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Abstract—We present designs for compression matrices min-
imizing the Cramér-Rao bound for estimating the power of a
stationary Gaussian process, whose second-order statistics are
known up to a scaling factor, in the presence of (possibly colored)
Gaussian noise. For known noise power, optimum designs can be
found assuming either low or high signal-to-noise ratio (SNR). In
both cases the optimal schemes sample the frequency bins with
highest SNR, suggesting near-optimality for all SNR values. In
the case of unknown noise power, optimal patterns in both SNR
regimes sample two subsets of frequency bins with lowest and
highest SNR, which also suggests that they are nearly-optimal
for all SNR values.

Index Terms—Compressive covariance sensing, sampler design,
power estimation, spectrum sensing.

I. INTRODUCTION

This paper addresses the design of sampling patterns for
estimating the power of wide-sense stationary (WSS) signals
whose second-order statistics are known up to a scaling factor.
A linearly compressed version of this signal is to be processed
to obtain such estimate. The noise corrupting the signal may
have a known or unknown power and a white or colored power
spectrum.

An important application of this setting is the estimation
of the power of a signal acquired by means of an analog-
to-information converter (AIC). These devices compute linear
projections of an analog signal onto a compressed discrete
subspace [1], [2] and are expected to substitute analog-to-
digital converters (ADCs) in cases where the Nyquist rate
is too demanding. A field of application is spectrum sensing
for dynamic spectrum access [3], [4], where prior information
about the power spectrum of primary transmissions (spectral
masks, carrier frequencies, bandwidths, etc.) is often available
since their waveforms typically observe public standards [5]–
[8]. An estimate of the power of a primary signal allows to
declare the corresponding user as active or inactive. Another
application is to monitor the correct usage of a secondary
network, where users are subject to stringent transmission
power limits.
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The design of sub-Nyquist sampling schemes has been
addressed in several contexts, such as sampling of multiband
signals [9], [10], compressed sensing [11], MIMO radar [12],
etc. Whereas these approaches are geared towards reconstruct-
ing the original signal from the compressed observations, it
is often the case that only a few parameters, and not the
signal itself, are of interest. Thus the problem becomes that of
parameter estimation (rather than signal reconstruction) from
compressed measurements [6], [13]. In the model considered
here, signals and noise are assumed WSS Gaussian; thus, only
second-order statistics (SOS) are relevant.

A general framework to design samplers preserving the rel-
evant SOS is provided in [14], [15], where universal samplers
are defined as those allowing estimation of the SOS of any
WSS process after compression. Although, by definition, the
design of universal samplers does not require knowledge of
the SOS of the processes involved, it is expected that tailoring
a sampler for a particular process, whenever possible, should
be beneficial in terms of compression ratios and/or estimation
performance with respect to the universal case. Our goal is to
provide such designs by exploiting the statistical information
available about the signal to be compressed.

Since we wish our designs to be general, i.e., independent of
any particular estimation method, our goal is the minimization
of the Cramér-Rao bound (CRB) [16] for the parameter of
interest. Our problem is related to [17]–[19], which analyze
the impact of compression on the CRB for a different model
(Gaussian model with known covariance matrix and paramet-
ric dependence of the mean vector). In contrast, the Gaussian
model we study has zero mean and parametric dependence
of the covariance. In addition, our goal is to explicitly obtain
an optimal design of the compression matrix, whereas [17]–
[19] focus on the effect of random matrices satisfying a
restricted isometry property (RIP), such as those typically used
in reconstruction-oriented applications.

The rest of the paper is structured as follows: Sec. II for-
mulates the problem and establishes some results used in the
remaining sections. Sections III and IV consider, respectively,
the design of sampling matrices in the cases where the noise
power is known or unknown. Finally, the main conclusions
are illustrated in Sec. V by means of a numerical example
and summarized in Sec. VI.



II. PROBLEM FORMULATION

Consider a model where the uncompressed observations are
collected in the vector x ∈ CL, which is given by

x = αs+ σw, (1)

where αs and σw respectively denote the signal and noise
terms. Both s and w contain samples of independent zero-
mean unit-variance WSS random processes with known power
spectral density (PSD) and circularly complex Gaussian distri-
bution. Thus, s ∼ CN (0,Σs) and w ∼ CN (0,Σw) with Σs

and Σw known Hermitian Toeplitz covariance matrices with
ones on the diagonal. Consequently, x ∼ CN (0,Σx), where
Σx = α2Σs +σ2Σw. If L is large, then it is possible to write
Σs ≈ WΛsW

H and Σw ≈ WΛwW
H , where W is the

unitary inverse discrete Fourier transform (IDFT) matrix, and
the elements on the main diagonal of the matrices

Λs = diag {λs,1, · · · , λs,L} (2)
Λw = diag {λw,1, · · · , λw,L} (3)

are samples of the PSD of the associated processes [20], [21].
In some of the results that follow, it is necessary to assume
that these coefficients are strictly positive.

With the goal of estimating α2, a total of K ≤ L linear
measurements of x are collected in y:

y = Φx ∈ CK . (4)

Φ ∈ CK×L is referred to as the sampling or compression
matrix or, for brevity, just sampler. Clearly y ∼ CN (0, Σ̄),
with Σ̄ = ΦΣxΦH . By defining Σ̄s = ΦΣsΦ

H and Σ̄w =
ΦΣwΦH , we can write

Σ̄ = α2Σ̄s + σ2Σ̄w. (5)

Intuitively, the estimation performance is related to the signal-
to-noise ratio (SNR), defined as α2/σ2. Since σ2 ≥ 0 and
α2 ≥ 0, the minimum variance of any unbiased estimator of
α2 is given by its constrained CRB [22]. For simplicity we
assume σ2 > 0 and α2 > 0, which results in the well-known
unconstrained CRB. This bound can be written in terms of
the Fisher information matrix (FIM) of the parameter vector
θ = [α2 σ2 ]T , which, for the problem at hand, is given by
Bang’s formula [16], [23]:

F =

 Tr
(
Σ̄
−1

Σ̄sΣ̄
−1

Σ̄s

)
Tr
(
Σ̄
−1

Σ̄sΣ̄
−1

Σ̄w

)
Tr
(
Σ̄
−1

Σ̄wΣ̄
−1

Σ̄s

)
Tr
(
Σ̄
−1

Σ̄wΣ̄
−1

Σ̄w

)  .
(6)

The CRB for α2 can be derived from (6) in different settings.
The problem is to design Φ in order to minimize this CRB. To
this end, we will repeatedly make use of the following result:

Lemma 1. Let P ∈ CL×L be an orthogonal projection matrix
and A ∈ CL×L a Hermitian positive semi-definite matrix.
Then Tr (PA) ≤ Tr (A).

Proof: Let P = UDUH be an eigendecomposition of
P . Then, Tr (PA) = Tr

(
DUHAU

)
=
∑

i dibi, where di

and bi are, respectively, the i-th entry on the diagonal of D
and B = UHAU . Since di is either 0 or 1 and bi ≥ 0, it is
clear that Tr (PA) ≤

∑
i bi = Tr

(
UHAU

)
= Tr (A).

III. SAMPLERS FOR KNOWN NOISE POWER

If σ2 is known, the CRB for α2 is directly given by the
reciprocal of the (1, 1) element of the FIM (6):

(F1,1)−1 =
[
Tr
(

(Σ̄
−1

Σ̄s)2
)]−1

. (7)

Thus, minimizing the CRB w.r.t. Φ amounts to maximizing
Tr
(

(Σ̄
−1

Σ̄s)2
)

. However, since this quantity depends on the
unknown parameter α2, a sensible approach is to focus on the
low and high SNR cases, where this dependence fades away.
If we then find that the optimal designs are similar in both
cases, we will conclude that the influence of α2 on the design
the optimal Φ is relatively small and any of these solutions
can be regarded as nearly optimal for any SNR range.

A. Low SNR regime

When σ2 � α2, the covariance matrix of the observations
satisfies Σ̄ ≈ σ2Σ̄w, which results in the following problem:

maximize
Φ

Tr
(

(Σ̄
−1
w Σ̄s)2

)
. (8)

After straightforward operations, we find that

Tr
(

(Σ̄
−1
w Σ̄s)2

)
= Tr

(
(PwΛSNR)2

)
, (9)

where ΛSNR = Λ−1w Λs is the spectral SNR matrix, and

Pw = Λ1/2
w WHΦH(ΦWΛwW

HΦH)−1ΦWΛ1/2
w

is the orthogonal projector onto the columns of Λ
1/2
w WHΦH ,

which is a noise-weighted frequency version of the sam-
pler. Observe that by applying the change of variable Φ̃ =

ΦWΛ
1/2
w we obtain Pw = Φ̃H(Φ̃Φ̃H)−1Φ̃, which means

that we can freely choose Pw to be any projection matrix on a
subspace of dimension K. For this reason, we first accomplish
the maximization of (9) in terms of the projector Pw ∈ CL×L,
and then obtain Φ from the optimal Pw.

Being an orthogonal projector, Pw is Hermitian, idempotent
(P 2

w = Pw), and its only eigenvalues are 1 (with multiplicity
K) and 0 (with multiplicity L−K). Its (i, i)-th element equals
the squared norm of the i-th row/column:

||Pwei||22 = eHi P
H
w Pwei = eHi Pwei, (10)

where ei ∈ CL has a one at the i-th position and zeros
elsewhere. The fact that the eigenvalues have a magnitude
between zero and one means that 0 ≤ eHi Pwei ≤ 1.

Applying Lemma 1 to (9), an upper bound is found as

Tr
(
(PwΛSNR)2

)
≤ Tr

(
PwΛ2

SNR

)
, (11)

which holds with equality if Pw is diagonal. Our approach is
to maximize the upper bound Tr

(
PwΛ2

SNR

)
w.r.t. Pw. Clearly,

if the resulting maximizer happens to be diagonal, then it must
maximize the original objective function Tr

(
(PwΛSNR)2

)
as

well. As we will see, it turns out that this is the case.



Let us introduce

λ = diag {ΛSNR} = [ λ1 · · · λL ]T ,

λ2 = diag
{
Λ2

SNR

}
= [ λ21 · · · λ2L ]T ,

p = diag {Pw} = [ p1 · · · pL ]T .

(12)

The right-hand side of (11) can be rewritten as pTλ2 and,
according to the properties of Pw, it has to be maximized
subject to1 0 � p � 1 and 1Tp = K. It follows that the
optimum is such that pi = 1 for the indices i corresponding
to the K largest entries of λ2 and pi = 0 otherwise.

Since pi = eHi Pwei, it follows from (10) that Pw is
diagonal. Thus (11) holds with equality, and Pw solves (8).
In order to compute Φ from this solution, it suffices to take
any L × K matrix R with the same column space as Pw

and then compute Φ from R = Λ
1/2
w WHΦH , which results

in Φ = RHΛ
−1/2
w WH . However, since Pw is diagonal

and R arbitrary, one can disregard Λw and directly make
Φ = RHWH . Thus, the rows of Φ are invertible linear
combinations of the rows of the DFT matrix indexed by the
pi’s which are equal to one, i.e., the optimal samplers measure
linear combinations of the K frequency bins with largest
spectral SNR.

B. High SNR regime

When α2 � σ2, we use the second-order approximation

Σ̄
−1 ≈ 1

α2

[
Σ̄
−1
s −

σ2

α2
Σ̄
−1
s Σ̄wΣ̄

−1
s

]
. (13)

From this approximation and after neglecting second-order
terms, maximizing Tr

(
(Σ̄
−1

Σ̄s)2
)

w.r.t. Φ is found to be
equivalent to the following problem:

minimize
Φ

Tr
(
Σ̄
−1
s Σ̄w

)
. (14)

Now one has Tr
(
Σ̄
−1
s Σ̄w

)
= Tr

(
PsΛ

−1
SNR

)
, where

Ps = Λ1/2
s WHΦH(ΦWΛsW

HΦH)−1ΦWΛ1/2
s (15)

is the orthogonal projector onto the columns of Λ
1/2
s WHΦH .

Following analogous steps to those in Sec. III-A, the minimizer
is found to be a diagonal matrix Ps with ones in the entries
corresponding to the K smallest values of Λ−1SNR, which yields
the same solution as in Sec. III-A, i.e., the optimal sampling
matrix acquires linear combinations of the K frequency bins
with largest spectral SNR.

The fact that the same compression matrix is optimal for
both the high and low SNR regimes suggests that nearly
optimal results can be expected for intermediate SNR values
as well.

IV. SAMPLERS FOR UNKNOWN NOISE POWER

An unknown σ2 becomes a nuisance parameter and affects
the CRB for α2 [16], given by the (1, 1) element of F−1.
Again, we consider the low and high SNR regimes to sidestep
the dependence of the CRB with the unknown parameters.

1We say that [ a1 · · · an ]T � [ b1 · · · bn ]T if ai ≤ bi for i = 1, . . . , n.

A. Low SNR Regime

Using Σ̄ ≈ σ2Σ̄w as in Sec. III-A, the CRB for α2 becomes

(F−1)1,1 ≈
Kσ4

K Tr
(

(Σ̄
−1
w Σ̄s)2

)
− Tr2

(
Σ̄
−1
w Σ̄s

) . (16)

Minimizing (16) w.r.t. Φ amounts to maximizing

K Tr
(
(PwΛSNR)2

)
− Tr2 (PwΛSNR) , (17)

which, according to Lemma 1, can be upper bounded as

K Tr
(
(PwΛSNR)2

)
− Tr2 (PwΛSNR) ≤ (18)

K Tr
(
PwΛ2

SNR

)
− Tr2 (PwΛSNR) .

Clearly, equality holds in (18) if Pw is diagonal. We now
attempt to maximize the upper bound in (18), which can be
rewritten as

KpTλ2 − (pTλ)2, (19)

with λ, λ2 and p as defined in (12). The next result provides
the maximizer of this expression for the case where the
spectral SNR coefficients λj are sorted in increasing order,
i.e., 0 ≤ λ1 < · · · < λL. In other case, one must first sort
them and revert this operation over the resulting optimal p.

Let us define the sets

I0[i] = {i+ 1, · · · , i+D − 1}, (20)
I1[i] = {1, · · · , i− 1} ∪ {i+D + 1, · · · , L}, (21)

where D = L − K. As we will see shortly, the optimal
solution is essentially given by a sampler which measures
linear combinations of a total of K frequency bins; of these,
i0 of them correspond to the bins with the smallest spectral
SNR, whereas the remaining K − i0 bins correspond to those
with the largest spectral SNR. These ’active’ bins are indexed
by the set I1[i0] ∪ {i0}. The following result in Theorem 1
formalizes this operation and provides the corresponding value
of i0. To this end, let us define

β̄1[i] =
1

K

∑
j∈I1[i]

λj , (22)

which is an approximate average of the spectral SNR over the
bins with smallest and largest values, and the thresholds

γ0[i] = m[i]− λi+D

K
, γ1[i] = m[i]− λi

K
, (23)

γ2[i] = m[i+ 1]− λi
K
, (24)

where

m[i] =
λi + λi+D

2
. (25)

Theorem 1. Let λ = [λ1 · · · λL ]T , with 0 ≤ λ1 < · · · < λL
and let i0 be the smallest integer satisfying β̄1[i0] ≤ γ2[i0].
Then, if β̄1[i0] ≥ γ1[i0], the maximizer of (19) subject to
0L � p � 1L and 1T

Lp = K is given by

p?i =

{
0 if i ∈ I0[i0] ∪ {i0 +D}
1 if i ∈ I1[i0] ∪ {i0}.



Otherwise, if β̄1[i0] < γ1[i0], the maximizer is given by

p?i =


0 if i ∈ I0[i0]

1 if i ∈ I1[i0]

δ if i = i0

1− δ if i = i0 +D,

where δ = (β̄1[i0]− γ0[i0])/(γ1[i0]− γ0[i0]).

Sketch of Proof: The proof is based on deriving the
Karush-Kuhn-Tucker (KKT) conditions [24], which are nec-
essarily satisfied at the optimum since the objective and
constraint functions are differentiable. Then, it is seen that
the solutions are of two forms:
• Solutions where p?i is 1 for K values of i and 0 otherwise.
• Solutions where p?i is 1 for K − 1 values of i, 0 for
L −K − 1 values and in the open interval 0 < p?i < 1
for two values of this index.

For each case, it can be shown that the indices with p?i = 0
must be adjacent and, for the second case, that the indices
satisfying 0 < p?i < 1 separate those equal to one from
those equal to zero. With this structure, the problem becomes
finding i0, which is seen to satisfy γ0[i0] < β̄1[i0] ≤ γ2[i0].
The existence and uniqueness of this value can also be
established. Finally, according to whether β̄1[i0] < γ1[i0] or
β̄1[i0] ≥ γ1[i0], one of the two cases above occur.

Whereas for σ2 known the optimum samplers capture those
K frequency bins with largest SNR, Theorem 1 says that for
unknown σ2 we must sample the bins with highest and lowest
SNR. The index i0 specifies the number of bins of each class
to be sampled. Note that the requirement that all λi’s form a
strictly increasing sequence is not a real drawback, since one
could introduce arbitrarily small perturbations in equal λi’s
and obtain solutions arbitrarily close to the optimal one.

Recall that the objective function in Theorem 1 is an upper
bound (19) on the CRB. When β̄1[i0] ≥ γ1[i0], the elements
of p? equal either 0 or 1, resulting in a diagonal Pw which
minimizes the CRB in (16), again because for diagonal Pw

equality holds in (18). On the other hand, when β̄1[i0] < γ1[i0]
the maximizer of (19) contains elements different from zero
and one, which means that the projector Pw maximizing the
right-hand side of (18) is not exactly diagonal. The only non-
null off-diagonal elements in Pw correspond to the indices
(i0, i0 + D) and (i0 + D, i0) and, according to (10), equal√
δ(1− δ). Consequently, (18) is not satisfied with equality

and the resulting non-diagonal Pw is only an approximate
minimizer of the CRB. Still, a small loss can be expected
since this matrix is nearly diagonal. The compression matrix
Φ can be retrieved in both cases from Pw by following the
procedure introduced in Sec. III-A.

B. High SNR Regime

Using the first-order approximation Σ̄ ≈ α2Σ̄s results in

(F−1)1,1 ≈
α4 Tr

(
(Σ̄
−1
s Σ̄w)2

)
K Tr

(
(Σ̄
−1
s Σ̄w)2

)
− Tr2

(
Σ̄
−1
s Σ̄w

) . (26)

Minimizing (26) is tantamount to minimizing

Tr2
(
Σ̄
−1
s Σ̄w

)
Tr
(

(Σ̄
−1
s Σ̄w)2

) =
Tr2

(
PsΛ

−1
SNR

)
Tr
(
(PsΛ

−1
SNR)2

) (27)

with Ps defined as in (15). According to Lemma 1, (27) can
be lower bounded as

Tr2
(
PsΛ

−1
SNR

)
Tr
(
(PsΛ

−1
SNR)2

) ≥ Tr2
(
PsΛ

−1
SNR

)
Tr
(
PsΛ

−2
SNR

) =
(qTλ)2

qTλ2
, (28)

where q = diag {Ps} and, in order to apply the definitions
from Sec. IV-A, we have redefined λ = diag

{
Λ−1SNR

}
and

λ2 = diag
{
Λ−2SNR

}
. Again, equality holds in (28) if Ps is

diagonal. The following result gives the minimizer of the lower
bound in (28). It makes use of the definition

β̄2[i] =
1

K

∑
j∈I1[i]

λ2j ,

which, as opposed to β̄1[i] from Sec. IV-A, is an approximate
average of the squared content of the bins indexed by I1[i];
and the thresholds

ζ1[i] =
β̄2[i]

m[i]
− λi
K

[
1− λi

m[i]

]
,

ζ2[i] =
β̄2[i]

m[i]
+
λi+D

K

[
1− λi

m[i]

]
,

with m[i] defined in (25). We have the following:

Theorem 2. Let λ = [λ1, · · · , λL]T , with 0 ≤ λ1 < · · · < λL
and let i0 be the largest integer satisfying β̄1[i0] < ζ2[i0].
Then, if β̄1[i0] ≤ ζ1[i0], the minimizer of the right-hand side
of (28) subject to 0L � q � 1L and 1T

Lq = K is given by

q?i =

{
0 if i ∈ I0[i0] ∪ {i0 +D}
1 if i ∈ I1[i0] ∪ {i0}.

Otherwise, if β̄1[i0] > ζ1[i0], the minimizer is given by

q?i =


0 if i ∈ I0[i0]

1 if i ∈ I1[i0]

δ if i = i0

1− δ if i = i0 +D,

where δ = (ζ2[i0]− β̄1[i0])/(ζ2[i0]− ζ1[i0]).

The proof follows similar guidelines as for Theorem 1 and
it is omitted due to lack of space. Observe that the structure of
the solutions revealed by Theorem 2 in the high SNR regime
is analogous to that of the solutions from Theorem 1 in the
low SNR case. The differences lay in the resulting index i0.
The remarks at the end of Sec. IV-A are applicable also here.

V. NUMERICAL EXAMPLE

Consider a setting with white noise (Σw = IL) of unknown
power and an auto-regressive signal term obtained according
to sn = 0.5 ·sn−1 +zn, where zn is zero-mean white complex
Gaussian whose power is set so that E

[
|sn|2

]
= 1. The CRB
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Fig. 1: The CRB associated with the proposed designs is much
smaller than for conventional samplers.

is normalized by L
K times the uncompressed CRB (Φ = IL).

We take L = 80 and K = 15, yielding a compression rate
of L/K ≈ 5.33. Five different designs are considered: (i) Φ
has i.i.d. entries, drawn from a CN (0, 1) distribution; (ii) Φ
has i.i.d. entries taking the values ±1 with equal probability;
(iii) Φ is a linear sparse ruler (LSR) sampler [14], [15];
(iv) the design form Sec. IV-A; and (v) the design from
Sec. IV-B. For the random samplers, results are averaged over
500 realizations. As seen in Fig. 1, although the LSR sampler
consistently outperforms the random samplers, the CRB for
the proposed designs is considerably smaller than those of the
other schemes, which do not exploit the a priori information,
especially for low SNR. For SNR < 3.5 dB, the low-SNR
design performs better than the high-SNR scheme. For larger
SNRs, the situation is reversed. In any case, the low-SNR
design is seen to be nearly optimal for the whole SNR range.
The fact that the associated CRB increases with the SNR is a
consequence of a sub-optimal choice of i0 in high SNR.

VI. CONCLUSIONS

By exploiting spectral prior information, we have derived
designs for compression matrices that approximately minimize
the CRB for estimating the power of a signal in (possibly)
colored noise. We considered the cases where the noise power
is either known or unknown, and the cases of low and
high SNR. The optimum sampling matrix computes linear
combinations of the frequency bins with the highest SNR
values when the noise power is known, and those with both
the highest and lowest SNR values when the noise power is
unknown. In the latter case, the fact that the CRB is similar for
the low-SNR and high-SNR designs presented suggests that
their performance is nearly optimal in the middle SNR regime.
Practical implementation of these compression matrices may
be feasible by making use of analog/mixed-signal based FFT
processors [25]–[27] in the design of the AIC.
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[6] G. Vazquez-Vilar, R. López-Valcarce, C. Mosquera, and N. González-
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