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Abstract—This paper introduces a Compressed Sensing (CS)
estimation scheme for Orthogonal Time Frequency Space (OTFS)
channels with sparse multipath. The OTFS waveform represents
signals in a two dimensional Delay-Doppler (DD) orthonormal
basis. The proposed model does not require the assumption
that the delays are integer multiples of the sampling period.
The analysis shows that non-integer delay and Doppler shifts in
the channel cannot be accurately modelled by integer approxi-
mations. An Orthogonal Matching Pursuit with Binary-division
Refinement (OMPBR) estimation algorithm is proposed. The
proposed estimator finds the best channel approximation over a
continuous DD dictionary without integer approximations. This
results in a significant reduction of the estimation normalized
mean squared error with reasonable computational complexity.

Index Terms—OTFS, Compressed Sensing, Channel Estima-
tion

I. INTRODUCTION

Consumer demand for versatile wireless communication
systems continues to rise. Release 16 of the Third Generation
Partnership Project (3GPP) mobile wirelss standard has been
completed recently [1], and the 5G mobile standard continues
to evolve quickly with new additions in each release. Or-
thogonal Time Frequency Space (OTFS) is a promising novel
waveform proposed recently [2], [3]. The OTFS waveform is
based on an explicit delay-Doppler (DD) representation of
time-varying multipath channels. Unlike a fading Orthogo-
nal Frequency Division Multiplexing (OFDM) channel, the
OTFS channel is quasi-static, i.e., the DD represtation of the
multipath reflections does not change over long periods of
time. Moreover, OTFS is in practice an extension of OFDM
with the addition of an internal representation of Doppler
(in the sense of a closed group). Thus the new modulation
has great backward compatibility with current standards, and
the potential to facilitate performance improvements such as
Doppler robustness in high speed mobility systems or reducing
the perceived channel variability with movement in multipath
environments with sparse reflections.

The DD domain is a two-dimensional representation of
time-varying signals based on the Discrete Zak Transform
(DZT). This mathematical tool has been studied even prior to
the proposition of OTFS modulation, for example in polyphase
filtering [4]. Hadani et al [2] proposed an OTFS implemen-
tation based on the cascade of two transforms: first a 2D
Symplectic Fourier Transform (SFT) converts the DD domain
into a time-frequency (TF) grid (similar to a Single-Carrier
OFDM (SC-OFDM) scheme in 5G uplink modulations). After
the 2D SFT, a second operation termed Hadamard Transform

(HT) converts the TF grid into the final time-domain modu-
lated signal. This implementation is not unique, and the DD
signal may be converted directly to the time domain using
the Inverse DZT (IDZT) as shown in [5], [6]. A derivation of
DD modulations from the fundamental principles of sampling
is also given in [7]. Several authors have analyzed OTFS
transmitter and receiver design [8]–[10], channel estimation
[9]–[12], window design [5], [12], etc. In this paper, we
highlight three aspects of OTFS channel estimation that have
not received sufficient attention in the prior works:

i) The vast majority of prior literature has assumed the mul-
tipath delay can be approximated as an integer multiple
of the sampling period [5], [8]–[12]. We model the OTFS
DD modulation on a cyclic-prefixed continuous time
signal without assuming integer delays in the channel. We
show that removing this assumption results in significant
differences in the equivalent channel expression.

ii) Our model employs the direct IDZT synthesis method,
rather than the more usual SFT-HT cascade method. We
remark that our derivation is independent from the prior
result in [6], but both agree in pointing out that non-
integer delays modify the channel model significantly.

iii) Motivated by the observation that non-integer delays play
an important role, we propose a Compressed Sensing
(CS) channel estimation algorithm for OTFS systems with
IDZT architecture that estimates the continuous physical
DD multipath parameters. Although prior works have
applied CS to OTFS channel estimation, the previous
references have employed discrete delay dictionaries,
resulting in substantially different models.

CS studies the estimation of sparse signals from a limited
number of observation samples [13]. By exploiting sparsity,
it is possible to develop estimation schemes that outperform
conventional techniques. For example, finer delay resolution
than expected according to the Shannon-Nyquist sampling
constraint is possible in sparse multipath channel estimation.
CS has gained interest in recent years as it has enabled to
exploit the very large number of antennas and bandwidth in
Massive MIMO and mmWave architectures for 5G [1], [14].
The DD representation of signals is sparse in both delay and
Doppler dimensions, and the OTFS modulation is a candidate
technology for beyond 5G systems. Therefore, the study of CS
channel estimation for OTFS is a natural next step for channel
estimation in 5G. Moreover, in this paper we show that CS can
play a very important role in coping with the differences that



arise in OTFS system models depending on whether or not
an assumption is made that delays are integer multiples of the
sampling period. For this we develop an extension to OTFS
waveforms of the Orthogonal Matching Pursuit with Binary-
division Refinement (OMPBR) algorithm first introduced in
[14]. Differently from most CS algorithms, OMPBR is not
limited in resolution by a discrete dictionary, and can estimate
with arbitrary resolution the true continuous values of delay
and Doppler multipath parameters. Our results shows that this
leads to significant improvement of the estimation error.

The rest of this paper is organized as follows: Section II
describes the OTFS channel model. Section III describes the
OMPBR estimation algorithm. Section IV validates the results
in simulation. And finally, Section V concludes the paper.

A. Notation

Calligraphic letters denote sets. |A| denotes the cardinality
of set A. Bold uppercase and lowercase letters denote matri-
ces and vectors, respectively. AH is the Hermitian and A†

the Moore-Penrose pseudo-inverse (AHA)−1AH . ‖A‖n =(∑
i,j |ai,j |n

) 1
n

is the `n norm of A, and ‖A‖ = ‖A‖2.

II. SYSTEM MODEL

We begin by considering a discrete-time signal x[n] of
length L transmitted in continuous time using a pulse p(t)

x(t) =

L−1∑
n=0

x[n]p(t− nTs), (1)

over a continuous time-variant channel with output satisfying

y(t) = H(x(t)) =
∑
i∈P

aie
−j2πνitx(t− τi) + r(t) (2)

where r(t) ∼ CN (0, σ2
z) is AWGN and P is a set of paths

characterized by their complex gain ai ∈ C, Doppler shift
νi ∈ [−V∆f

2 , V∆f
2 ) and delay τi ∈ [0, DTs). We assume D

and V are integers selected to capture the maximum delay and
Doppler of the channel, normalized with regard to the symbol
period Ts and inverse message duration ∆f = 1

LTs
. Without

loss of generality, we assume the symbol length satisfies L =
DV . In typical systems it is common to adopt easily divisible
values of L such as powers of 2 [1]. Thus, the case L > DV
can be easily included in our model adopting suitable integers
D′ > D and V ′ > V satisfying L = V ′D′.

In order to convert (2) into a circular convolution we
consider the periodic extension of x[n], denoted xp[n] = x[n
mod L]. This results in the continous-time transmitted signal

xp(t) =

L−1∑
n=0

x[n]

∞∑
m=−∞

p(t− nTs −mLTs)

=

L−1∑
n=0

x[n]gL(t/Ts − n).

(3)

Since sinc interpolation and sampling can be regarded as dual
operations when Ts is adequately chosen, without loss of
generality in this paper we assume p(t) = sinc(t/Ts), and
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Fig. 1. OTFS modulation orthonormal basis representation

thus gL(t) = e−j(L−1)t sin(2πLt)
sin(2πt) is a Dirichlet periodical pulse

train [4], [7], [12]. Other pulses and windows can be modeled
in discrete time, applied on xp[n], as long as we interpret Ts
as the sampling period, not a modulation symbol period.

We define the DZT of x[n] [4] as

Zx[d, v] =

V−1∑
u=0

x[d+ uD]e−j2π
uv
V .

noting that the DZT is superjective and Zx[d, v] = Zxp [d, v].
In other words, the Inverse Discrete Zak Transform (IDZT)
[4] outputs the periodic extension of the discrete signal

xp[n] =

V−1∑
v=0

Zx[n mod D, v]ej2π
bn/Dcv

V . (4)

However, since x[n] is limited to the interval {0 . . . L−1} we
can always unequivocally reconstruct x[n] from Zx[d, v].

To perform the OTFS modulation, information is encoded
in the DD domain coefficients Zx[d, v] [5]. The cyclic signal
xp(t) is a linear combination of the OTFS coefficients, multi-
plied by an orthonormal basis formed by the Doppler shifted
dirichlet pulses e−j2π

v
V tgD(t/Ts−d). Fig. 1 illustrates the or-

thonormal basis used in OTFS modulation (4), for D = V = 4
and d = 0, with all Doppler shifts v ∈ {0 . . . V − 1}.

In practical implementations we would desire to synthesize
a finite transmission. In order to replicate the circular convo-
lution for a limited time, the transmitter sends the signal

xCP (t) =

{
xp(t) t ∈ [−DTs, LTs]
0 otherwise,

(5)



noting that xCP (t) is related to x[n] by (3) and not (1).
Reciprocally, the receiver applies a rectangular window for
the interval t ∈ [0, LTs] to (2), producing

yCP (t) =

{
H(xp(t)) ∀t ∈ [0, LTs]

0 otherwise.
(6)

Finally, thanks to the cyclic prefix in xCP (t), when the
receiver samples yCP (t) with period Ts and computes its DZT,
the result is an Equivalent Zak Channel (EZC) with output

Zy[d, v] =

V−1∑
u′=0

D−1∑
d′=0

h[d, v, d′, v′]Zx[d′, v′] + Zr[d, v] (7)

where Zr[d, v] is the Zak transform of the noise, which is still
AWGN, and the channel gains are given by

h[d, v, d′, v′] =
∑
i∈P

aie
−jνid/DgD(d− d′ − τi/Ts)

× gV (v − v′ − νi/∆f)e−j2π
v
V b

d−d′
D c.

(8)

Here we remark that the EZC output (7) cannot, in general, be
expressed as a 2D convolution of Zh[d, v] and Zx[d, v], where
Zh[d, v] is a DZT representation of the channel. There are two
exceptions: when either all normalized Doppler coefficients
νi/∆f , or all normalized delay coefficients τi/Ts, are integers.
In either of these two special integer cases, we get

h[d, v, d′, v′] = Zh[d− d′, v − v′] (9)

where Zh[d, v] is the DZT of a Dirichlet channel probe

h[n] = H(gL(t/Ts))|t=nTs =
∑
i∈P

aie
−j2πνinTsgL(n−τi/Ts).

We can define the vector x ∈ CL such that its `-th
term contains Zx[` mod D, b`/Dc], and likewise y, z ∈
CL. Moreover, defining the matrix H ∈ CL×L with h[`
mod D, b`/Dc, `′ mod D, b`′/Dc] in its `-th row and `′-th
column, the EZC (7) can be fully written as

y = Hx + z. (10)

Comparison of (7) and (10) with a classic CP-OFDM
system for time-invariant channels reveals some similarities
and differences. In a CP-OFDM system with a L-DFT and
an infinite cyclic extension of the transmitted signal, the
Dirichlet pulse would also be observed in the discrete channel
impulse response of length D with non-integer multipath
delays. Moreover, a second Dirichlet pulse would also arise
as an interpolator in frequency, since the L subcarrier gains
would be correlated when D < L.

If we set V = L and D = 1 the OTFS scheme
fully becomes CP-OFDM. More generally, for D > 1 the
IDZT/DZT transforms correspond to the time-domain half of
the decimation-in-time FFT butterfly algorithm. This makes
the implementation of the DZT computation very efficient.

In CP-OFDM channels, the cyclic extension enables writing
the channel as a scalar multiplication in each subcarrier.

However, due to non-integer Doppler, in the Zak channel we
must take into account a grand total of L2 multiplications to
compute the first term of the EZC (7). Owing to the highly
structured expression (8), a naı̈ve and wasteful direct estima-
tion of all L2 elements of the matrix H would not be necessary.
Instead, we assume that the number of multipath components
is P = |P| satisfying P � L. Therefore, we can estimate
the explicit multipath characteristics of the channel using CS
methods as detailed in the next section. In a practical system,
we would consider the finite implementation (5) repeatedly
transmitting consecutive blocks, each carrying L symbols x
on a physical signal of duration (L + D)Ts. Despite the
time-domain channel being time-variant, the explicit multipath
parameters are quasi-static. Thus, it suffices that the transmitter
sends a known pilot x in the first block of each session.

III. CS CHANNEL ESTIMATION ALGORITHM

To design the CS estimator [13] we begin by defining the
set of matrices Υ(τ, ν) for any value of τ and ν, such that

{Υ(τ, ν)}d+vD,d′+v′D =e−jνid/DgD(d− d′ − τ/Ts)
× gV (v − v′ − ν/∆f)e−j2π

v
V b

d−d′
D c.
(11)

We multiply this matrix by the known pilot x to obtain a
generalized basis vector φ(τ, ν) = Υ(τ, ν)x. We also define
the 2D continuous channel spreading function as follows:

AP(τ, ν) =
∑
i∈P

aiδ(τ − τi, ν − νi).

So we may substitute (11) and (8) into (10) [6], [12], producing

y =
∑
i∈P

aiΥ(τi, νi)x + z

=
∑
i∈P

aiφ(τi, νi) + z

=

∫ DTs

0

∫ V∆f

0

φ(τ, ν)AP(τ, ν)dνdτ + z.

(12)

Where the interval [V∆f
2 , V∆f) represents the negative

Doppler ranges [−V∆f
2 , 0), due to the periodicity of gV ().

Since the integral in (12) may be challenging, it is frequent
to design CS schemes using a discrete dictionary of values
[13]. In our case, we define dictionaries of Kτ and Kν evenly
spaced points in the intervals [0, DTs) and [0, V∆f), respec-
tively. The dictionary is thus the cartesian product Dτ × Dν ,
where

Dτ = {0 . . . Kτ − 1

Kτ
DTs}, (13)

and
Dν = {0 . . . Kν − 1

Kν
V∆f}. (14)

Finally, we define the dictionary basis matrix containing all
possible basis vectors in the dictionary as

ΦDτ×Dν = (φ(0, 0), . . . ,φ(
Kτ − 1

Kτ
DTs,

Kν − 1

Kν
V∆f)),



and an approximation of the channel output can be written as

y 'ΦDτ×Dνa + z (15)

where a is a sparse vector with non-zero values in the indices
that correspond to existing paths in the channel.

We remark that the dictionary dimensions Kτ and Kν may
be greater than D and V , respectively. In CS, this is referred
to as an overcomplete dictionary. Overcomplete dictionaries
enable superresolution, i.e., to resolve the support parameters,
in our case delay and Doppler, with more resolution than it
would be possible in non-sparse estimation according to the
Shannon-Nyquist sampling constraints [13]. In fact, we have
noted that the channel expression (7) cannot be expressed in
the form (9) when delay and Doppler are both fractional. Thus
the use of orthogonal dictionaries without superresolution,
with Kτ = D and Kν = V , will lead to significant errors.

When we assume Kτ > D and Kν > V , the matrix
ΦDτ×Dν in (15) is wide and does not have a pseudoinverse.
Thus we cannot resort to well known methods such as Least
Squares (LS) to estimate a. Therefore, the sparsity of a must
be exploited. The fundamental form of a CS estimator of a is

â = arg min ‖a‖0s.t.‖y −ΦDτ×Dνa‖22 ≤ ξ (16)

where ξ is a tuning parameter to account for the noise. As
problem (16) is combinatorial, there are two general families
of CS algorithms to convert (16) into a tractable problem:
greedy approximations of the combinatorial, or problem re-
laxations by substituting the `0 norm with an `1 norm [13].
A second distinction can be made between algorithms that
assume the number of non-zero elements of a, P , is known
and those that do not. Among greedy algorithms with unknown
P , Orthogonal Matching Pursuit (OMP) variants are well
known. Greedy algorithms with known P include Compressive
Sampling Matching Pursuit (CoSaMP). `1 algorithms with
unknown P include Basis Pursuit De Noising (BPDN) and
the Dantzig-Selector. Finally, the Least Absolute Shrinkage
and Selection Operator (LASSO) solves a dual problem with
known P , minimizing the `2 norm with an `1 constraint.

Since the number of multipath reflections can change, in
this paper we assume P is not known. Moreover, to develop
our extension using the continuous sparse model (12), we
must adopt a greedy algoritm. Therefore, of all algorithms
in literature, the most relevant baseline for our study is OMP

Algorithm 1 Orthogonal Matching Pursuit

1: Initialization P̂ = ∅, r = y
2: while ‖r‖2 > ξ do
3: (τ̂ , ν̂) = arg max

τ∈Dτ ,ν∈Dν
‖φ(τ, ν)Hr‖

4: P̂ = (τ̂ , ν̂)
⋃ P̂

5: â = Φ†P̂y
6: r = y −ΦP̂ â
7: end while
8: Output P̂ , â

(Alg. 1). Here, we use the notation P̂ to represent the estimated
set of delay and Doppler support values, which is increased by
exactly one element in each iteration. Moreover, we use the
matrix notation ΦP̂ to represent the support matrix associated
with P̂ , that is, each column of ΦP̂ is the vector φ(τ̂j , ν̂j)

associated with the j-th element of P̂ . As the greedy algorithm
increases the support, it builds ΦP̂ as a tall matrix containing
a subset of the columns of Φ, such that the LS operation in
line 5 is possible. In each iteration, the residual r contains
the part of y that is orthogonal to the current basis ΦP̂ (line
6). Finally, the greedy algorithm adds an element to P̂ in
each iteration (line 4), using a maximum residual correlation
criterion (line 3), until the distance constraint ξ is satisfied (line
2). The number of iterations equals the estimated number of
paths |P̂|.

To choose the tuning parameter ξ we study the Normalized
Mean Squared Error (NMSE) expressed as follows:

NMSE = EH

[
‖H−∑j∈P̂ âjΥ(τ̂j , ν̂j)‖2

‖H‖2

]
(17)

' EH

[‖(y −ΦP̂ â‖2
‖Hx‖2

]
(18)

= EH

[
‖(I−ΦP̂Φ†P̂)(ΦPa + z)‖2

‖Hx‖2

]
(19)

≥ EH

[‖ΞP̂ΦPa‖2
‖Hx‖2

]
+ |P̂ |σ2EH

[
‖Hx‖−2

]
(20)

where (18) assumes that the average energy of the matrix H
is symmetrically distributed in all directions, and we define
ΞP̂ = I − ΦP̂Φ†P̂ . From the lower bound (20) we note that
the error contains two terms. The first term represents the
projection of the true channel orthogonal to the basis ΦP̂ ,
and decreases in each iteration. The second term represents the
projection of the noise over ΦP̂ , and grows in each iteration.
Therefore, a natural choice for ξ is making the algorithm stop
when “continuing more iterations would capture more noise
than channel”, which results in ‖r‖2 < Lσ2 , ξ [14].

The classic OMP algorithm displays three shortcomings:
i) It is based on a discrete approximation (15) of a continu-

ous truth (12). We have argued that using (8) in (7) is not
the same as using (9). This mean that, in OTFS, quantized
multipath integers can severely misrepresent the channel.

ii) Even though the dictionary sizes Kτ and Kν can be
increased to mitigate problem i), this results in a linear
growth of the complexity of Line 3, which is equivalent
to ΦH

Dτ×Dνr, that is, KτKνL products.
iii) Whenever x changes the matrix ΦDτ×Dν needs to be

precomputed. Performing KτKν times the operation
φ(τ, ν) = Υ(τ, ν)x results in KτKνL

2 products.
Due to the above, we introduce the OMPBR algoritm (Alg.

2). The main goal of OMPBR is to reduce the dictionary size
in line 3 of Alg. 1. For this we observe that the correlation
f(τ, ν) = ‖φ(τ, ν)Hr‖ is not concave in the full search space
[0, DTs) × [0, V∆f), but it can be assumed to be locally
symmetric in small regions near the maximum. Therefore, we



perform a two step search of the correlation maximum: first,
we search for the best “local bin” of size Ts ×∆f in line 3.
This search uses an auxiliar dictionary with D × V integer
elements, which can be accelerated using (9). Second, we
identify the best small delay and Doppler offsets contained in
the “local bin”, in line 4. This search is implemented using the
Binary-division Refinement Alg. 3. When f(τ, ν) is symmetric
around a local maximum, BR guarantees a distance 2−Nref to
the true maximum in Nref iterations [14].

Algorithm 2 OMP with Binary division Refinement (OMPBR)

1: Initialization P̂ = ∅, r = y
2: while ‖r‖ > ξ do
3: (d̂, v̂) = arg max

d∈{0...D−1}
v∈{0...V−1}

‖φ(dTs, v∆f)Hr‖

4: (µ̂τ , µ̂ν) = arg max
µτ ,µτ∈[−1

2
, 1
2
]

‖φ((d̂+ µτ )Ts, (v̂ + µν)∆f)Hr‖

5: P̂ = ((d̂+ µ̂τ )Ts, (v̂ + µ̂ν)∆f)
⋃ P̂

6: â = Φ†P̂y
7: r = y −ΦP̂ â
8: end while
9: Output T̂ , V̂ , â

BR can also be employed to refine OMP decisions for
an overcomplete auxiliar dictionary, although this drops the
possibility of accelerating line 3 for integer dictionaries.
OMPBR can be regarded as an approximation heuristic to
classic OMP with an extremely large dictionary. By observing
(13) and (14), if we define the superresolution factors κτ =
2NrefKτ

D and κν = 2NrefKν
V , it is clear that the complexity of

OMPBR scales much better with resolution. OMP (Nref = 0)
finds the global correlation maximums with linear scaling
in resolution Θ(κτκν), whereas OMPBR provides a good
approximation of correlation decisions with only logarithmic
scaling Θ(log(κτκν)).

Algorithm 3 Binary division Refinement (BR)
1: Input: 2D function f(x, y), initial point (xo, yo)
2: Initialize xup = xo + 0.5, xdown = xo − 0.5,
3: yup = yo + 0.5, and ydown = yo − 0.5
4: for Nref iterations do
5: xmid = (xup + xdown)/2, ymid = (yup + ydown)/2
6: switch (Select maximum and halve search region)
7: case f(xup, yup) is maximum:
8: xdown = xmid, ydown = ymid
9: case f(xdown, yup) is maximum:

10: xup = xmid, ydown = ymid
11: case f(xup, ydown) is maximum:
12: xdown = xmid, yup = ymid
13: case f(xdown, ydown) is maximum:
14: xup = xmid, yup = ymid
15: end switch
16: end for
17: Output (xmid, ymid)
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IV. SIMULATIONS

We simulate an OTFS system with dimensions D=V=16,
modelled as in (7)-(8). We generate 1000 random multipath
channels with P = 3 independent reflections with normalized
distributions τi

Ts
∼ U(0, D), νi

∆f ∼ U(0, V ), ai ∼ CN (0, 1),
and finally normalize the gains as ai = ai√∑

i∈P |ai|2
. The pilot

signals are random i.i.d. Gaussian sequences x ∼ CN (0, IL).
Fig. 2 represents the average NMSE evaluated as (17)

without approximations, and Fig. 3 represents the number of
estimated coefficients. One key observation is that OMP with
Kτ = D and Kν = V performs very poorly. In fact, its NMSE
does not even decrease with SNR. The explanation is that, as
we noted, expressions (8) and (9) are theoretically different.
The greedy algorithm runs until it reaches the maximum
number of iterations without ever converging and, since each
iteration captures some noise, this results in large NMSE.
Next, we consider OMP with Kτ = 4D and Kν = 4V .
The NMSE of this estimator is significantly improved, and
the number of estimated paths is reasonable. A slight over-
estimation of the number of paths is acceptable as discrete
dictionaries can only approximate (8) so much. However, the
use of a very large dictionary size can be computationally
demanding. Next, we consider the case of OMPBR with
Kτ = D and Kν = V and Nref = 2. This estimator has the
same search space and resolution as OMP with κτ = κν = 4,
but stores a much smaller dictionary in memory. Remarkably,
even though an orthogonal auxiliar dictionary is used, OMPBR
performs quite well and does not fail catastrophically as OMP
with the orthogonal dictionary. Since the BR search is local its
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Fig. 4. Total simulation runtime

NMSE is a bit worse than OMP with the same superresolution
factors κτ = κν = 4. The number of estimated paths is slightly
higher than the overcomplete OMP case as well. Finally,
OMPBR with Kτ = D and Kν = V and Nref = 10 has
a superresolution factor of κτ = κν = 1024, which would
be impractical with OMP, as it would require 106 times more
run time and memory. With an increase in complexity that
only scales logarithmically, the 2D search space is increased
by six orders of magnitude, and the NMSE is significantly
improved compared with either OMPBR or OMP with coarser
resolution. The number of necessary iterations (|P̂|) is also
significantly lower than OMP with κτ = κν = 4.

To discuss the computational complexity in detail, we depict
the mean simulation runtime per iteration in Fig. 4 (using a
Dell XPS 13 2019 laptop). Our simulator implements a cache
system to avoid precomputing the same matrix ΦDτ×Dν twice.
We first focus on the points when the cache was not employed
(8% of the total). The time to generate the matrix ΦDτ×Dν
and load it in memory is counted in the total run time of Algs.
1 and 2 and divided by |P̂|. In this case, the run time of OMP
with κτ = κν = 1 versus κτ = κν = 4 grew by a factor of 16,
as we have predicted. Moreover, the run-time of OMP with
κτ = κν = 4 was an order of magnitude greater than OMPBR
for the same resolution. Finally, the run time of OMPBR with
κτ = κν = 1024 was 2.5 times higher than OMPBR with
κτ = κν = 4, confirming our analysis. Remarkably, OMPBR
with κτ = κν = 1024 is faster than OMP with κτ = κν = 4,
in addition to achieving better channel estimations.

When the matrix ΦDτ×Dν is cached, the run-time com-
parison changes significantly. The run time of classic OMP
decreases by two orders of magnitude, whereas BR does not
benefit from caching. Therefore, for moderate values of κτ and
κν , for the subset of systems with unchanging pilot patterns
and a large memory, classic OMP is still preferrable over
OMPBR in terms of complexity. Still, OMP with a super-
resolution factor of κτ = κν = 1024 would be impossible to
implement. OMPBR displays the better scaling and is the only
estimator that supports extremely large values of κτ and κν ,
approximating the continuous truth of the channel (12).

V. CONCLUSIONS AND FUTURE WORK

The OTFS waveform allows to represent signals in a sparse
Delay-Doppler domain representation. In sparse multipath sce-

narios, the channel output may be expressed as a sum of paths
with individual delay and Doppler parameters. Our analysis
shows that the channel response displays intrinsic differences
when the delay is not an integer multiple of the sampling
period and the Doppler shift is not an integer multiple of
the frequency parameter ∆f = 1

LTs
. Compressed Sensing can

enable significant improvements in sparse channel estimation.
However, prior work on OTFS CS channel estimation has
assumed that the delays are approximately integer multiples
of the sampling period. In this paper, we developed a CS
channel estimation scheme for OTFS systems that can model
the continuous delay and Doppler domain. Moreover, we have
shown that in OTFS there are intrinsic differences when the
delay coefficients are not integer, and the use of integer ap-
proximations results in catastrophic channel estimation errors.
As a result, we propose an OMPBR algorithm that estimates
delay and Doppler on a continuous domain. This significantly
reduces the error in OTFS channel estimation with reasonable
complexity. In future work we plan to extend our results
to multiple-antenna joint sparse angular, delay and Doppler
estimation problems and multi-user locations.
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