
DISTRIBUTED SPECTRUM SENSING WITH MULTIANTENNA SENSORS UNDER
CALIBRATION ERRORS

Daniel Romero and Roberto Lopez-Valcarce

Department of Signal Theory and Communications, Universidade de Vigo, 36310 Vigo, Spain
email: {dromero, valcarce}@gts.uvigo.es

ABSTRACT

Spectrum sensing design for Cognitive Radio systems is chal-
lenged by the nature of the wireless medium, which makes the
detection requirements difficult to achieve by standalone sen-
sors. To combat shadowing and fading, distributed strategies
are usually proposed. However, most distributed approaches
are based on the energy detector, which is not robust to noise
uncertainty. This phenomenon can be overcome by multi-
antenna sensors exploiting spatial independence of the noise
process. We combine both ideas to develop distributed detec-
tors for multiantenna sensors. Fusion rules are provided for
sensors based on the Generalized Likelihood Ratio as well
as for ad hoc detectors derived from geometric considera-
tions. Simulation results are provided comparing the perfor-
mance of the different strategies under lognormal shadowing
and Ricean fading.

Index Terms— Cognitive radio, spectrum sensing, dis-
tributed detection, fading channels.

1. INTRODUCTION

Spectrum sensing in Cognitive Radio is a critical issue which
drastically affects the achievable throughput of the secondary
network [1]. To satisfy the detection requirements imposed by
regulatory bodies to protect primary users from interference,
the detectors should operate at very low Signal-to-Noise Ratio
(SNR) conditions, and an efficient solution in terms of sensing
time, false alarm rate and control overhead must be provided.

Due to its simplicity, the most popular approach to pri-
mary detection is the energy detector (ED) [2]. Since practi-
cal enviroments demand some robustness under channel im-
pairments such as shadowing that a standalone sensor cannot
achieve, several distributed rules based on ED have been pro-
posed [3, 4]. However, ED performance is very sensitive to
uncertainty about the power of the background noise [5]. This
motivates standalone multiantenna sensors that overcome this
problem by exploiting spatial whiteness of the noise [6–11].
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Combining both ideas, we derive distributed detectors based
on multiantenna sensors, in order to mitigate the detrimental
effects of both noise uncertainty and shadowing.

In distributed settings, the information collected by each
sensor is sent to a fusion center (FC) that makes the final deci-
sion. With decision-fusion rules, which minimize the required
bandwidth for control traffic, only one-bit local decisions are
sent to the FC. Deriving the optimal thresholds for the lo-
cal and global decisions is difficult, and a popular subopti-
mal scheme is the OR rule. In data-fusion schemes, a locally
computed statistic is sent to the FC, where all of them are
somehow combined and the result is then compared against
a threshold. These strategies typically outperform decision-
fusion ones, at the expense of larger bandwidths.

Most standalone multiantenna detectors [6, 7, 10] assume
that the unknown noise power is the same at all antennas.
In practice this assumption may not hold true, due to dif-
ferences in the electronics of the analog front-ends. A few
multiantenna detectors robust to this effect have been derived
[8, 9, 11]. In a distributed scheme, different sensors will ex-
perience different (and unknown) noise levels, which makes
it necessary to cope with both inter-antenna and inter-sensor
noise uncertainties.

We focus on two kinds of standalone multiantenna detec-
tors as the basis of the distributed spectrum sensing network,
respectively assuming calibrated and uncalibrated frontends.
In the first class are the detectors derived from the Gener-
alized Likelihood Ratio (GLR) approach [2] and require the
computation of the largest eigenvalues of the sample spatial
covariance or coherence matrices. Assuming independence
of the observations at different sensors, the data-fusion rules
for these GLR detectors are easily found. The detectors from
the second class measure the angle between these matrices
and the identity or a generic diagonal matrix, respectively,
and have the advantage of not requiring eigenvalue extraction.
This geometric approach to the design of these detectors also
provides the means to design the corresponding data-fusion
rules.

The paper is organized as follows. After setting the prob-
lem in Sec. 2, standalone multiantenna detectors are briefly
summarized in Sec. 3. Extensions to distributed settings are
given in Sec. 4. Simulation results under lognormal shadow-



ing and Ricean fading are given in Sec. 5. Finally, conclusions
are drawn in Sec. 6.

2. SIGNAL MODEL

Consider a network of N spectrum sensors, in which sensor
n is equipped with Mn antennas. The observed signal in a
given frequency channel is downconverted to baseband and
I/Q sampled. No synchronization with the primary signal is
assumed, as this would be unrealistic in practical settings (de-
tectors must operate under SNR conditions well below de-
codability levels in order to overcome the hidden node prob-
lem). Sensor n gathers Kn samples per antenna in the sens-
ing window allocated for the current channel, collected in the
Kn ×Mn complex-valued data matrix Yn:

Yn = xnh
H
n + WnΣn, 1 ≤ n ≤ N. (1)

xn is a Kn × 1 vector with the samples of the primary signal
at sensor n, assumed zero-mean and normalized to unit vari-
ance. h∗n is an Mn × 1 vector with the channel gains from
the primary transmitter to the antennas of sensor n. Wn is a
Kn×Mn matrix of noise samples, assumed zero-mean Gaus-
sian, temporally and spatially white: E{[Wn]ki[Wn]∗lj} =

δklδij . The Mn ×Mn diagonal matrix Σ2
n collects the vari-

ances of the noises at each antenna.
The primary signal is modeled as circularly symmetric

and temporally white Gaussian process. (This Gaussian as-
sumption leads to tractable models and useful detectors. In
addition, multicarrier signals can be accurately modeled as
Gaussian if the number of subcarriers is reasonably large).
The channel is assumed to be frequency-flat and to remain
constant within the sensing interval. The frequency channel
under scrutiny is idle iff hn = 0 for all n (representing a
transmission opportunity for the secondary network) and busy
otherwise.

Under this model, the observations at sensor n are tempo-
rally white and Gaussian, with pdf given by

fn(Yn;Rn) =

[
1

π detRn
exp{−Tr(R−1n R̂n)}

]Kn

, (2)

where R̂n
.
= 1

Kn
Y H
n Yn is the sample spatial covariance ma-

trix, and Rn
.
= E{R̂n}= Σ2

n+hnh
H
n is the true covariance.

3. STANDALONE MULTIANTENNA DETECTORS

We briefly summarize four multiantenna detectors for non-
collaborative settings: sensor n makes a local decision based
on its data, according to T (i)

n ≷H1

H0
γ, where T (i)

n is the corre-
sponding statistic and γ is a threshold. A more comprehensive
review of multiantenna detectors can be found in [8].

3.1. Detectors for calibrated receivers

These detectors assume that the noise variance, though un-
known, is the same at the Mn antennas, i.e. Σ2

n = σ2
nI .

Mean/max eigenvalue detector [7]: This test is derived
from a Generalized Likelihood Ratio (GLR) approach for this
hypothesis testing problem:

H0 : Rn = σ2
nI, H1 : Rn = σ2

nI + hnh
H
n , (3)

where both σ2
n and hn are unknown. The GLR test statistic is

given by

Tn
.
= log

maxh,σ2 fn(Yn;h, σ2 |H1)

maxσ2 fn(Yn;σ2 |H0)
(4)

= 2Kn log
(Mn − 1)Mn−1µMn

n

(Mnµn − 1)Mn−1
, (5)

where

µn
.
=

1
Mn

Tr R̂n

λ1(R̂n)
, (6)

and λm(A) represents them-th largest eigenvalue of A. Note
that (5) is a monotonic function of µn, which is the ratio of
the mean of the eigenvalues of R̂n to the largest one.

Correlation-identity detector [8]: This ad hoc test does
not require eigenvalue computations. Its statistic is the in-
verse of the squared correlation coefficient between R̂n and a
scaled identity α2I , under the standard inner product in ma-
trix space 〈A,B〉 .= Tr(BHA):

Tn
.
=
〈R̂n, R̂n〉 · 〈α2I, α2I〉

|〈R̂n, α2I〉|2
=
Mn Tr(R̂H

n R̂n)

Tr2(R̂n)
, (7)

which is independent of α2.

3.2. Detectors for uncalibrated receivers

These schemes do not assume the same noise power across
all antennas. Thus, Σ2

n is an unknown diagonal matrix.
λ1 detector [8]: The GLR test applied to the problem

H0 : Rn = Σ2
n, H1 : Rn = Σ2

n + hnh
H
n , (8)

with Σ2
n diagonal, and Σ2

n, hn unknown, results in the fol-
lowing statistic as the SNR goes to zero:

Tn ≈ 2Kn[−1 + λ1(Ĉn)− log λ1(Ĉn)], (9)

where the spatial coherence matrix Ĉn is defined as follows.
Let D̂n = diag(R̂n) be a diagonal matrix retaining the diag-
onal of matrix R̂n. Then

Ĉn
.
= D̂−1/2n R̂nD̂

−1/2
n . (10)

Correlation-diagonal detector: Following the same phi-
losophy as with the derivation of (7), a test statistic could be



obtained from the (inverse squared) correlation coefficient be-
tween R̂n and a generic diagonal matrix D (rather than a
scaled identity). However, in this case such coefficient de-
pends on the particular reference matrix D. One possibility
is to take as reference the diagonal matrix maximizing the
correlation coefficient, i.e.

D̃n
.
= arg max

D

|〈R̂n,D〉|2

〈R̂n, R̂n〉〈D,D〉
. (11)

It is readily seen that the maximum is achieved when D̃n =
diag(R̂n) = D̂n (up to an irrelevant scaling). The resulting
statistic is therefore

Tn
.
=

Tr(R̂H
n R̂n)

Tr(D̂H
n D̂n)

, (12)

and the test turns out to be a particular case of the family of
"covariance-based" detectors from [9].

4. DISTRIBUTED DATA-FUSION RULES

In a heterogeneous distributed setting, different sensors may
have different number of antennas Mn, collect different num-
ber of samples Kn, and be affected by different amounts of
noise. Their listening intervals need not be perfectly time-
synchronized, and propagation delays from the primary trans-
mitter to each sensor will be different in general. These con-
siderations motivate a model in which the observations {Yn}
at different sensors are regarded as independent. Note that
attempting to exploit any potential correlation between obser-
vations at different sensors would require transmitting those
data to the FC, which is clearly impractical and undesirable.

4.1. Fusion rule for GLR detectors

Under the independence assumption on the observed data at
different sensors, it is clear that the joint pdf becomes

f(Y;R) =

N∏
n=1

fn(Yn;Rn), (13)

where Y = {Yn}Nn=1 and R = {Rn}Nn=1. The log-GLR
statistic is given by:

T = log
maxR f(Y;R|H1)

maxR f(Y;R|H0)
. (14)

Due to the factorization in (13),

T =

N∑
n=1

log
maxR fn(Yn;R |H1)

maxR fn(Yn;R |H0)
=

N∑
n=1

Tn. (15)

Therefore, the global GLR detector only requires the trans-
mission of the local statistics Tn to the FC. Note that this

fusion rule applies also to other GLR-based detectors, such
as the sphericity test [10] and the Hadamard ratio test [11],
which assume that the spatial covariance matrix under H1 is
unstructured, and were derived for calibrated and uncalibrated
frontends respectively.

4.2. Fusion rule for ad hoc detectors

The ad hoc standalone detectors based on the statistics
from (7) and (12) are not GLR tests, and thus it is not obvious
in principle which fusion rules to use. A possible approach
is to consider the global block-diagonal sample covariance
matrix

R̂
.
=

 g(K1)R̂1

. . .
g(KN )R̂N

 , (16)

in which each block R̂n has been weighted by a monoton-
ically increasing function g of the number of samples Kn

used at sensor n, in order to take into account the different
estimation accuracies across sensors. Now, if calibrated sen-
sors are assumed, one may consider the correlation coefficient
between R̂ and a reference block diagonal matrix

D =

 σ2
1IM1

. . .
σ2
NIMN

 . (17)

Maximizing this coefficient w.r.t. σ2
1 , . . . , σ2

N , the following
test statistic is obtained:

T =

∑N
n=1 g

2(Kn) Tr(R̂H
n R̂n)∑N

n=1
g2(Kn)
Mn

Tr2(R̂n)
, (18)

which reduces to (7) if N = 1. In the case of uncalibrated
sensors, one should maximize the correlation coefficient be-
tween R̂ and a generic diagonal matrix. The corresponding
test statistic thus obtained is:

T =

∑N
n=1 g

2(Kn) Tr(R̂H
n R̂n)∑N

n=1 g
2(Kn) Tr(D̂H

n D̂n)
, (19)

which reduces to (12) for N = 1. Note that with the fusion
rules (18)-(19), each sensor must transmit two quantities to
the FC.

5. SIMULATION RESULTS

The motivation for distributed spectrum sensing is its poten-
tial resilience against shadowing; with multiantenna sensors,
robustness against fast fading can also be expected. To eval-
uate these schemes, we consider both effects in the model for
the channel coefficient vector of sensor n:

hn = un ·
(√

κr
1 + κr

h̄n +

√
1

1 + κr
h̃n

)
, (20)

where :



• un is a log-normally distributed scalar random variable
modeling slow fading (log-normal shadowing);

• h̄n = [1 ejθn · · · ej(Mn−1)θn ]T , with θn ∼ U(0, π)
modeling the relative phase of the signal at the antennas
of a uniform linear array;

• h̃n is an Mn × 1 zero-mean complex Gaussian vector,
independent of un and θn, with E{h̃nh̃Hn } = IMn

.

In this way, h̄n accounts for the line-of-sight (LOS) compo-
nent, whereas h̃n models the scattering (Rayleigh contribu-
tion). κr is the Rice factor, i.e., the ratio between LOS and
scattered powers. Independent Rayleigh fading is justified for
sufficiently separated antennas at the sensors [12].

It is assumed that all sensors are at roughly the same dis-
tance from the primary transmitter, so that the mean path-
loss is the same for all of them, and 20 log10 un is normally
distributed with dB-spread σdB. Sensors are assumed suffi-
ciently far away from each other, so that they experience in-
dependent shadowing, i.e. the variables {un}Nn=1 are uncor-
related1. Note that, from (20), E{hnhHn } = E{|un|2}IMn .
Therefore, with σ2

n,m the noise power at the m-th antenna of
sensor n, the average SNR at that antenna is E{|un|2}/σ2

n,m.
For simplicity, all sensors have similar characteristics; we fix
Mn = M = 4 antennas per sensor, Kn = K = 128 samples,
σdB = 3 dB, and PFA = 0.15 throughout.

Fig. 1 shows the variation of the average probability of
miss PMD with the number of sensors N , for the different de-
tectors considered, and for both fusion strategies: data-fusion
(DF), as derived in Sec. 4; and decision-fusion or hard com-
bining, as exemplified by the OR (i.e. "1-out-of-N") rule with
equal thresholds, as commonly used in practice [3]. The Rice
factor is κr = 0 dB, i.e. the LOS and NLOS channel compo-
nents have equal weight. In all cases PMD decreases exponen-
tially with N , and the decay rate is faster for the Mean/Max
and Correlation-identity detectors, which exploit more effi-
ciently the data model since there are no noise mismatches
in this case. On the other hand, the OR versions exhibit a
significant performance loss with respect to their data-fusion
counterparts, as could be expected.

Next we consider the effect of noise mismatches in the an-
tennas of the different sensors. These are modeled by drawing
the values of the noise powers, when measured in dB, from a
normal distribution with the same mean values as in the pre-
ceding experiment and with standard deviation σNP = 0.5 dB.
Such a model takes into account the multiple sources of noise
that are present in a given branch (antenna, thermal, quanti-
zation, etc.) which can result in noise power variations. It
is seen in Fig. 2 that the Mean/Max and Correlation-identity
detectors degrade considerably with respect to the case of uni-
form noise powers. On the other hand, the performance of the
λ1 and Correlation-diagonal detectors does not change appre-

1Correlated shadowing reduces spatial diversity and is expected to de-
grade the performance of the distributed detectors [13].
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ciably. This is true for both the data-fusion and OR versions
of the distributed detectors.

Lastly, we study the influence of the Rice factor on dis-
tributed detector performance. In Fig. 3 we fix the number
of sensors at N = 8, and no noise mismatches are intro-
duced. In an NLOS environment (κr → 0) the Mean/Max
and Correlation-identity detectors outperform the λ1 and
Correlation-diagonal schemes, as expected. However, this
situation is reversed as κr → ∞, i.e. in settings in which
a strong LOS component is present (such as e.g. rural en-
vironments): surprisingly, the performance of the λ1 and
Correlation-diagonal detectors improves as κr increases,
eventually outperforming the Mean/Max and Correlation-
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identity detectors even though the noise power is the same
at each antenna of any given sensor. The performance of
the last two schemes is seen to be almost independent of κr.
Another interesting observation is that in NLOS scenarios,
the performance of the ad hoc Correlation-diagonal detector
is better than (for data-fusion) or equal to (for the OR rule)
that of the GLR-based λ1 detector, which fares better in LOS
environments.

6. CONCLUSION

We studied the problem of devising data-fusion strategies
for distributed spectrum sensing with multiantenna devices.
Adopting a Gaussian model, four standalone detectors were
considered, for the case of calibrated as well as uncalibrated
receivers. Two of these were obtained from a GLR perspec-
tive, whereas the other two were derived from geometric
considerations and constitute low complexity alternatives, as
they do not require eigenvalue computations. These schemes
have the potential to counteract noise uncertainty as well as
slow and fast fading. The data-fusion methods presented out-
perform other decision-fusion schemes, such as the OR rule,
which in turn requires less communication bandwidth. The
performance of the detectors derived under the assumption of
uniform noise power across all antennas of any given sensor
substantially degrades in the presence of noise mismatches.
Besides being robust to this phenomenon, the detectors de-
rived for uncalibrated receivers turn out to outperform the
other two in strong LOS environments, even in the absence
of noise mismatches. Future work will be devoted to the
statistical analysis of the schemes discussed here, as well as
to the derivation of detectors exploiting the structure of the
Rice channel model.
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