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Compressive Covariance Sensing
– Structure-Based Compressive Sensing Beyond Sparsity –

Daniel Romero, Dyonisius Dony Ariananda, Zhi Tian and Geert Leus

Compressed sensing deals with the reconstruction of signals
from sub-Nyquist samples by exploiting the sparsity of their
projections onto known subspaces. In contrast, the present
article is concerned with the reconstruction of second-order
statistics, such as covariance and power spectrum, even in
the absence of sparsity priors. The framework described here
leverages the statistical structure of random processes to
enable signal compression and offers an alternative perspective
at sparsity-agnostic inference. Capitalizing on parsimonious
representations, we illustrate how compression and recon-
struction tasks can be addressed in popular applications such
as power spectrum estimation, incoherent imaging, direction
of arrival estimation, frequency estimation, and wideband
spectrum sensing.

I. INTRODUCTION

The incessantly growing size of sensing problems has
spurred an increasing interest in simultaneous data acquisition
and compression techniques that limit sensing, storage, and
communication costs. Notable examples include compressed
sensing [1], support recovery [2], sub-Nyquist sampling of
multiband or multitone signals [3]–[5], and array design for
aperture synthesis imaging [6]–[8]. The overarching paradigm
of sub-Nyquist sampling can impact a broad swath of resource-
constrained applications arising in data sciences, broadband
communications, large-scale sensor networks, bioinformatics,
and medical imaging, to name a few.

The aforementioned techniques rely on parsimonious mod-
els that capture relevant information and enable compres-
sion. In compressed sensing, for example, signals can be
reconstructed from sub-Nyquist samples provided that they
admit a sparse representation in a known transformed do-
main. Whereas this form of structure arises naturally in many
applications, it is often the case that either the underlying
signal is not sparse or the sparsifying transformation is difficult
to model or manipulate. Those scenarios call for alternative
approaches to effect compression by capturing other forms of
structure.

A prominent example is the family of methods exploiting
structural information in the statistical domain, which includes
those intended to reconstruct the second-order statistics of
wide-sense stationary signals, such as power, autocorrelation,
or power spectral density. It is widely accepted that statistics of
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this class play a central role in a multitude of applications com-
prising audio and voice processing, communications, passive
sonar, passive radar, radioastronomy, and seismology, to name
a few [9]. Although reconstruction of second-order statistics
from compressed observations dates back several decades (see
e.g. [6] and references therein), the recent interest in com-
pressive sensing and reconstruction has propelled numerous
advances in this context.

It is the purpose of the present article to provide a refreshing
look at the recent contributions in this vibrating area, which
will be globally referred to as compressive covariance sensing
(CCS). Admittedly, a straightforward approach to reconstruct
second-order statistics is to apply an estimation method over
the uncompressed waveform obtained via a non-CCS pro-
cedure. However, it is not difficult to see that this two-step
approach incurs large computational complexity and heavily
limits the compression ratio. CCS methods, on the other hand,
proceed in a single step by directly recovering relevant second-
order statistics from the compressed samples, thus allowing a
more efficient exploitation of the statistical structure.

After an illustrative example providing intuition and il-
lustrating the basic notions that underlie CCS, we delineate
how the degrees of freedom of the statistical model reflect
in fundamental compression limits and how efficient com-
pression structures can be designed to attain these bounds.
Focusing on the applications, we also illustrate how major
savings in sampling costs can be exerted upon judiciously
exploiting the statistical structure via CCS. We next provide a
tutorial introduction to inference in CCS, along with advanced
techniques for cyclic feature detection, cooperative distributed
sensing in wireless sensor networks and power spectrum
estimation for multiband signals. The article concludes with
an outlook on new opportunities for efficient handling of data-
intensive sensing applications in which inference from random
processes is of foremost importance.

II. “SAMPLING” SECOND-ORDER STATISTICS

To introduce the basic notions of CCS, consider the problem
of measuring the fine variations of a spatial field, for instance
to achieve a high angular resolution in source localization.
Since the large sensor arrays required in the absence of com-
pression incur prohibitive hardware costs, many acquisition
schemes have been devised to reduce the number of sensors
without sacrificing resolution.

A. A Warm-up Example
Suppose that a uniform linear array (ULA) with L antennas,

such as the one in Fig. 1a, observes T snapshots of a zero-
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Fig. 1: (a) Uncompressed uniform linear array with 10 antennas receiving the signals from five sources in the far field. (b)
Compressed array with 5 antennas. The five antennas marked in gray were removed, but the achievable spatial resolution
remains the same.

mean spatial signal whose complex baseband representation
is given by xτ ∈ CL, τ = 0, 1, ...T − 1. Many array
processing algorithms rely on estimates of the so-called spatial
covariance matrix Σx := E

{
xτx

H
τ

}
to form images or to

obtain information such as the bearing of certain sources [6],
[9]. A straightforward estimate of Σx is the sample covariance
matrix, given by

Σ̂x =
1

T

T−1∑
τ=0

xτx
H
τ . (1)

If the impinging signals are generated by uncorrelated point
sources in the far field (see Fig. 1a), the matrix Σx exhibits a
Toeplitz structure (see Sec. VI), meaning that its coefficients
are constant along the diagonals. Thus, one may represent the
(m,n)-th entry of Σx by

σ[m− n] = E {xτ [m]x∗τ [n]} , (2)

where xτ [m] represents the m-th entry of xτ . Noting that Σx
is also Hermitian reveals that all its information is contained
in the coefficients σ[l], l = 0, . . . , L − 1. These observa-
tions suggest the possibility of constructing estimators with
improved performance [10], [11]: simply consider replacing
the elements on each diagonal of Σ̂x with their arithmetic
mean. This operation renders a more satisfactory estimate than
the sample covariance matrix in (1) because it utilizes the
underlying Toeplitz structure.

Let us now adopt a different standpoint. Instead of at-
tempting an improvement in the estimation performance, the
structure described above can also be exploited to reduce the
number of antennas required to estimate Σx (see e.g. [6]–[8]).
Suppose, in particular, that only a subset of the antennas in
the ULA are used to sample the spatial field of interest, the
others being disconnected (see Fig. 1b).

Let the set K := {k0, . . . , kK−1} collect the indices of the
K active antennas. The vector signal received by this sub-
array, which can be thought of as a compressed observation,

is given by yτ = [xτ [k0], . . . , xτ [kK−1]]T . The (i, j)-th entry1

of the covariance matrix Σy := E
{
yτy

H
τ

}
is therefore

E {yτ [i]y∗τ [j]} = E {xτ [ki]x
∗
τ [kj ]} = σ[ki − kj ]. (3)

Thus, Σy is made up of a subset of the entries of Σx. It is
clear therefore that Σx can be reconstructed from a sample
estimate of Σy if all the entries of the former show up at
least once in the latter. From (3), this means that, for every
l = 0, . . . , L−1, there must exist at least one pair of elements
k, k′ in K satisfying k − k′ = l. Sets K of this nature are
called sparse rulers, and such sets with the minimum number
of elements are termed minimal sparse rulers, as explained in
Box 1. In Fig. 1b for example, only the antennas at positions
K = {0, 1, 4, 7, 9} are operative, but the array can reconstruct
the same spatial covariance matrix as the array in Fig. 1a.

Mathematically, the problem of constructing sparse rulers
is interesting on its own and has been extensively analyzed
(see [12] and references therein). Since finding minimal sparse
rulers is a combinatorial problem with no closed-form solution,
devising structured yet sub-optimal designs has received great
attention (see e.g. [12], [13]).

An intimately related concept is that of minimum redun-
dancy array [7], [9], well known within the array processing
community. A minimum redundancy array is a minimal linear
sparse ruler whose length is maximum given its number of
marks. For example, K1 = {0, 1, 2, 3, 7}, K2 = {0, 1, 2, 5, 8}
and K3 = {0, 1, 2, 6, 9} are minimal sparse rulers of length 7,
8 and 9, respectively. However, K1 and K2 are not minimum
redundancy arrays, since a minimal sparse ruler of greater
length can be found with the same number of marks, an
example being K3.

Deploying a smaller number of antennas effects cost savings
beyond that associated with the antennas themselves: radio
frequency (RF) equipment, such as filters, mixers, and ADCs,
needs solely to be deployed for the active antennas. Moreover,

1We adopt the convention that the first row/column of any vector/matrix is
associated with the index 0, the second with the index 1, and so on.
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Box 1: Linear Sparse Rulers

A set K ⊂ {0, . . . , L − 1} is a lengh-(L − 1) (linear) sparse
ruler if for every l = 0, . . . , L − 1, there exists at least
one pair of elements k, k′ in K satisfying k − k′ = l.
Two examples of length 10 are K = {0, 1, 2, 5, 7, 10} and
K = {0, 1, 3, 7, 8, 10}.
The name sparse ruler stems from the geometric interpretation
of K as a physical ruler where all but the marks with indices in
K have been erased. Despite lacking part of the marks, a sparse
ruler is still able to measure any integer distance between 0
and L− 1. In the example of Fig. 2, we observe that the ruler
K = {0, 1, 3, 7, 8, 10} is capable of measuring any object of
length 5 by using the marks 3 and 8.
A length-(L − 1) minimal sparse ruler is a length-(L − 1)
sparse ruler K with minimum number of elements |K|. The
set K = {0, 1, 3, 7, 8, 10} is a length-10 minimal linear sparse
ruler since it has 6 elements and there exists no length-10
sparse ruler with 5 or fewer elements.

0 1 3 7 8 10

Distance = 5

Fig. 2: A sparse ruler can be thought of as a ruler where a part
of its marks have been erased, but the remaining marks allow
to measure all integer distances between 0 and its length.

the fact that the endpoints 0 and L−1 are always in K, for any
length-(L− 1) linear sparse ruler K, means that the aperture
of the sub-array equals the aperture of the uncompressed
array. Therefore, this antenna reduction comes at no cost in
angular resolution. The price to be paid is, however, slower
convergence of the estimates: generally, the smaller |K|, the
larger the amount of averaging required to attain a target
performance. Hence, when sampling signals defined on the
spatial domain, this kind of compression is convenient when
hardware savings make up for an increase in the acquisition
time, as is usually the case in array processing.

B. Importance of Covariance Structures

In the previous example, the Hermitian Toeplitz structure
of Σx allowed us to recover the second-order statistics of
xτ from those of its compressed version yτ . More generally,
it is expected that our ability to compress a signal while
preserving the second-order statistical information depends
on the structure of Σx. In other words, we expect that the
more structured Σx is, the stronger compression on xτ it may
induce.

In certain applications such as power spectrum estimation of
communication signals, the covariance matrix is known to be
circulant [14]–[17]. Recall that a circulant matrix is a special
type of Toeplitz matrix where each row is the result of applying
a circular shift to the previous one. For this reason, it can be
seen that σ[l] = σ[l− L]. This increased structure relaxes the

Box 2: Circular Sparse Rulers

A set K ⊂ {0, . . . , L− 1} is a lengh-(L− 1) circular sparse
ruler if for every l = 0, . . . , L − 1, there exists at least one
pair of elements k, k′ ∈ K satisfying (k − k′) mod L =
l. An example of a length-15 circular sparse ruler is K =
{0, 1, 4, 6, 8}. It can be seen that any length-l linear sparse
ruler, with L/2 ≤ l ≤ L−1, is also an example of a length-L
circular sparse ruler.
A circular sparse ruler can be thought of as the result of
wrapping around a linear ruler. This operation allows us to
measure two different distances using each pair of marks (see
Fig. 3).
A length-(L−1) circular sparse ruler is minimal if there exists
no length-(L− 1) circular sparse ruler with fewer elements.

requirements on K, which is no longer required to be a linear
sparse ruler but a circular one. See Box 2 for a definition.

0 1

4

6

8

distance = 14

distance = 2

Fig. 3: Generally, in a circular sparse ruler, each pair of marks
allows to measure two distances.

Due to their ability to measure two different distances using
each pair of marks, circular sparse rulers lead to a greater
compression than their linear counterparts. In other words, K
needs fewer elements in order to be a length-(L− 1) circular
sparse ruler than in order to be a length-(L− 1) linear sparse
ruler.

Circular sparse rulers can be designed in several ways. For
certain values of L, minimal rulers can be obtained in closed
form [18]. Other cases may require exhaustive search, which
motivates sub-optimal designs. Immediate choices are length-
(L − 1) or length-bL2 c minimal linear sparse rulers [19]. In
fact, the latter provides optimal solutions for most values of
L below 60 [20].

Another common structure besides Toeplitz and circulant is
that present in those applications where the covariance matrix
is known to be banded [19]. d-Banded matrices are Toeplitz
matrices satisfying σ[l] = 0 for all l > d, and arise in those
cases where we sample a wide-sense stationary (WSS) time
signal whose autocorrelation sequence σ[l] vanishes after d
lags. Sampling patterns for banded matrices are discussed
in [20], which suggests that the achievable compression is
dependent on the parameter d. These designs also hold for
certain situations where we are only interested in the first d
correlation lags [21].
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Toeplitz d-banded circular
S = 2L− 1 real unknowns S = 2L− 1 real unknowns S = L real unknowns

WSS processes WSS with d limited lags OFDM signals
DOA estimation MA(d) time series Multiband signals

Incoherent imaging Incoherent imaging

Fig. 4: Some common covariance structures, along with their main applications.

These typical covariance structures, including Toeplitz, Cir-
culant and banded, are illustrated in Fig. 4 along with their
most popular applications. Generally speaking, in many cases
besides the above, prior knowledge constrains covariance
matrices to be linear combinations of certain known matrices,
say {Σi}i. In other words, there must exist coefficients αi
such that

Σx =

S−1∑
i=0

αiΣi. (4)

Without any loss of generality, we may assume that the scalars
αi are real [20] and the matrices Σi linearly independent.
Thus, S = {Σ0, . . . ,ΣS−1} is a basis and S represents the
dimension of the model. As mentioned above, this expansion
encompasses all the previous examples as particular cases —
suffice it to choose the right set of matrices Σi. It can be
seen that S = 2L − 1 for Toeplitz matrices, S = L for
circulant matrices, and S = 2d − 1 for d-banded matrices
(see Fig. 4). The problem of estimating the coefficients αi
is known as structured covariance estimation or covariance
matching [10], [22] and has a strong connection with CCS.
Nonetheless, this line of works flourished prior to the surge of
compressed sensing in signal processing, when the main goal
was to design robust and performance-enhanced estimators
given a small sample size. CCS offers a new look of exploiting
covariance structures for joint signal acquisition and compres-
sion. It seems natural to conjure that the dimension S of the
parsimonious model in (4) is related to how compressible Σx
is (see Sec. III-A below).

III. COMPRESSION

The array processing example presented above describes
how compression can be accomplished for signals acquired in
the spatial domain — only a subset K of antennas was used to
estimate Σx. The remaining antennas can be disconnected or,
more simply, they need not be deployed. Broadly, acquisition
hardware represents the bottleneck of many current signal
processing systems, whose designs aim at meeting an ever
increasing demand for processing rapidly-changing signals.
In practice, Nyquist acquisition of wideband signals becomes

prohibitive in many circumstances since the sampling rate
drastically affects power consumption and hardware com-
plexity. The ambition to break this bandwidth barrier has
prompted a growing interest in innovative acquisition hardware
architectures that replace traditional equipment, such as the
slow and power-hungry analog-to-digital converters (ADCs).
In this section, we delve into compression methods that can be
applied not only for compressive acquisition of spatial signals,
but also for time signals and more general classes of signals.

In particular, suppose that we are interested in estimating
the second-order statistics of x(t), indexed by the continuous
time index t. A traditional ADC ideally produces the sequence

x[l] = x(lTs), l = 0, . . . , L− 1, (5)

where 1/Ts is the sampling rate, a number that must exceed
the Nyquist rate of x(t) to avoid aliasing. Unfortunately,
power consumption, amplitude resolution, and other param-
eters dictated by the application establish stringent upper
bounds on the values that the sampling rate can take on.
These limitations conflict with the constantly increasing need
for larger bandwidths and hence higher Nyquist rates.

One can think that a compression approach similar to
the one described for the spatial domain may potentially
alleviate these limitations by reducing the average sampling
rate. Generally known as non-uniform sampling, this approach
advocates the acquisition of a small number of samples
indexed by a subset of the Nyquist grid:

y[i] =x(kiTs), K = {k0, . . . , kK−1}. (6)

As we will soon see, this average rate reduction has lead to
the technology of compressive ADCs (C-ADCs), conceived
to circumvent the aforementioned hardware trade-offs. Before
delving into this topic, let us expand a little bit on the families
of samplers we are about to consider.

By forming x = [x[0], . . . , x[L − 1]]T and y =
[y[0], . . . , y[K− 1]]T , the operation in (6) can be equivalently
represented as a row-selection operation:

y = Φ̄x. (7)

The matrix Φ̄ ∈ CK×L, which contains ones at the positions
(i, ki) and zeros elsewhere, is therefore a sparse matrix with
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at most one nonzero entry at each row or column. Rather than
restricting ourselves to matrices of this form, there are certain
applications where the usage of dense compression matrices
has proven to be successful, both in the time domain (see
e.g. [4], [5]) and in the spatial domain (see e.g. [23]). In
correspondence with this terminology, we will talk about dense
samplers when Φ̄ is dense, and about sparse samplers when
Φ̄ is sparse.

As opposed to most applications in array processing, it is
common in time-domain applications to observe just a single
realization of the signal of interest, i.e. , T = 1. This is the
reason why we dropped the subscript τ from x and y in (7) as
compared to xτ and yτ in the previous section. For simplicity,
we will omit this subscript throughout when possible, keeping
in mind that several realizations may be available.

When observation windows for time signals are long,
hardware design considerations make it convenient to split
a sampling pattern into shorter pieces which are repeated
periodically. This amounts to grouping data samples in blocks
that are acquired using the same pattern. Likewise, the usage
of periodic arrays in the spatial domain may also present
advantages [16]. In these cases, the uncompressed observa-
tions x are divided into B blocks of size N = L/B as
x = [xT [0], . . . ,xT [B − 1]]T , and each block is compressed
individually to produce an output block of size M :

y[b] = Φx[b]. (8)

Thus, it is clear that one can assemble the vector of com-
pressed observations as y = [yT [0], . . . ,yT [B − 1]]T , and the
matrix Φ̄ from (7) as Φ̄ = IB ⊗Φ, where ⊗ represents the
Kronecker product.

In the case of sparse samplers, the above block-by-block
operation means that the pattern K can be written as

K = {m+ bN : m ∈M, b = 0, . . . , B − 1}, (9)

where M ⊂ {0, . . . , N − 1} is the sampling pattern used at
each block. For example, M can be a length-(N − 1) linear
sparse ruler. Thus, M can be thought of as the period of K,
or we may alternatively say that K is the result of a B-fold
concatenation ofM. In sparse sampling schemes of this form,
known in the literature as multi-coset samplers [3], the matrix
Φ is the result of selecting the rows of IN indexed by M.

A. Optimal Designs

One critical problem in CCS is to design a sampler Φ̄ that
preserves the second-order statistical information by allowing
reconstruction of the uncompressed covariance matrix from the
compressed observations. This boils down to the identifiability
issue for statistical analysis.

Design techniques for sparse and dense samplers hinge
on different basic principles. Whereas sparse samplers are
designed based on discrete mathematics considerations (as
explained earlier), existing designs for dense samplers rely on
probabilistic arguments. Inspired by compressed sensing tech-
niques, these designs generate sampling matrices at random
and provide probabilistic guarantees on their admissibility.

Optimal rates for dense samplers are known in closed
form for linear covariance parameterizations such as Toeplitz,
circulant and banded [20]. On the other hand, their evaluation
for sparse samplers requires solving combinatorial problems
such as the minimal sparse ruler problem. Table I summarizes
the optimum designs, along with the maximum compression
ratios, for the aforementioned parameterizations [20]. The
compression ratio is defined as

η :=
|K|
L

=
|M|
N

(10)

and satisfies 0 ≤ η ≤ 1. Note that the stronger the compres-
sion, the smaller η. It can also be interpreted as the reduction
in the average sampling rate: if x[l] represents the sample
sequence acquired at the Nyquist rate 1/Ts, for instance,
then the compressed sequence y[k] corresponds to an average
sampling rate of η/Ts.

With Fig. 5, the merits of CCS are readily illustrated through
a popular application of compressive wideband spectrum sens-
ing [24]–[26], where the spectrum occupancy over a very
wide band is decided via power spectrum estimation. It is
observed that the permissible sampling rate can be reduced
considerably, even when the sparsity structure is not present.
For instance, even for a moderate block length of N = 50, the
minimum sampling rate is less than one fourth of the Nyquist
rate in all cases. These cases include those deterministically
designed sparse samplers that are amendable to practical
hardware implementation. Asymptotically for increasing N ,
Table I alludes that the saving in sampling rates exhibits at a
rate proportional to 1/

√
N .

Furthermore, the superior efficiency of dense samplers also
manifests itself in Fig. 5. In fact, it can be shown that
certain random designs for dense samplers achieve optimum
compression ratios with probability one, in the sense that no
other sampler (either dense or sparse) can achieve a lower
ratio.
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Fig. 5: Optimum compression ratios when B = 10 and d =
BN/3 using dense samplers (DS) for Toeplitz, Circulant and
d-banded matrices, and using a linear sparse ruler (LSR) and
a circular sparse ruler (CSR). Moderate block lengths are seen
to yield strong compression.

B. Technologies
The acquisition systems that can be used to implement the

above sampling schemes are essentially the same as those used
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a continuous distribution with

M ≥
√

2d+1
2B−1

ηmin ≈√
2d+1

(2B−1)N2

TABLE I: Optimal designs and compression ratios.

in many other sub-Nyquist acquisition techniques, which have
recently experienced an intense development.

For example, time signals can be compressively acquired
using C-ADCs such as interleaved ADCs [27], random demod-
ulators [5], modulated wideband converters [4], and random
modulators pre-integrators [28]. If x contains the Nyquist
samples of x(t), their operation can be described by (7)
(see also Fig. 6). Note, however, that no C-ADC internally
acquires Nyquist samples since this would entail precisely
the disadvantages of conventional ADCs that they attempt to
avoid. Nonetheless, they represent a convenient mathematical
abstraction.

As for spatial signals, sparse samplers can be easily imple-
mented by removing unused antennas, whereas dense samplers
require analog combining (see e.g. [23]).

IV. MAIN APPLICATIONS

The problems that can be formulated in CCS terms are those
relying exclusively on the second-order moments of a certain
signal x. In this section, we elaborate on the mathematical
formulation of the signal processing problems involved in
some of the main applications. In each case we indicate the set
of basis matrices S = {Σ0, . . . ,ΣS−1} to be used (see (4)).

A. Applications in the Time Domain

CCS is especially convenient to acquire wideband signals,
whose rapid variations cannot be easily captured by con-
ventional ADCs. As described in Sec. III-B, this difficulty
motivates the usage of C-ADCs, whose linear operation can
be described by (7). Their usage in CCS has been considered
in a number of applications where acquisition designs and
reconstruction algorithms have been proposed. Some of them
are detailed next.
• Compressive Power Spectrum Estimation: The goal

is to estimate Σx from y with the only constraint that
Σx must be Hermitian Toeplitz and positive semidefinite.
This means that the matrices in S span the subspace of
Hermitian Toeplitz matrices. If the length L (in samples)
of the acquisition window is greater than the length of
the autocorrelation sequence σ[m], then S can be set to a

basis of the subspace of d-banded matrices [19]. Other ap-
proaches in the literature follow from the consideration of
bases for the subspace of circulant matrices, which arise
by stating the problem in the frequency domain [14], [15].
The positive (semi)definiteness of Σx can be ignored in
order to obtain simple estimators, or it can be exploited
using methods like those in [10].

• Wideband Spectrum Sensing: Applications such as dy-
namic spectrum sharing in cognitive radio networks [29]
require monitoring the power of different transmitters op-
erating on wide frequency bands. Suppose that a spectrum
sensor is receiving the signal x =

∑
i

√
αix

(i), where the
component

√
αix

(i) contains the Nyquist samples of the
signal received from the i-th transmitter. If x(i) is power
normalized, then αi is the power received from the i-
th transmitter. Since the second-order statistics of x(i),
collected in Σi = E

{
x(i)(x(i))H

}
, are typically known

[25], [30], [31], estimating the power of each transmitter
amounts to estimating the αi’s in the expansion (4).
CCS is of special relevance in this application since
the typically large number of transmitters means that
x is wideband, which motivates the usage of C-ADCs.
Various estimation algorithms have been proposed on
these grounds in [30].

• Frequency estimation: C-ADCs can be used to identify
sinusoids in wideband signals [32]. If R denotes the
number of sinusoids, the uncompressed signal samples
can be modeled as x[l] =

∑R−1
i=0 sia

(i)[l] + w[l], where
si ∈ C is random, w[l] is noise, and a(i)[l] = eωil

is a complex exponential whose frequency ωi is to be
estimated, possibly along with the variance of si. This is
the problem of estimating a sparse power spectrum [5].
Many algorithms for estimating these frequencies rely
on estimates of the covariance matrix Σx = E

{
xxH

}
,

which is known to be Hermitian Toeplitz and positive
semidefinite [11]. From the observations provided by a
C-ADC, whose usage is especially convenient if x is
wideband, one can first reconstruct Σx and subsequently
apply one of the existing techniques, which take Σx as
the input parameter. To accomplish the reconstruction,
one can use (4) with S being a set spanning the subspace
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ADC MUX
x(t) x[l]

x[b]
y[b]Φ

(a)

ADC MUX
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(b)

Fig. 6: Mathematical model for the operation of a C-ADC. (a) dense sampler (b) sparse sampler.

of Hermitian Toeplitz matrices.

B. Applications in the Spatial Domain

In applications requiring estimating the so-called angular
spectrum (e.g. sonar, radar, astronomy, localization), introduc-
ing compression may considerably decrease hardware costs.
In schemes using sparse sampling (see e.g. [6]–[8], [13],
[33]), only the antennas corresponding to the non-null columns
of Φ̄ need to be physically deployed, whereas in schemes
employing dense sampling [23], the number of antennas is
preserved after introducing compression, but the number of
RF chains is reduced.

In applications employing CCS, the received signal is typi-
cally modeled as a sum of incoherent planar waves emitted by
a collection of sources in the far field. The spatial field pro-
duced by each source results in a Toeplitz spatial covariance
matrix which depends on the angle of arrival of that source.
The sum of all contributions and noise, assumed white for
simplicity, produces therefore a Toeplitz Σx.

Two problems are usually considered:
• Incoherent Imaging: If a continuous source distribu-

tion is assumed, then the angular spectrum is dense.
The problem can be formulated as described above for
compressive power spectrum estimation, since the only
structure present in Σx is that it is Hermitian Toeplitz
and positive semidefinite [8]. However, recent works
show that the problem can also be stated using circulant
covariance matrices [16], [17].

• Direction of Arrival Estimation: The goal is to estimate
the angles of arrival of a finite number of sources. A broad
family of methods exist to this end (see e.g. [8], [13],
[33], [34]), most of them following the same principles
as described above for frequency estimation, since both
problems admit the formulation of sparse power spectrum
estimation.

Most applications listed in this section have been covered
with the two compression methods introduced in previous sec-
tions, namely sparse and dense sampling, either in a periodic
or non-periodic fashion. For time signals, periodicity typically
arises due to the block-by-block operation of C-ADCs (see
e.g. [19], [30], [35]); for spatial signals, by consideration of
periodic arrays [16], [17].

V. ESTIMATION AND DETECTION

Having described the modeling and compression schemes
for CCS, we turn attention to the reconstruction problems in
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Fig. 7: Mean squared error of the estimate of the least squares
algorithm when Σx is 168-banded (figure obtained from [19]).

CCS. For estimation, it boils down to reconstructing Σx in
(4) from the compressive measurements y.

Since y = Φ̄x, it follows that Σy = Φ̄ΣxΦ̄
H . When Σx

is given by (4), Σy can be similarly represented as

Σy =

S−1∑
i=0

αiΣ̄i, αi ∈ R, (11)

where Σ̄i = Φ̄ΣiΦ̄
H . This means that Σy and Σx share

the same coordinates αi. If the compression is accomplished
properly, for example using the designs discussed in previous
sections, these coordinates are identifiable and can be esti-
mated from the observations of y .

A. Maximum Likelihood

If the probability distribution of the observations is known,
one may resort to a maximum likelihood estimate of Σy . For
example, if y is zero-mean Gaussian and

Σ̂y =
1

T

T−1∑
τ=0

yτy
H
τ , (12)

is the sample covariance matrix of the compressed obser-
vations, the maximization of the log-likelihood leads to the
following problem:

minimize
{αi}i

log |Σy|+ Tr
(
Σ−1
y Σ̂y

)
(13)

subject to (11). Numerous algorithms have been proposed to
solve this non-convex problem (see e.g. [10], [30], [36]).
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B. Least Squares

The maximum likelihood approach involves high computa-
tional costs and requires an accurate statistical characterization
of the observations. For these reasons, it is customary to
rely on geometrical considerations and project the sample
covariance matrix onto the span of S.

From Σy = Φ̄ΣxΦ̄
H , it follows that σy = (Φ̄

∗ ⊗ Φ̄)σx,
where σy and σx are, respectively, the vectorizations of
Σy and Σx. Vectorizing (4) yields σx =

∑S−1
i=0 αiσi or,

in matrix form, σx = Sα, where we have arranged the
vectors σi as columns of the matrix S and the coordinates
αi as elements of the vector α. This results in the relation
σy = (Φ̄

∗⊗Φ̄)Sα. If the M2B2×S matrix (Φ̄
∗⊗Φ̄)S ∈ C

is full column rank, substituting σy by a sample estimate
σ̂y produces an overdetermined system σ̂y = (Φ̄

∗ ⊗ Φ̄)Sα̂,
whose solution via least squares yields the desired estimate in
closed form [14], [19], [30]:

Σ̂
LS
x = vec−1

{
S[(Φ̄

∗ ⊗ Φ̄)S]†σ̂y
}
. (14)

Here, the operator vec−1{·} re-stacks a vector into a square
matrix.

Fig. 7 illustrates the performance of this technique when
Σx is 168-banded (see [19] for more details) and several
sampling designs are used. Clearly, the mean squared error of
the estimate is larger when compression is introduced since
it reduces the total number of samples. This effect is not
exclusive of least squares estimation – it negatively affects any
reasonable estimator. For this reason, including compression
usually requires longer observation time if a certain target
performance metric is to be achieved. This does not conflict
with the true purpose of compression, which is to reduce
the average sampling rate – a parameter that affects most
decisively to the cost of the hardware.

However, note that this approach does not exploit the fact
that Σx is positive semidefinite. This constraint can be en-
forced to improve the estimation performance at the expense of
greater complexity. For instance, one may attempt to minimize
the least squares cost ||σ̂y − (Φ̄

∗ ⊗ Φ̄)Sα̂||2 subject to
the constraint Σx ≥ 0, which is a convex problem. Other
constraints can also be imposed if more prior information
is known. For instance, the elements of α̂ might be non-
negative [30], in which case one would introduce the constraint
α̂ ≥ 0; or it can be known that α̂ is sparse either by
itself or on a linearly transformed domain, in which case one
may impose the constraint ||Fsα̂||0 ≤ S0, where S0 is the
number of non-zero entries and Fs takes α̂ to the domain
where it is sparse. For instance, the elements of Fsα̂ may
be samples of the power spectrum [37]. Since the zero-norm
in this constraint is not convex, it is typically relaxed to a
`1-norm. For example, an `1-norm regularized least squares
formulation can be adopted as follows:

minimize
α̂

‖σ̂y − (Φ̄
∗ ⊗ Φ̄)Sα̂‖2 + λ‖Fsα̂‖1 (15)

In (15), signal compression is induced by the statistical
structure of Σx beyond sparsity, while the additional sparsity
structure can lead to stronger compression at the expense of

increased computational complexity compared to the closed-
form solution in (14).

C. Detection

In detection theory, we are interested in deciding whether a
signal of interest is present or not. This operation is typically
hindered by the presence of noise and other waveforms, such
as clutter in radar or interference in communications.

In many cases of interest, this problem can be stated in
terms of the second-order statistics of the signals involved, so
the goal is to decide one of the following hypotheses:

H0 : Σx = Σw
H1 : Σx = Σr + Σw,

(16)

where Σr and Σw respectively collect the second-order
statistics of the signal of interest and noise/interference. Our
decision must be based on the observation of the compressed
samples y = Φ̄x, whose covariance matrix Σy is given by
Φ̄ΣwΦ̄

H under H0 and Φ̄(Σr + Σw)Φ̄
H under H1. A most

powerful detection rule exists for this simple setting and can
be found using the Neyman-Pearson lemma [11]. If p(y;Hi)
denotes the density under hypothesis Hi, this rule decides H1

when the ratio p(y;H1)/p(y;H0) exceeds a certain threshold
set to achieve a target probability of false alarm [11].

More general problems arise by considering basis expan-
sions like the one in (4). In this case, the goal may be to decide
whether one of the αi’s, say α0, is positive or zero; while the
others are unknown and treated as nuisance parameters [30].
In these cases, no uniformly most powerful test exists and one
must resort to other classes of detectors such as the generalized
likelihood ratio test, which makes a decision by comparing
p(y; α̂H1)/p(y; α̂H0) against a threshold, using α̂Hi as the
maximum likelihood estimate of α under hypothesis Hi [30].

VI. MODAL ANALYSIS

As mentioned in Sec. IV, the problem of estimating the
frequency of a number of noise-corrupted sinusoids and the
problem of estimating the direction of arrival of a number of
sources in the far field are instances of a class of sparse spec-
trum estimation problems, which allow a common formulation
as modal analysis [11].

Suppose that the observations are given by

x =

R−1∑
i=0

sia
(i) +w = As+w, (17)

where a(i) = [1, eωi , . . . , eωi(L−1)]T are the so-called steer-
ing vectors, A = [a(0), . . . ,a(R−1)] is the manifold matrix,
w is noise and the coefficients si, collected in the vector s,
are uncorrelated random variables. The structure of a(i) stems
from the fact that each antenna receives the signal si with
a different phase shift. Because in a ULA the antennas are
uniformly spaced, the relative phase shift between each pair
of antennas is an integer multiple of a normalized frequency
quantity ωi, which is a function of the angle of arrival.

The covariance matrix of x is given by

Σx = AΣsA
H + σ2

wIL, (18)
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where σ2
w is the power of the noise process, assumed white

for simplicity, and Σs is the covariance matrix of s, which
is diagonal since the sources are uncorrelated. Note that these
assumptions result in Σx having a Toeplitz structure.

The compressed observations can be written as y = Φ̄x =
Ās, where Ā = Φ̄A, and have covariance matrix

Σy = ĀΣsĀ
H

+ σ2
wΦ̄Φ̄

H
. (19)

The parameters ωi can be estimated from Σy using adaptations
of traditional techniques such as MUSIC [35] and MVDR [38].

Alternative approaches are based on the observation that the
vectorization of (19) can be written in terms of the Khatri-
Rao product, defined as the column-wise application of the
Kronecker product, as

vec(Σy) = (Ā
∗ � Ā) diag {Σs}+ σ2

w vec(Φ̄Φ̄
H

). (20)

The matrix Ā∗ � Ā can be thought of as a virtual mani-
fold matrix, since this expression has the same structure as
(17) [13], [39]. An especially convenient structure is when
Ā
∗ � Ā contains all the rows in the manifold matrix of a

ULA [40]. To this end, array geometries like two-level nested
arrays [13], coprime arrays [32] and linear sparse rulers [34]
can be used.

Other approaches stem from the idea of gridding. One can
construct the matrix Ā using a fine grid of angles ωi and then
estimate s from y = Ās exploiting the idea that most of its
components will be zero since, for a grid fine enough, most
of the columns of Ā will correspond to angles where there
are no sources. In other words, s is sparse, which means that
the techniques from [5], [41] can be applied to recover this
vector. This technique does not have to rely on second-order
statistics, but similar grid-based approaches can be devised
which operate on (20) instead [42].

VII. PREPROCESSING

Most of the methods described in this article make use of the
sample covariance matrix of y, defined in (12). Under general
conditions, the average T−1

∑
τ yτy

H
τ converges to the true

Σy as T becomes large. If the compression does not destroy
relevant second-order statistical information, the matrix Σy
contains all the information required to solve the problem
with identifiability, whereas the accuracy performance of these
methods strongly depends on the number T of available
realizations.

Typically, in those applications involving spatial signals,
the output of a sensor array is synchronously sampled. If
yτ collects the samples acquired at time instant τ , it is
clear that multiple observations of y can be obtained by
considering successive snapshots τ = 0, 1, . . . , T − 1. This
means that, whereas y contains samples across space, the
different snapshots are acquired along the time dimension.
Conversely, in applications involving time-domain signals, y
contains samples acquired over time. A possible means to
observe multiple realizations is by considering the vectors yτ
observed at different locations τ = 0, 1, . . . , T − 1. In this
case, while y contains time samples, τ ranges across space.
This establishes a duality relation between the space and the

time domains: when the observed signals are defined on one
domain, multiple observations can be acquired over the other.

Unfortunately, many applications do not allow averaging
over the dual domain and one must cope with a single
observation, say y0, producing the estimate Σ̂y = y0y

H
0 . In

fact, this matrix is not a satisfactory estimate of Σy since it
is always rank-one and is not Toeplitz. For this reason, an
estimation/detection method working on this kind of estimate
may exhibit a poor performance.

The key observation in this case is that, although multiple
realizations cannot be acquired, sometimes it is possible to
gather a large number of samples in the domain where the
signal is defined. One can therefore exploit the Toeplitz
structure of Σx to obtain a more convenient estimate [30].
In particular, due to the block-by-block operation described
by (8), the fact that Σx is Toeplitz means that Σy is block
Toeplitz; that is, it can be written as

Σy =


Σy[0] Σy[−1] . . . Σy[−B + 1]
Σy[1] Σy[0] . . . Σy[−B + 2]

...
...

. . .
...

Σy[B − 1] Σy[B − 2] . . . Σy[0]

 ,
(21)

where the (non-necessarily Toeplitz) M×M blocks Σy[k] are
given by

Σy[k] = E
{
y[b]yH [b− k]

}
, ∀b. (22)

This suggests the estimate

Σ̂y[k] =
1

no. of terms

∑
b

y[b]yH [b− k]. (23)

Moreover, since Σy is Hermitian, this computation needs only
to be carried out for k = 0, . . . , B − 1. More sophisticated
estimates exhibiting different properties were analyzed in [30].

Another observation worth mentioning is that the smaller k,
the higher the quality of the estimates of Σy[k]. The reason is
that the number of averaging terms in (23) is larger for blocks
lying close to the main diagonal than for distant ones. Thus, it
seems reasonable to operate on a cropped covariance matrix:

Σy =


Σy[0] Σy[−1] . . . Σy[−B̃ + 1]

Σy[1] Σy[0] . . . Σy[−B̃ + 2]
...

...
. . .

...
Σy[B̃ − 1] Σy[B̃ − 2] . . . Σy[0]

 ,
(24)

where B̃ < B. Note that in this case, the dimension of
the cropped matrix is less than the length of the observation
vector y.

In certain cases, this technique leads to important compu-
tational savings at a small performance loss since the terms
being retained are those of the highest quality [30].

VIII. ADVANCED TECHNIQUES

Having explained the basic principles of CCS, we now
illustrate the broad applications of CCS by considering other
forms of second-order statistics as well as implementation
issues in practical systems.
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Fig. 8: (a) Compression of a block of N = 3 samples of a WSS
signal using a 2 × 3 matrix Φ, which produces compressed
blocks of M = 2 samples. (b) Compression of a block of
N = 9 samples of a cyclostationary signal, which produces
compressed blocks of M = 6 samples.

A. Cyclostationarity

Cyclostationarity exhibits in many man-made signals with
inherent periodicity, which is a useful feature for estima-
tion, detection and classification of digital communication
signals [26]. While there exist several methods to reconstruct
the second-order statistics of a cyclostationary signal from
compressed observations (see e.g. [26], [43], [44]), in this
section, we only illustrate the main principles underlying these
techniques using a simple model.

We say that a signal is cyclostationary if its time-varying
covariance function is periodic. Formally, the time-varying
covariance function of a zero-mean process x[l] is defined
as σ[l, `] = E {x[l]x∗[l − `]}, and it is said to be periodic
when there exists an integer Cx, called cyclic period, such
that σ[l + ncCx, `] = σ[l, `] for any integer nc [26], [43].
Although other forms of cyclostationarity exist, we confine

ourselves to this one for simplicity. Note that cyclostationary
signals generalize WSS signals, since the latter may be viewed
as a particular case of the former with Cx = 1.

Suppose that the length of the sampling block is an integer
multiple of the cyclic period, that is, N = ρCx for some
integer ρ. Then, the vector x[b] can be divided into ρ sub-
blocks of length Cx as

x[b] = [x̃T [bρ], x̃T [bρ+ 1], . . . , x̃T [bρ+ ρ− 1]]T . (25)

The fact that σ[l, `] is periodic along l means that Σx is
block Toeplitz with Cx × Cx blocks. By defining an N ×N
matrix Σx[b] = E

{
x[b′]xH [b′ − b]

}
, we can write

Σx =


Σx[0] Σx[−1] . . . Σx[−B + 1]
Σx[1] Σx[0] . . . Σx[−B + 2]

...
...

. . .
...

Σx[B − 1] Σx[B − 2] . . . Σx[0]

 ,
(26)

where the blocks Σx[b] also have a block Toeplitz structure
with blocks Σx̃[%] = E

{
x̃[%′]x̃H [%′ − %]

}
:

Σx[b] =


Σx̃[bρ] . . . Σx̃[bρ− ρ+ 1]

Σx̃[bρ+ 1] . . . Σx̃[bρ− ρ+ 2]
...

. . .
...

Σx̃[bρ+ ρ− 1] . . . Σx̃[bρ]

 . (27)

Cyclostationarity provides an alternative perspective to un-
derstand compression of second-order statistics, even for WSS
sequences. The main idea is that the resulting sequence y[k]
of compressed observations is cyclostationary with cyclic
period M , which is larger than that of the original signal Cx.

Fig. 8a intuitively explains this effect for a WSS signal
(Cx = 1) satisfying σ[l] = 0 for |l| > 1. In that figure, the
dots on the l-axis represent a block of N = 3 samples of
the WSS sequence x[l] and the dots on the `-axis represent
their complex conjugates. The three lines connecting the
dots in both axes represent the (possibly) different values of
correlation between samples. Note that no extra lines need
to be drawn since only σ[−1], σ[0], and σ[1] are allowed
to be different from zero. Since the correlation of a WSS
signal is determined by the time-lags independent of the time
origin, only one representative dot along x[l] is chosen as the
time origin. A similar representation is provided at the bottom
of Fig. 8a for the compressed sequence y[k], which can be
seen to be cyclostationary with cyclic period Cy = M (just
apply the above considerations to (21)). Note that the four line
segments effectively capture all the different correlation values
between samples of y[i]. Here, y[i] is no longer WSS due to
the compression process, and hence all time origins along y[i]
within a block are selected to depict the correlations.

Observe that, although the number of samples in each block
was reduced from 3 to 2 after compression, the number of
different correlation values has increased from 3 to 4 !! This
means that, whereas one cannot reconstruct the samples of
x[l] from y[k] without further assumptions, there is a chance
of reconstructing the second-order statistics of x[l] from those
of y[k]. In fact, if Φ satisfies certain conditions, one can, for
instance, estimate Σy from y[k] using sample statistics and
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obtain an estimate of Σx via least squares as described in
Sec. V-B.

Now assume that x[l] is a cyclostationary signal of cyclic
period Cx = 3 and assume that σ[l, `] is such that each sub-
block of Cx samples is only correlated with the neighboring
sub-blocks. Fig. 8b illustrates a case where a block of N =
ρCx = 9 samples is compressed to produce a block of M = 6
samples. As before, all (possibly) distinct correlation values
have been represented with the corresponding line segments.
Observe that, although the number of output samples is lower
than the number of input samples, it may be possible to use
the M2 = 36 correlation values at the output to reconstruct
the ρC2

x = 27 correlation values at the input.
We next describe a reconstruction method based on least

squares. Note from (8) and (22) that the M ×M blocks of
Σy (c.f. (21)) can be written as

Σy[b] = ΦΣx[b]ΦH . (28)

In order to exploit the block Toeplitz structure of Σx[b]
(see (27)) we first vectorize both sides of (28) and apply the
properties of the Kronecker product to obtain

vec(Σy[b]) = (Φ∗ ⊗Φ)vec(Σx[b]). (29)

Now we rewrite the rightmost vector of this expression as

vec(Σx[b]) = Tβx[b], (30)

where

βx[b] =[vecT (Σx̃[bρ]), vecT (Σx̃[bρ+ 1]), . . . ,

vecT (Σx̃[bρ+ ρ− 1]), vecT (Σx̃[bρ− ρ+ 1]),

. . . , vecT (Σx̃[bρ− 1])]T (31)

is a (2ρ− 1)C2
x × 1 vector containing all the possibly distinct

entries of Σx[b] and where T is the N2×(2ρ−1)C2
x repetition

matrix which maps (and repeats) the elements of βx[b] into
vec(Σx[b]). Substituting (30) in (29) yields

vec(Σy[b]) = (Φ∗ ⊗Φ)Tβx[b]. (32)

Note that, while Φ generally has more columns than rows
(as M < N ), the M2 × (2ρ − 1)C2

x matrix (Φ∗ ⊗ Φ)T
can have more rows than columns. Hence, under certain
conditions, (32) is an overdetermined system for each b =
−B + 1, . . . , 0, 1, . . . , B − 1. Substituting Σy[b] by a sample
estimate one can obtain an estimate of βx[b] as the least
squares solution of that system and obtain an estimate of Σx
by plugging the result in (30).

This approach has been proposed in [43] using dense
samplers. A more specific case is discussed in [44], which
specifically proposes the usage of a sparse matrix Φ with a
block diagonal structure.

B. Dynamic Sampling

There are situations where the signal itself does not possess
evident covariance structure, but we can effect compression
by means of dynamic sampling.

Let us go back to the array processing example of Sec-
tion II-A, where the Toeplitz structure of Σx allowed us to

0 1
N

2
N

3
N

N−1
N

1
ω

|X(ω)|

Fig. 9: Example of a signal with a multi-band structure. Here,
the digital frequency axis ω is splitted into N uniform bins.

estimate Σx using M < N antennas. This structure relies
on the assumption that the sources are uncorrelated. If this is
not the case, then the only structure present in Σx is that it
is Hermitian and positive semidefinite, which means that Σx
cannot be estimated with less than N antennas.

A possible way to circumvent this problem is to adopt
a dynamic scheme where a full array of N antennas (the
uncompressed array) is deployed but only a certain subset of
antennas is activated at each time slot [40]. The activation
pattern may change periodically over time, which allows
computing sample statistics for every activation pattern. With
this technique, only a small number of RF chains needs to be
deployed. This is illustrated in Fig. 10, where only K = 4
out of the L = 7 physical antennas are active at each time
slot. The antenna selection may be implemented using analog
circuitry. Note that a similar scheme could be used relying
on dense samplers. Alternative settings include [45], where
different arrays are obtained by sampling different frequencies.

In order to estimate Σx, the least squares method from
previous sections can be used. Let Φ̄g denote the K×L com-
pression matrix used during the g-th time slot. The covariance
matrix of the compressed observations at time slot g is given
by

Σyg
= Φ̄gΣxΦ̄H

g . (33)

Vectorizing both sides and combining the result for the G time
slots in each period yields

vec(Σy0)
vec(Σy1)

...
vec(ΣyG−1

)

 =


Φ̄∗0 ⊗ Φ̄0

Φ̄∗1 ⊗ Φ̄1

...
Φ̄∗G−1 ⊗ Φ̄G−1

 vec(Σx) = Ψvec(Σx).

(34)

If the GK2 × L2 matrix Ψ has full column rank, then it is
possible to estimate Σyg

, g = 0, . . . , G − 1 using sample
statistics and then obtain an estimate of Σx as the least squares
solution of (34). It can be shown that this full rank condition
is satisfied if every pair of antennas is simultaneously active
in at least one time slot per scanning period [40]. In order to
estimate Σyg

via sample statistics, one may simply average
over the observations in the g-th time slot of each period.

C. Compressive Covariance Estimation of Multi-band Signals

When uncorrelated signal sources are concerned, a multi-
band signal structure arises in many applications [14], [35],
[46]. Suppose that our goal is to estimate the second-order
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statistics, e.g. the power spectrum, of a time-domain (spatial-
domain) signal which has a multiband structure in the fre-
quency (angular) domain (see Fig. 9) [14], [35], [46]. For
simplicity, consider a time-domain signal x(t), although the
discussion immediately carries over to the spatial domain [46].
We will show how this problem can be cast as the problem of
compressing a circulant covariance matrix (see Sec. II-B).

The trick is to reformulate the problem in the frequency
domain. Let X(ω) denote the discrete-time Fourier transform
(DTFT) at digital frequency ω ∈ [0, 1) of the sequence x[l],
l = 0, . . . , L−1. Let us also split the frequency axis ω ∈ [0, 1)
into N bins of size 1

N (see Fig. 9) and introduce, for ω ∈
[0, 1

N ), the N×1 vector x(ω) = [X(ω), X(ω+ 1
N ), . . . , X(ω+

N−1
N )]T .
Now, suppose that instead of concatenating the vectors x[b]

vertically to form x (see Sec. III), we arrange them as columns
of the N ×B matrix X . Repeating the same operation for the
compressed samples in y produces the M × B matrix Y .
Clearly, since Φ̄ = IB ⊗ Φ, it follows that the compression
model of (7) can be rewritten as

Y = ΦX. (35)

Let us form the N × 1 vector x̄(ω), whose n-th entry
contains the DTFT of the n-th row of X . Note that the
collection of samples in each row of X is the result of
downsampling x[l] by a factor of N . This operation produces
N aliases in the frequency domain, which means that the
spectrum has period 1/N . Thus, it suffices to consider x̄(ω) in
the frequency interval ω ∈ [0, 1

N ). Likewise, define the M ×1
vector ȳ(ω), ω ∈ [0, 1

N ), as the vector containing the DTFTs
of the rows of Y . Clearly, (35) can then be expressed in the
frequency domain using these vectors:

ȳ(ω) = Φx̄(ω). (36)

The relationship between x(ω) and x̄(ω) can be shown to
be given by [14], [35], [46]:

x̄(ω) =
1

N
FHN x(ω), ω ∈ [0, 1/N), (37)

where FN is the N × N discrete Fourier transform (DFT)
matrix. From (36) and (37) it follows that

Σȳ(ω) = E[ȳ(ω)ȳH(ω)] = ΦΣx̄(ω)ΦH (38)

and

Σx̄(ω) = E[x̄(ω)x̄H(ω)] =
1

N2
FHN Σx(ω)FN , (39)

where Σx(ω) = E[x(ω)xH(ω)]. If the frequency bands are
uncorrelated, for instance because they were produced by
different sources, and if the width of each band is less than
1/N , which is the width of the bin, then Σx(ω) in (39) is
a diagonal matrix for all ω ∈ [0, 1/N) [46]. Such a diagonal
structure is characteristic of multiband signals, which enables
compression beyond sparsity. Likewise, since FN is a DFT
matrix, it implies a circulant structure in Σx̄(ω).

Compare (38) with the expression Σy = Φ̄ΣxΦ̄
H from

previous sections. We observe that Σȳ(ω) is the result of
compressing the circulant matrix Σx̄(ω). A possible means of

estimating the second-order statistics of x[l] is, for example, by
using sample statistics to estimate Σȳ(ω), reconstruct Σx̄(ω)
using least squares, and finally recover Σx(ω) from (39) [46].
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Fig. 10: Implementation of dynamic spatial sampling using
antenna switching.

D. Cooperative CCS

As mentioned in Sec. VII, in certain cases multiple sensors
are used to observe a time signal in multiple spatial locations,
which can result in improved convergence of the sample
statistics [47]. Here we show that this setting can also be used
to introduce strong compression.

Suppose that a collection of sensors are deployed across
a certain area in order to estimate the second-order statistics
of a certain WSS time signal x(t). Although different sensors
observe different signal values, we can assume that the second-
order statistics of the received signals are approximately the
same for all sensors. This is the case, for example, if the
channels from each signal source to all sensors (possibly after
passing through an automatic gain control) have approximately
the same statistics [21]. As before, let us collect those statistics
in the Toeplitz covariance matrix Σx.

We now describe a particularly interesting case where
the sensors use multi-coset sampling. To do so, recall from
Sec. II-A that, in the single sensor case, Σx can be re-
constructed from the covariance matrix of the compressed
observations Σy if all the entries of Σx show up at least
once in Σy . In the cooperative scenario, a milder condition
may be imposed by capitalizing on the availability of multiple
sensors.

Let us form Z groups of sensors by arranging together all
the sensors that share the same multi-coset sampling pattern.
The sought condition can be given in terms of the matrices
Σy,z , z = 0, . . . , Z−1, where Σy,z represents the covariance
matrix of the compressed observations at the sensors within the
z-th group. The requirement now is that, in order to reconstruct
Σx, every entry of Σx is only required to show up in at least
one of the matrices {Σy,z}Z−1

z=0 . This observation yields great
compression improvements per sensor, as the sampling burden
is now distributed across sensors.

To illustrate this effect, suppose that Σx is such that, in the
non-cooperative scenario, the optimum compression pattern
M for each block is a circular sparse ruler (see Table I). In the
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Fig. 11: Incomplete circular sparse rulers used in a setting with
Z = 3 groups of sensors. The correlation lags that the sensors
in each group measure are listed inside each circumference.

cooperative setting, let Mz denote the multi-coset sampling
pattern used by all sensors in group z and let Ω(Mz) represent
the set containing all modular differences between elements of
Mz:

Ω(Mz) = {(m−m′) mod N : m,m′ ∈Mz} (40)

It can be shown that a collection of sampling patterns
{Mz}Z−1

z=0 ensures the identifiability of Σx if and only if [21]
Z−1⋃
z=0

Ω(Mz) = {0, 1, . . . , N − 1}. (41)

Clearly, for Z = 1 this condition reduces to the non-
cooperative condition, which requires M0 to be a circular
sparse ruler. Each Mz , z = 0, . . . , Z − 1, is called an incom-
plete circular sparse ruler since it does not contain all possible
differences between 0 and N − 1 (see Box 2). However, (41)
clearly implies that, for every given integer modular distance
n ∈ {0, 1, . . . , N−1}, at least one of those incomplete circular
sparse rulers can measure n. An example of collection of
incomplete circular sparse rulers is the one composed of the
sets M0 = {0, 1, 6}, M1 = {0, 2, 10}, and M2 = {0, 3, 7},
represented geometrically in Fig. 11. Observe that, as in
the case of circular sparse rulers, each mark provides two
distances, one clockwise and the other counterclockwise.

The next question is how to minimize the overall com-
pression ratio. The idea is therefore to minimize the number
of marks in each ruler while satisfying (41). This task is
intimately connected to the so-called non-overlapping circular
Golomb rulers [21].

Alternative schemes for cooperative CCS include [48],
which exploits the cross-correlation between observations at
different sensors, and [37], where the observations are not only
linearly compressed but also quantized to a single bit.

IX. OPEN LINES

Despite the long history of structured covariance estimation
and recent excitement on compressed sensing of sparse signals,
the research on CCS is still at an early stage. A great deal of
research is required to improve its applicability and theoretical
understanding. Some possible future directions are listed in
this section.

As for sampler design, most existing schemes rely on
identifiability criteria [8], [20], but other criteria are yet to
be explored. For instance, it would be important to find sam-
pler designs minimizing the Cramér-Rao bound for unbiased

estimation of the parameters of interest. Of special relevance
would be deterministic schemes with the strongest possible
compression yet capable of reaching a target performance.
Other sampling schemes, say gridless or continuous irregular
sampling, are yet to be investigated from a CCS perspective.
Here, we envision a gridless or continuous observation space
where samples can be drawn from, and the focus of CCS is
on the reconstruction of second-order statistics regardless of
sparsity. This problem differs from the existing literature on
gridless or continuous sparse reconstruction, which aims to
accurately recover sparse input signals with nonzeros that lie
anywhere in the continuous input domain.

Cooperative schemes deserve more extensive research. For
instance, distributed implementations and data fusion tech-
niques need to be revisited for CCS with affordable com-
munication overhead [37]. The latter include schemes where
sensors quantize their observations before reporting them to
the fusion center. In this context, either the correlations or the
raw data can be quantized before taking the correlations. This
latter technique is possible since under some conditions the
correlation function of the original raw data can be computed
from the correlation function of the quantized data.

CCS may also be of critical relevance in big data analytics
due to its ability to meaningfully reduce the dimension of
the data set. In this context, online, adaptive and distributed
implementations are yet to be devised. Moreover, as more
and more big-data applications employ a network of high-
dimensional signals for data mining and exploration, it is
an interesting new direction to see how the CCS framework
benefits the covariance estimation problems for data-starved
inference networks. Such problems arise under the umbrella of
probabilistic analysis for high dimensional datasets with many
variables and few samples. As a precursor, sparse (inverse)
covariance estimation has already become a widely pursued
topic in statistical inference for analysis on graphs, where
the sparsity of the (inverse) covariance matrix is exploited,
in the context of correlation mining. When high-dimensional
or wideband random processes are concerned, CCS has been
applied for covariance estimation based on the exploitation
of various structures in the data: Gaussianity, stationarity and
compression [49]. Fruitful exploration along this direction may
lead to CCS for inference networks, which will find broad
applications in analyzing astronomical data, network data,
biomedical diagnostics and video imaging, to name a few.

Finally, we highlight the relevance of extending the re-
viewed techniques to non-stationary process analysis, for in-
stance exploiting the framework of underspread processes [50].
Future research may also consider non-linear parameteriza-
tions as well as non-linear compression.

X. CONCLUSIONS

This article presented a renewed perspective on a traditional
topic in signal processing, which we dubbed CCS. We intro-
duced a joint signal acquisition and compression framework
for a number of applications and problems that deal with
second-order statistics. The basic principle underlying CCS is
that the desired signal statistics can be reconstructed directly
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from properly compressed observations, without having to
recover the original signal itself that can be costly in terms
of both computational and sensing resources. This standpoint
entails multiple benefits such as the possibility of introducing
stronger compression beyond sparsity, compared to traditional
compressed sensing.

REFERENCES

[1] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol.
52, no. 4, pp. 1289–1306, Apr. 2006.

[2] Y. Jin and B. D. Rao, “Support recovery of sparse signals in the presence
of multiple measurement vectors,” IEEE Trans. Inf. Theory, vol. 59, no.
5, pp. 3139–3157, May 2013.

[3] R. Venkataramani and Y. Bresler, “Perfect reconstruction formulas
and bounds on aliasing error in sub-Nyquist nonuniform sampling of
multiband signals,” IEEE Trans. Inf. Theory, vol. 46, no. 6, pp. 2173–
2183, Sep 2000.

[4] M. Mishali and Y. C. Eldar, “From theory to practice: Sub-Nyquist
sampling of sparse wideband analog signals,” IEEE J. Sel. Topics Sig.
Process., vol. 4, no. 2, pp. 375–391, Apr. 2010.

[5] J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and R. G.
Baraniuk, “Beyond Nyquist: Efficient sampling of sparse bandlimited
signals,” IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 520–544, Jan.
2010.

[6] R. T. Hoctor and S. A. Kassam, “The unifying role of the coarray in
aperture synthesis for coherent and incoherent imaging,” Proc. IEEE,
vol. 78, no. 4, pp. 735–752, Apr. 1990.

[7] A. Moffet, “Minimum-redundancy linear arrays,” IEEE Trans. Antennas
Propag., vol. 16, no. 2, pp. 172–175, Mar. 1968.

[8] S. U. Pillai, Y. Bar-Ness, and F. Haber, “A new approach to array
geometry for improved spatial spectrum estimation,” Proc. IEEE, vol.
73, no. 10, pp. 1522–1524, 1985.

[9] H. L. Van Trees, Detection, Estimation, and Modulation Theory,
Optimum Array Processing, John Wiley & Sons, 2004.

[10] J. P. Burg, D. G. Luenberger, and D. L. Wenger, “Estimation of
structured covariance matrices,” Proc. IEEE, vol. 70, no. 9, pp. 963–974,
Sep. 1982.

[11] L. L. Scharf, Statistical signal processing: detection, estimation, and
time series analysis, vol. 1, Addison-Wesley, 1991.

[12] D. A. Linebarger, I. H. Sudborough, and I. G. Tollis, “Difference bases
and sparse sensor arrays,” IEEE Trans. Inf. Theory, vol. 39, no. 2, pp.
716–721, 1993.

[13] P. Pal and P. P. Vaidyanathan, “Nested arrays: A novel approach to
array processing with enhanced degrees of freedom,” IEEE Trans. Sig.
Process., vol. 58, no. 8, pp. 4167–4181, Aug. 2010.

[14] C. P. Yen, Y. Tsai, and X. Wang, “Wideband spectrum sensing based
on sub-Nyquist sampling,” IEEE Trans. Sig. Process., vol. 61, no. 12,
pp. 3028–3040, 2013.

[15] M.A. Lexa, M. E. Davies, J. S. Thompson, and J. Nikolic, “Compressive
power spectral density estimation,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Sig. Process., May 2011, pp. 3884–3887.

[16] J. D. Krieger, Y. Kochman, and G. W. Wornell, “Design and analysis
of multi-coset arrays,” in Proc. IEEE Int. Conf. Acoust., Speech, Sig.
Process., 2013.

[17] D. D. Ariananda, D. Romero, and G. Leus, “Compressive angular and
frequency periodogram reconstruction for multiband signals,” in Proc.
IEEE Int. Workshop Comput. Advances Multi-Sensor Adaptive Process.,
San Martin, France, Dec 2013, pp. 440–443.

[18] J. Singer, “A theorem in finite projective geometry and some applications
to number theory,” Trans. American Math. Soc., vol. 43, no. 3, pp. 377–
385, 1938.

[19] D. D. Ariananda and G. Leus, “Compressive wideband power spectrum
estimation,” IEEE Trans. Sig. Process., vol. 60, no. 9, pp. 4775–4789,
2012.
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