) concludes the proof.

APPENDIX B
COMPUTATION OF trace

(

BHB
)

It is straightforward to check that the block-diagonal of
BHB is formed byL− 2 matricesSHS+T2 + SSH and2
matricesSHS+T2, so that

trace
(

BHB
)

= L trace
(

T2
)

+2(L− 1) trace
(

SHS
)

(55)

sincetrace(SHS) = trace(SSH). The traces involved repre-
sent the Fröbenius norm of matricesT and S, respectively.
In other words, they represent the sum of the power of their
columns. From this premise, they can be readily found to be

trace
(

SHS
)

= a2 + (M − 1)2a2 = a2(2M − 1) (56)

and

trace
(

T2
)

= 2(1 + a2) + (M − 2)(1 + 2a2)

= 2a2(M − 1) +M.
(57)

The proof finishes immediately by combining the results
above, yielding

trace
(

BHB
)

= 2a2(3LM − 2L− 2M + 1) + LM. (58)

APPENDIX C
PROOF OFTHEOREM 2

The usual approximation results into

C ≈ log2 det
(

γD2BHB
)

= log2 det
(

γBHB
)

−
(

− log2 detD
2
)

= CH
awgn −∆c

(59)

where we have defined∆c
·
= − log2 detD

2, the loss in
spectral efficiency induced by rain attenuation

∆c = −
K
∑

i=1

log2 δ
2
i

=
log2 10

10

K
∑

i=1

ξi ξi ∼ LN (µ, σ) .

(60)

From (59) we have that the outage probability for a certain
overall rateR is given by

pout(R) = P
[

CH
awgn −∆c < Cǫ

]

(61)

so that, solvingpout(CH
ǫ ) = ǫ we obtain

CH
ǫ = Cawgn − F−1

∆c
(1− ǫ) (62)

whereF∆c
is the cumulative distribution function (CDF) of

∆c.
Let us see how can we obtainF∆c

. The sum of (correlated
or uncorrelated) log-normal random variables has been exten-
sively studied in the literature; a summary of the most relevant
alternatives can be found in [36]. Here, and for simplicity,we
will make use of Fenton-Wilkinson’s approximation, which
states that a sum of log-normal variables can be approximated
by another log-normal variable by matching the first and
second order moments.
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Let us derive the expressions of these two moments, ex-
pressing them as a function of the correlation coefficients.The
first moment,µ1

·
= E [∆c] trivially reads as

µ1 =
log2 10

10

K
∑

i=1

E [ξi] =
log2 10

10
·Keµ+

1
2σ

2

(63)

where we have used the fact that, ifx ∼ LN (µ, σ), then
E [x] = eµ+1/2σ2

.
The second order moment is more involved; using the

binomial expansion
(

N
∑

i=1

xj

)2

=

N
∑

i=1

x2
i + 2

N
∑

i,j

i<j

xixj (64)

we arrive at

µ2 =
(log2 10)2

100
E









K
∑

i=1

ξ2i + 2
K
∑

i,j
i<j

ξiξj









=
(log2 10)2

100









KE

[

ξ2
]

+ 2

K
∑

i,j
i<j

(

var (ξ) ρij + E

[

ξ2
))









=
(log2 10)2

100









KE

[

ξ2
]

+ 2var (ξ)

K
∑

i,j
i<j

ρij + 2
K(K − 1)

2
E [ξ]2









.

(65)

were we have used the fact that
∑K

i,j

i<j
1 = K(K − 1)/2. We

further use the following set of identities:E
[

ξ2
]

= e2µ+2σ2

,

E [ξ]2 = e2µ+σ2

, var (ξ) =
(

eσ
2 − 1

)

e2µ+σ2

; plugging these
expressions into (65), we get

µ2 =
(log2 10)

2

100
Ke2µ+σ2






eσ

2

+K − 1 + 2
eσ

2 − 1

K

K
∑

i,j

i<j

ρij






.

(66)

Note that, as the correlation among the fading variables
increases, the value ofµ2 also increases, thus resulting into
an increase in variance.

Computing the pending summation in (66), we obtain
∑

i,j

i<j

ρij =
∑

i,j

i<j

Pij

=
1

eσ2 − 1

∑

i,j

i<j

(Aij − 1)

=
1

eσ2 − 1

(

S − K(K − 1)

2

)

(67)

where, for notational convenience, we have definedS
·
=

∑

i,j

i<j
Aij . which in this case would be given by

S =
∑

i,j

i<j

eσ
2pb(dij) (68)

Finally, plugging (67) into (66) we arrive at

µ2 =
(log2 10)

2

100
Ke2µ+σ2

(

eσ
2

+
2

K
S

)

(69)

Now that the moments are available, the sum can be
approximated by a log-normal random variable with location
parameterMH and scale parameterΩ given by

Ω2 = log

(

µ2

µ2
1

)

= log

(

eσ
2

+
2

K
S

)

− logK

(70)

MH = logµ1 −
1

2
Ω2

= µ+
σ2

2
− 1

2
log

(

eσ
2

+
2

K
S

)

+
3

2
logK + log

(

log2 10

10

)

(71)

Finally, using−Q−1(x) = Q−1(1−x), the outage capacity
reads as

CH
ǫ = CH

awgn − eQ
−1(ǫ)Ω+MH (72)

with CH
awgn given by (25) whenK is large.

APPENDIX D
PROOF OFTHEOREM 3

The approximationlog2(1 + x) ≈ x/ log 2 applied to (30)
yieldsP

[

γ trace
(

D2BHB
)

log2 e < CL
ǫ

]

= ǫ. Let us define
the random variableIL , γ trace

(

D2BHB
)

log2 e, which
is a sum of correlated random variables; if we approximate
it with a Gaussian random variable, then the outage capacity
reads asCL

ǫ =
√
VLQ

−1(1− ǫ) +ML, whereML andVL are
the mean and variance ofIL, respectively.

The first value is easy to obtain, sinceE [IL] = Clow in
(23) by definition. The second one is more involved; using
the identityvar[X ] = E[X2]−E[X ]2, the binomial expansion
(64), and the equalitytrace(D2BHB) =

∑K
i=1 δ

2
i ||bi||2, we

can write

var[IL] = (log2 e)
2γ2

×






E[δ4]

K
∑

i=1

||bk||4 + 2
∑

i,j

i<j

E[δiδj ] · ||bi||2||bj ||2






− C2
low.

(73)

The value ofE[δ4] = Mδ(4) can be obtained from the
approximation of the moments; on the other hand, the value
of E[δiδj] has to be obtained by numerically solving the
corresponding integral (38).
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