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Abstract

Growing energy needs forces governments to look for alternative resources and ways of better energy grid

management and load balancing. As a major initiative, many countries including the UK, the USA and China have

already started deploying smart grids. One of the biggest advantages of smart grids compared to traditional energy

grids is the ability to remotely read fine-granular measurements from eachsmart meter, which enables the grid

operators to balance load efficiently and offer adapted time-dependenttariffs. However, collecting fine-granular data

also poses a serious privacy threat for the citizens as illustrated by the decision of the Dutch Parliament in 2009

that rejects the deployment of smart meters due to privacy considerations. Hence, it is a must to enforce privacy

rights without disrupting the smart grid services, like billing and data aggregation. Secure Signal Processing aims at

protecting the sensitive data by means of encryption and provides tools to process them under encryption, effectively

addressing the smart metering privacy problem.

In this paper we present recent and ongoing research in the field of privacy protection for smart grids, where

individual smart meter measurements are kept secret from outsiders, including the utility provider itself, while

processing private measurements under encryption is still feasible. Wefocus particularly on data aggregation, which

demonstrates the major research challenges in privacy protection for smart grids.

Index Terms
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I. I NTRODUCTION

The Energy Independence and Security Act of 2007 defines smart grid as the modernization of the electricity

delivery system that monitors, protects, and automatically optimizes the operation of its interconnected elements

from generator to end users. Smart grids offer indisputableadvantages over traditional power grids including remote

readings and load balancing. Consequently, many countriesincluding the UK, the USA and China have already
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started building smart electric grids. The European Commission has foreseen1 the implementation of smart electric

grids by the Member States, requiring that 80% of consumers be equipped with smart metering systems by 2020,

after a viability assessment in 2012.

A smart grid consists of three segments: power generation, transmission-distribution network, and smart meters.

In each segment, there are several challenges: power generation is highly related with wind turbines and solar

panels, which are not as predictable as traditional power sources since energy production relies on environmental

factors. Transmission-distribution network deals with efficiency problems, especially in the case of bi-directional

energy transmission and distribution. And smart meters present a number of challenges in sensing, analyzing, and

communication. Therefore, digital signal processing has found application in smart grid systems including specific

hardware and software for sensing, processing digital signals, and low-cost communication.

Smart meters introduce new opportunities for the market as well. The traditional (analogue) metering systems rely

on tamper-proof devices located at the households and they are physicallyread by the utility provider monthly. Smart

meters, however, are anticipated to be read periodically inshorter intervals that range from minutes to milliseconds

remotely, thus open up a wide range of new business opportunities for the utility providers. For instance, fine-granular

remote readings can be used for performing statistical analyses that lead to effective consumption forecasting and

profiling, which contribute to the prevention of power shortages and to apply load balancing. At the same time, the

fine-grained readings will assist users in achieving a more efficient energy use and adapting to the network status

and supply by choosing an appropriate and advantageous tariff.

Unfortunately, smart grid systems have a number of serious threats including security, safety, fraud, and privacy

[5]. A virus or a DoS (Denial of Service) attack can severely damage the power infrastructure of a country. A

remote switch-off button can be an appealing target for cyber-warfare. And manipulating smart meter readings can

cause severe financial losses. Even though the research on security, safety and fraud prevention are attracting great

attention from the governments, industry and academia, privacy aspects are not addressed sufficiently. A proof of

how much privacy-sensitive data a smart meter reveals is shown by a Dutch student onbwired.nl. It is clear

that the actions of the residents can be easily tracked by analyzing the smart meter data (gas, water, and electric

consumption). It is even possible to determine the presence/absence of residents, the number of people living in

a household; even their religion can be identified [5], [12].Obviously, fine-granular smart meter measurements

constitute a serious privacy and, in some cases, security threat for the citizens.

Many privacy related considerations in other on-line systems, such in as social networks, can be tackled by

raising awareness among people on how to avoid revealing privacy-sensitive data. In the case of smart grids, raising

awareness does not help the users sufficiently since reporting fine-granular consumption measurements is an essential

part of an automated system. Therefore, security technologies, as well as law and regulations, are necessary to cope

with privacy issues in smart grids. Not surprisingly, at theend of serious discussions, the Dutch Parliament refused

the bill for smart grid deployment in 2009 on grounds of data protection concerns. Until a solution is found on the

1Directives 2009/72/EC (electricity) and 2009/73/EC (gas)of the European Parliament Council of 13 July 2009.
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basis of technology, it will be challenging to convince the governments and citizens in favor of deploying smart

grids.

In the past years, solutions have been developed for privacy-preserving billing and data aggregation in smart grids

based on security technology, in particularSecure Signal Processing(SSP). SSP is a powerful mechanism that, on

one hand, protects the privacy-sensitive smart meter data and, on the other hand, enables the utility provider to

still perform data analysis for the management of the grid. The main idea in SSP is to prevent the untrustworthy

entities, including the utility provider, from accessing the private data, while providing tools to process the smart

meter measurements, e.g. for billing and data analysis. To achieve this goal, cryptographic tools like homomorphic

encryption and secure multi-party computation techniquesare being used [19]. In particular, instead of reading

measurements in plaint text, the utility provider receivesencrypted measurements from the smart meters. Without

the decryption key, the utility provider cannot access the content of the encryptions; this guarantees the privacy

of the residents. To perform the usual smart grid operationssuch as billing, the utility provider interacts with the

smart meters according to a pre-defined protocol [24], [17],[15].

In this paper, we give an overview of recent and ongoing research in the field of privacy protection for smart

grids. The paper serves as an introduction for the signal processing researchers, and thus explains the existing

approaches, corresponding building blocks and current challenges. Our focus will be particularly on the computation

of aggregated consumption, which has been addressed in a number of recent works. Architectural, hardware and

technological limitations in privacy-preserving data aggregation are also valid research challenges for realizing

other smart grid functions such as forecasting. To help the signal processing community in getting familiar with

the privacy protection research in smart grids, we structured this paper as follows. We reserve Section II for a

discussion on privacy considerations, architecture and the roles of stake-holders in smart grids. We present recent

research on the computation of aggregated data in Section III. We discuss the existing challenges in SSP research

in smart grids and present future work for the signal processing community in Section IV. We conclude the paper

in Section V.

II. PRIVACY MODEL AND SMART METERING ARCHITECTURES

We have argued that privacy is a crucial issue in smart metering; we can show it with a specific example of

the privacy breach produced when collecting fine-grained readings from a household power consumption. Figure 1,

taken from [14], represents a set of readings for a time span of forty minutes, where the consumption of each of the

electric appliances of the household can be easily identified just by eye inspection. There are even more powerful

techniques that take the aggregated measurements, and by using determined appliance signal models, they can

disaggregate the measurements and provide an accurate estimation of the moment when each appliance is turned

on and off [11]. These methods are usually called NIALM (Non-Intrusive Appliance Load Monitoring), and they

are based either on transient or harmonic analysis, noise pattern recognition, or generic optimization algorithms for

multiple-matching. With these methods and fine-grained readings, it is very easy to determine when the individual

living in a house is at home, when he/she is having lunch, sleeping, watching TV, taking a shower, etc.
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Fig. 1. Example of consumption readings for a short time period in a household (from [14]).

This reflects how important the privacy protection will be when smart metering is widely deployed. As mentioned

before, this has already led some parliaments to paralyzingthe adoption of smart metering infrastructures due to

the violation of privacy regulations, despite the economicbenefits and the energy savings it may produce. Hence,

smart metering cannot be widely adopted until there are technological means to conceal the readings and therefore

protect citizen’s privacy. Before going into the details ofthese technological solutions, let us depict in this section

the players in the smart metering scenario, the architectures in which a smart metering electricity network can be

materialized, and their trust models.

A. Involved Parties in a Private Smart Metering Scenario

For the sake of completeness, we will now briefly describe thestakeholders in a Smart Metering scenario. We

present afunctional classification of roles, depicted in Figure 2. It is possible, though, that some of the “actual”

stakeholders can simultaneously play several roles (i.e.,producer/operator, aggregator/owner of the communication

network, producer/aggregator). In fact, most of the works dealing with privacy in Smart Metering consider only two

or three parties, each of them adopting several simultaneous roles, as a simplified representation of the problem.

• Consumers/Customers: The end-usersthat receive the power supply, either households or industrial users. The

consumption patterns and specific individual fine-grained consumption information belonging to each user are

sensitive data that must be protected for preserving the consumers’ privacy. Commonly, customers have access

to the metered data, either aggregated or not, in order to select an appropriate and advantageous tariff and be
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Fig. 2. Smart Metering scenario and its stakeholders.

able to suitably administer their consumption habits and electric appliances.

• Smart Metering Devices: They are installed at the customer side of the network; their function is to sense

the consumed energy at every time slot (from milliseconds tominutes) and send the measurements to the

consumer and/or the aggregator. One meter must be present ateach consumer, so they are typically small and

cheap devices with limited computational power and transmission capabilities.

• Grid Operator/Supplier: A company that controls the electricity distribution and transportation infrastructure.

Operators may employ electricity usage data and distribution needs in order to optimally dimension and

structure their resources; load balancing is a critical issue.

• Communication Network: It deals with the communication among all the parties in thesmart meter scenario.

If sensitive data are interchanged in plain text (i.e., individual consumption data coming from the meters), the

communication channels must be secured.

• Electricity Producer: A company that sells the electricity to customers through the supplier’s infrastructure.

The price of the supplied electricity is agreed according toone or more tariffs. The producer must take into

account a) the demanded power in order to adjust the producedelectricity, and also b) know the total individual
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consumptions for billing each consumer applying the contracted tariff.

• Aggregator: This party takes the metered consumption data andaggregatesit, producing the relevant and

needed figures, like individual and average total power consumption, estimation of power demand or average

user profiling. This role is typically played by the same company that operates the grid.

B. Smart Metering Architectures

The interrelations among the stakeholders of the smart metering scenario differ depending on the implemented

architecture, so the latter highly impacts the trust model,as we will see. There are two main choices of smart

metering architecture, namelycentralizedanddistributed.

A fully centralizedmanagement relegates the meters to just the sensing function, sending the measurements of

short periods to a central data storage that acts as a hub (aggregator head end) and communicates with each smart

meter. The aggregator database is then used for consumptioncalculation, load balancing and billing; each user may

access the stored data in order to get information about his/her consumptions. This approach was the initial trend

for smart metering implementation proposals, and all the computations are performed at the central aggregator, that

has a high computational power compared to the meter devices.

For small grids, like self-sufficient grids in rural areas, adistributed (also known asde-centralizedor peer-to-

peer) energy management is usually adopted. In this case, the meters play the role of aggregators, and all the

calculations over the metered data are distributed among the consumers, that jointly play the role of grid operators;

the meters perform a partial data aggregation themselves (in-network aggregation [22], [6]), calculating the total

energy consumption in each billable period, and they communicate the results to the appropriate parties (energy

producer) typically once per billable period. Grid management and load balancing are performed collaboratively by

the users, through dedicated interfaces under their control, and possibly assisted by a subcontracted company.

C. Trust Models

In any privacy-aware scenario, not specifically related to smart metering, there is an inherent interdependency

between trust and privacy: those entities, parties and infrastructure elements of a smart metering system that are

trusted will need no further privacy protection, and those elements in which privacy is enforced through a secure

protocol will not need to be trusted. Hence, the definition ofthe trust model is of high relevance for properly and

effectively preserving users’ privacy. In this sense, untrusted parties can be considered mainly semi-honest (they

follow the established protocols, but may try to infer information from the interchanged values) or malicious (they

may deviate from the protocol, forging the interchanged messages to gain more information or to alter the output

of the protocol).

Going back to the electricity metering case, the main trust relationships are established between the con-

sumers and the suppliers/operator/aggregator. Trust fromthe consumers is directly related with privacy of the

metered data: which stakeholders can access these data for alegitimate purpose. Conversely, the trust from

the supplier/operator/aggregator focuses on the correctness of the data that the meters provide, so that “trusted
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consumers” are assumed to provide the actual consumption values without trying to forge these measurements and

the corresponding bills. The traditional sealed meters readable only at the customer’s home/facilities represented

the mutual trust between the supplier/operator and the consumers, in such a way that consumers could not forge the

measurements without tampering the meter and the operator could only access coarse measurements. The adoption

of smart metering reshapes the trust model depending on the choice of architecture:

A centralized management and data-collection imposes a universal trust on the grid operator; this party would

play the role of the aggregator, concentrating also the authentication and storage functionalities, and having access

to all the fine-grained measurements, stored out of context at a central database; furthermore, the grid operator itself

may have access in this scenario to the update and remote modification of the meters, hence the “universal trust”:

users will be concerned not only with privacy, but also with the correctness of the meter usage and tariff calculation.

This scenario is the prototypical example of privacy invasion that infringes the data protection directives; it is also

a challenging scenario, for it poses many technical difficulties for the provision of an actual privacy-preserving

solution.

A certain level of decentralization, together with the possibility of collaborative calculations among the meters,

possibly grouped into cells, can facilitate the development of an effective mechanism that provide an actual privacy

protection and correctness guarantees. Consequently, a partial decentralization is commonly assumed by works in the

field, in such a way that the trust of the users is distributed amongst other users of the same cell, that are less likely

to mutually collude, while the trust from the suppliers/operators still resides on the tamper-proofness of some of

the meter elements like the sensors, timing devices, securestorage and secure cryptographic modules. Nevertheless,

distributing data and calculations among several customers introduces also new challenges related with managing

trust relationships and privacy protection not only between consumers and providers, but also among users.

D. Functions of Interest: Private Utility

Once we have established the trust model for each architecture, we can devote some space to the description of

the figures and statistics that the grid operators or energy producers, untrustworthy for the consumers, may want

to calculate from the private metered data.

Grid operators are not usually willing to openly disclose how they perform the grid management and which

statistics they calculate. Any fine-granular data that could allow the grid operators to obtain useful statistics would

be an asset for the business. Nevertheless, obtaining exactconsumption data would be a breach of customers’

privacy. Furthermore, there are also legal bases that restrict this behavior: Data Protection Directives [1], [2] clearly

state that the amount of collected sensitive data must follow the principles of proportionality and purpose. Hence,

collecting the whole set of measurements without an adequate and rigorous justification would be in breach of these

principles.

Consequently, as a first step for a correct management of private data, the needed statistics and figures for the

proper operation of the Electricity Producer and the Grid Operator should be completely specified, determining also

the processing that the metered data will undergo by the Aggregator.
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The most obvious needed statistics are total consumptionCtotal(t) and billing B(t) for a given time periodt,

both needed by the Electricity Producer. These two figures can be represented as a general summationGS of the

readingsmi,t, GS(t) =
∑

Ms
f(mi,t), wheref(.) is the identity function in the case of total consumption, ora

given cost function in the case of billing (typically, a linear or piecewise linear function), andMs represents the set

of involved measurements, either through time slotst, through space (the meter indexi), or through both variables.

The sensitivity of these measurements creates a need for technical privacy preserving solutions that protect them

from the grid operator, the electricity producer or the aggregator itself. This solutions should not to hinder the ability

of the aggregator to calculate the neededGS(t) and, at the same time, avoid the possibility of fraud (electricity

theft).

Finally, it is worth mentioning that the general summationGS(t) can represent many functions of interest for

either the grid operator or the electricity producer (i.e.,statistical measures or consumption forecasts). We will

present the foundations of private solutions to some of them(mainly related to consumption calculation) in the next

section; we must highlight that there are other private calculations on the metered data that may pose additional

problems that fall out of the scope of this paper and will be briefly discussed in Section IV.

III. PRIVACY-PRESERVINGCOMPUTATION OF TOTAL CONSUMPTION

We now focus on the aggregation of measurements in order to show the recent privacy-preserving approaches

presented to date. For a certain time instantt, the total consumption is defined as:

Ctotal(t) =
∑

Ms

f(mi,t) =
∑

i

mi,t , (1)

wheremi,t is the measurement of theith smart meter. As argued in the previous section, individual measurements

are very privacy-sensitive, and thus should be protected.

Existing solutions in the literature focusing on the protection of individual measurements while computing the

total consumption obfuscate the individual measurements collected from the smart meters by means of encryption

and obtain the total by processing the data under encryption. With this approach, also called Secure Signal Processing

[19], it is feasible to protect the privacy of the citizens and perform the tasks required to run the smart grid.

There are three common assumptions in the literature for privacy-preserving aggregation in smart metering

systems. The first assumption is that there is a communication network available. While a wired communication

link to the utility provider is required, smart meters are also assumed to be able to communicate with each other,

which can be possible using technologies like Bluetooth andZigBee. A second assumption is the possession of

a valid certificateper smart meter. This is required as a proof of identity so that the inputs from a smart meter

with a valid certificate are accepted by the other parties. Therefore, a role for a Certification Authority exists. The

third assumption is the capability of performing cryptographic operations, mostly in a hardware environment with

limited computational power and memory. The type of such operations differs in every proposal but in general hash

functions, pseudo-random number generators, symmetric (e.g. AES) and asymmetric encryption (e.g. RSA, Paillier,

El Gamal), and Elliptic Curve Cryptography (ECC) are used.
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In this paper, we explain four approaches from the literature to compute the total consumption. While the proposed

protocols are designed for an arbitrary number of smart meters, we prefer to build a story around three customers,

namely Alice, Bob and Charles. Assume that a Utility Company(UC), which plays the roles of energy producer,

grid and network operator, wants to compute the total energyconsumption of these three customers:

Ctotal(t) = m1,t +m2,t +m3,t , (2)

wherem1,t, m2,t andm3,t are Alice’s, Bob’s and Charles’ measurements, respectively. Our goal is to enable the

UC to compute the total consumption without revealing the individual measurements. The measurements are mostly

kept secret by means of encryption. For the aggregation of the encrypted measurements, additively homomorphic

encryption schemes such as Paillier [21] (see Box I) seems suitable. However, for the aggregation using homomorphic

encryption, the same key has to be used. In the case of aggregation of measurements from different smart meters,

using the same key for encryption alone does not provide privacy protection, and thus additional techniques have

to be considered as explained in the following sections.

In the following, it is assumed that all involved parties actaccording to the semi-honest security model as

described in Section II-C.

A. Using Homomorphic Encryption and Secret Sharing

Garcia and Jacobs propose a privacy-preserving protocol based onsecret sharing(see Box II) in [12]. This

protocol described below defines two roles: 1) the UC as the aggregator, and 2) customers with smart meters. The

proposal completely hides the measurements from the UC since it receives encrypted measurements that it cannot

decrypt, and random shares of the total consumption. At the same time, neither of the participants can retrieve

meaningful information on the consumption of others as theyonly see the random shares.

The protocol starts with each user splitting their measurements into random shares, one share for each person:

Alice: m1,t = m1,t(1) +m1,t(2) +m1,t(3) mod η ,

Bob: m2,t = m2,t(1) +m2,t(2) +m2,t(3) mod η ,

Charles:m3,t = m3,t(1) +m3,t(2) +m3,t(3) mod η , (3)

whereη is a large integer. Keepingm1,t(1) for herself, Alice sendsm1,t(2) andm1,t(3) to the UC after encrypting

them with Bob’s and Charles’ public keys, respectively. Boband Charles also repeat the same steps with their

shares.

Assuming that the UC receives encrypted shares from Alice, Bob and Charles, it adds the shares, which are

encrypted by the same key, using the homomorphic property ofthe encryption scheme as follows:

Epki
(m′

i,t) =
∏

j 6=i

Epki
(mj,t(i)) = Epki

(
∑

j 6=i

mj,t(i)) , (4)
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wherepk1, pk2 andpk3 are Alice’s, Bob’s and Charles’ public keys, respectively.The UC then sendsEpk1
(m′

1,t) to

Alice, who can decrypt it using her secret key. She adds her sharem1,t(1) to m′
1,t, obtainingm1,t(1) +m2,t(1) +

m3,t(1) in clear text, and sends it to the UC. Bob and Charles also do the same. Upon receiving sums in plain

text, the UC adds all inputs and obtains the total consumption.

Being very simple, the proposed scheme perfectly achieves the privacy goal as the UC cannot access the private

individual measurements. Unfortunately, the cryptographic protocol relies on secret sharing, which increases the

amount of data (note the moduloη, which is a large integer). Table I shows the complexity analysis with respect

to the homomorphic operations. The protocol is not scalablesince the total number of homomorphic encryptions

and modular multiplications is in either caseO(N2), whereN is the number of smart meters. As each cipher text

is in the order of thousands of bits, this amount of encryption is also communication-wise expensive.

B. Using Masking and Brute Forcing

The second approach we consider in detail is proposed by Kursawe et al. in [18]. The authors propose two

ways to efficiently compute the total consumption in a smart metering system with limited hardware resources.

In the first one, called aggregation protocols, Alice, Bob and Charles mask their measurement in such a way that

when inputs from all parties are summed, masking values cancel each other out and the aggregator obtains the total

consumption. In the second approach, named comparison protocols, authors make an assumption that the aggregator

(UC) roughly knows the total consumption. In this approach,Alice and the others computegm1,t+r1
i , gm2,t+r2

i and

g
m3,t+r3
i , respectively, wheregi is computed as the hash of a unique identifier, e.g. a serial number or time and

date of the measurement. The random numbersr1, r2, andr3 are generated in such a way that they sum to zero

and are used for masking the measurements. It is clear that the UC can easily aggregate the inputs from Alice and

the others:
3
∏

j=1

g
mj,t+rj
i = g

∑
3

j=1
mj,t+rj

i mod p , (5)

wherep is a large prime number.

Obviously, the UC cannot obtain the actual sum since this requires solving a discrete-log problem, which is

infeasible. As the UC is givengi and has an approximation of the total consumptionC̃total(t), it can compute

values and test for equality, thus brute-forcing values ofg
C̃Total(t)
i , gC̃Total(t)−1

i , g
C̃Total(t)+1
i , . . . until a match is

found.

The authors propose four protocols that provide different ways for a number of smart meters to deriverj and

grj : one based on secret sharing and other three on Diffie-Hellman key exchange protocol and bi-linear map. In the

following, we only summarize one of the protocols based on Diffie-Hellman key-exchange protocols to generate

random numbers.

The protocol assumes that each customer has a unique IDj and a secret keyRj . To generate therj values, a

generator of a Diffie-Hellman groupgi is computed using a hash function, withi being the time slot for computing

the total consumption. Then, each smart meter computes the public key gRj

i and distributes it to others with valid
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certificates. After verification of the public keys, everyone computes,

g
rj
i =

∏

k 6=j

(

gRk

i

)(−1)k<jRj

, (6)

wherek < j is 1 if the index of meterk is smaller than the index of meterj, and zero otherwise. Clearly the sum

of all rj is zero:
∑

j

rj =
∑

j

∑

k 6=j

(−1)k<jRk ·Rj = 0 . (7)

Once these random numbers are generated, Alice and the others can continue with the computation of the total

consumption as explained before.

Table I shows the complexity of the above described protocol. The number of messages to be exchanged is

O(N2), as each smart meter has to access a new Diffie-Hellman key forthe aggregation of the measurements

in the most secure form of the protocol. The number of modularmultiplications isO(N) and the number of

exponentiations isO(1). Notice that the computations are on a Diffie-Hellman group,for which the key length is

suggested to be 256 bits in the original work. Compared to previous work from Section III-A, that suggests to

use the Paillier cryptosystem, which relies on very large key sizes, the small size of the key presents a significant

advantage in performance.

C. Using Modified Homomorphic Encryption

The third approach we consider is a cryptographic protocol by Erkin and Tsudik that computes the total

consumption in a smart metering system using a modified version of the Paillier cryptosystem [8]. Based on

this modification, the authors propose three schemes for: 1)computing the aggregated consumption of a number

of customers for a specific time slot (spatial case), 2) computing the total consumption of a single customer for a

time interval (temporal case), and 3) computing total consumption in a neighborhood for a specific time slot and

the total consumption of each customer for a time interval byusing only one encryption per smart meter in each

time slot (spatio-temporal case).

In the spatial computation case, Alice and the others compute the total consumption on their own, hence there

are only customers, one of which acts as an aggregator. In thetemporal computation of a single customer, which

is interesting for billing purposes, the authors introducea UC as an aggregator. The UC receives encrypted

measurements from the smart meters but it is unable to decrypt without help from the smart meters. Only by

receiving the last encryption, the UC is able to obtain the total consumption in plain text. In the spatio-temporal

case, Alice, Bob and Charles disseminate their encrypted measurements in every time slot and each of them is able

to easily compute the total consumption for that time slot. Similar to the temporal case, the UC relies on the last

input from the smart meter to compute the total consumption of that single customer. Figure 3 summarizes these

three scenarios.

The idea in [8] relies on the use of Paillier cryptosystem, where the modulon is split into random shares (Box

II). Assume that Alice, Bob and Charles have three random numbers such thatn1 + n2 + n3 = n. In such a case,
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Fig. 3. Spatio-Temporal Consumption from [8].

Alice and the others can encrypt their measurements as follows:

Alice: Fpk(m1,t) = gm1,t · rn1 mod n2 ,

Bob: Fpk(m2,t) = gm2,t · rn2 mod n2 ,

Charles:Fpk(m3,t) = gm3,t · rn3 mod n2 , (8)

where functionF denotes the modified encryption function. Here we use the modified Paillier cryptosystem for

its homomorphic property and thus, the decryption key is also available to everyone. It is clear that even with the

public decryption key, no one can decrypt the encryptions since therandom numbers cannot be removed as they

are not in the form ofrn. However, an aggregator, anyone in the group, can collect the encryptions and form a

proper encryption of the total consumption:

∏

i

Fpk(mi) = g
∑

i mi,t · r
∑

i ni mod n2

= g
∑

i mi,t · rn mod n2 := Epk(
∑

i

mi,t) . (9)

Certainly, individual measurements are kept secret but thesum can be obtained by everyone easily. For this technique

to work, Alice, Bob and Charles should use the same random number r. This is achieved by generating a hash

value of the time-stamp, which also associates the encryption to a specific measurement in a certain time slot.

While Erkin and Tsudik propose very simple protocols for spatio-temporal total consumption, the schemes still

require smart meters to be able to perform Paillier encryption, hash functions, random number generation and,

most importantly, to communicate with each other. The complexity of the protocol is lower than the scheme in

Section III-A as shown in Table I: only one encryption by eachsmart meter in each time slot andO(N) modular

multiplication for the aggregation.
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D. Using Masking and Differential Privacy

The last approach we consider is proposed byÁcs and Castelluccia in [4]. The proposed solution also relies

on an additively homomorphic encryption scheme but does notmake use of expensive secret sharing or public

cryptosystems such as Paillier. Private measurements fromsmart meters are encrypted with a simple and yet efficient

cryptosystem, where the encryption is defined asEpk(m, k, n) = m + k mod n, wherem is the measurement,k

is the encryption key andn is a large number. Since addition over a modulo is significantly faster to perform

compared to other encryption functions, for example the Paillier encryption function requires computing powers of

large numbers, this simple cryptosystem is significantly efficient. It is additively homomorphic as well:

Ek1
(m1) + Ek2

(m2) = m1 + k1 +m2 + k2 mod n

= Ek1+k2
(m1 +m2) . (10)

The aggregation protocol presented in [4] defines an aggregator, which can be any customer or the UC. The

protocol starts with smart meters choosing a set of other smart meters randomly. For the sake of simplicity, assume

that Alice chooses Bob and Charles. The coupling between anytwo smart meter is bi-directional, so Bob and

Charles choose Alice as well. Once Alice and Bob are coupled with each other, they generate a random number,

r1,2, by feeding a Pseudo Random Function (PRF) [13] with their shared keys. Alice addsr1,2 to her measurement

while Bob subtracts it from his own. Alice generates anotherrandom number with Charles,r1,3, and adds it to her

measurement too. Alice finally encrypts the resulting sum using a key,KAU , which is shared with the UC:

EKAU
(m̃1,t) = m1,t + r1,2 + r1,3 +KAU mod n . (11)

Similarly, Bob and Charles encrypt their masked measurements,

Bob: EKBU
(m̃2,t) = m2,t − r1,2 + r2,3 +KBU mod n

Charles:EKCU
(m̃3,t) = m1,t − r1,3 − r2,3 +KCU mod n , (12)

whereKBU is the shared key between Bob and the UC, andKCU between Charles and the UC. Alice, Bob and

Charles then send the encryptions to the UC.

Upon receiving the encryptions, the UC computes the total consumption by aggregating them. When added, the

random numbers that are mutually generated cancel each other out and the UC obtains the aggregated sum in plain

text by subtractingKAU , KBU andKCU as he knows these values.

Clearly, the UC cannot observe the actual measurements of anyone since each measurement is masked by a set

of random numbers, which cancel each other out only when theyare all added. Therefore, individual measurements

are kept completely hidden from the UC. However, for this scheme to work, each smart meter has to share keys

with the UC and exchange pseudo-random numbers with many other smart meters.

One difference in [4] compared to previously discussed approaches is that́Acs and Castelluccia obscure the

aggregated data prior to encryption usingDifferential Privacy (Box III) [7]. In particular, the UC is assumed to
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access only
∑

i mi,t +L(α), whereL(α) is the Laplacian noise generated according to theǫ parameter. Assuming

that aggregator is a different entity from the UC, the Laplacian noise could be added by the aggegator prior to

sending the encrypted total to the UC. However, for this scheme to work, the aggregator should be trustworthy.

Instead of relying on a aggregator, the authors prefer to jointly generate the Laplacian noise by the smart meters.

This is made possible by using a lemma that states that the Laplacian noise is divisible and can be constructed as the

sum of i.i.d. gamma distributions:L(α) =
∑

i(G1(i, α) − G2(i, α)), whereG1(i, α) andG2(i, α) are i.i.d. random

variables having gamma distribution with a probability distribution function (PDF) as specified in [4].

Given that the gamma distributions with this specification are generated locally, each smart meter adds gamma

noise to its measurement to obtainmi,t+G1(i, α)−G2(i, α) before encrypting it. When aggregated, the sum yields

to
∑

i mi,t + L(α). Note that with this construction, the UC and aggregator canbe the same entity.

The overall complexity of the protocol given in Table I is significantly lower than the previously mentioned

methods due to the very simple encryption function. Communication, however, is dominated by the exchange of

random numbers. Note that the computational complexity is linear in the number of smart meters as the previous

approaches. However, due to theǫ parameter for differential privacy, the number of smart meters directly influences

the level of privacy. The original work suggests to have a large cluster of smart meters as the noise is calibrated

according to the maximum consumption. Interested readers can find a thorough discussion on the number of smart

meters and the average privacy achieved in [4].

TABLE I
COMPLEXITY ANALYSIS OF DESCRIBEDAPPROACHES FOR ASMART METER (SM) AND AN AGGREGATOR(A).

Garcia&Jacobs [12] Kursaweet. al [18] Erkin&Tsudik [8] Ács&Castelluccia [4]
Operations SM A SM A SM A SM A

Paillier (2048 bits) DH Group (256 bits) Paillier (2048 bits) HE (32 bits)
Encryption O(N) - - - O(1) - - -
Decryption O(1) - - - - O(1) - -
Multiplication - O(N2) - O(N) - O(N) - -
Exponentiation - - O(1) - - - - -
Addition - - - - - - O(1) O(N)
Subtraction - - - - - - - O(1)
Communication O(N) O(N2) O(N) O(N2) O(1) O(N) O(1) O(N)

IV. D ISCUSSION

We have presented several examples of technological privacy-preserving solutions to the computation of total

consumption. These solutions try to tackle the privacy issues of current smart metering infrastructures, in order to

avoid the need for a universal trust on the grid operator and to comply with data protection regulations. As we have

seen, the peculiarities of each model (i.e., different management, authentication and storage, and their corresponding

trusted elements) highly influence the optimal way to guarantee privacy with the minimal interference into the service

provision and utility. At the same time, it is also desirableto minimize the extra hardware requirements that, if

excessive, can negate the benefits of the smart metering paradigm, discouraging its deployment and implementation.



15

From this starting point, we can identify and foresee several crucial challenges for addressing the privacy-aware

smart metering scenario, taking into account the strengthsand weaknesses of the compared approaches.

A. Challenges derived from hardware limitations

1) Scalability and flexibility:A cluster in a grid can provide supply to a number of users thatranges from a few

hundreds (in distributed networks) to tens of thousands. For a proper operation of the grid, it is essential that all

the implemented systems scale well. For the protocols reviewed in the previous section, Table I gives a glimpse of

their scalability properties with respect to the number of consumers in the same cluster. While both [12] and [18]

present a communication complexity that is quadratic for the aggregator and linear for each meter, both [8] and

[4] present a linear complexity for the aggregator and constant for the meters. Hence, the latter two protocols will

scale much better than the former. A similar conclusion can be drawn for the computational complexity, for which

[4] presents a really lightweight protocol. It must be noted, though, that [4] needs that the number of customers

per cluster be large enough, or the differentially private protocol will introduce an excessive noise power into the

results.

2) Communication bottleneck:Meter devices have to communicate with the aggregator or with the utility

company to send the (authenticated) measurements, either the whole sequence or a partially aggregated summary.

This is the minimum communication that the meters must perform. In terms of energy consumption for embedded

devices, using a wireless link for sending a bit is equivalent to carrying out around one hundred microcontroller

instructions [23], so data transmission should be kept to a minimum, and only triggered when strictly necessary.

Nevertheless, the proposed simplified homomorphic encryption schemes and key exchanges between meters, as

well as the distributed noise generation processes [4] involve many interaction rounds among the meters. Thus, the

concealment of the private values through reduced-computation mechanisms is achieved through a collaborative

process among meters, at the cost of increasing the communication complexity in the network. This overhead can

be the true bottleneck of the smart metering system. Hence, actually optimizing communication, computation and

power drain at the meters is a hard task that has not been fullyaddressed in privacy-preserving approaches.

3) Limited resources of smart meters and efficient homomorphic encryption: For the smart metering scenario to

be economically viable from the point of view of Grid Operators, smart meters must be cheap and easily replaceable

and/or reconfigurable devices. This need responds to a scalability principle, for which the cost of deploying all

the meter devices in all the households and facilities of theserved users must be manageable and covered by

the energy savings and consumption reduction that the “smart” use of the grid and the optimal load balancing

will provide. Hence, smart meters cannot be fully-fledged PCs, but small embedded devices with very limited

computation resources and, obviously, small power consumption.

Due to these fundamental constraints, some of the proposalsfor privacy-preserving smart metering consumption

have targeted the use of simple homomorphic encryptions, like the modular addition of́Acs and Castelluccia [4],

or the use of light secret sharing schemes.
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It is worth noting that existing current meters do not comprise trusted elements capable of performing complex

homomorphic encryption; if any, they use symmetric cryptography [16], [9], usually supporting “light” cryptographic

functions like hashes and secret-key encryption/decryption and HMAC signatures. Most of the proposed privacy-

preserving solutions require [12] the inclusion at the meters of tamper-proof cryptographic modules (similar to

smart cards); these modules must handle integrity, distributed authentication and heavy public key data encryption

and signatures. Furthermore, if homomorphic processing isused, the meters must also cope with homomorphic

operations that involve large modular additions, multiplications and exponentiations. It is worth noting also that the

encryption techniques used by privacy-preserving protocols (like Paillier) are not a widely used standard like RSA,

and they are not present by default in typical cryptographicmodules, so they have to be recompiled and optimized;

this may be a problem in the short term, while there is no consensus in the encryption methods needed for an

integral privacy-preserving solution. Nevertheless, in the long term this will not be a major problem, as the massive

adoption of smart metering will lower the production costs of the chosen solution.

B. Challenges related to secure cryptographic protocols

1) Malicious parties and tampering:All the presented solutions to private smart metering are devised for a

semi-honest adversarial model, in which none of the partieswill deviate from the established protocol or forge

any results. This is a very optimistic model, unlikely for a real scenario with malicious parties. These malicious

parties will find more opportunities to compromise the correct operation of the system as the communication needs

of the used protocol grow, so these needs have to be minimized. Additionally, meter tamper-proofness is essential

to prevent forgeries and deviations. In a non-private system, the tamper-proof section of the device will comprise

only the sensors and timing, but when privacy-preserving protocols come into play, the cryptographic module in

charge of producing and receiving the needed transcripts has to be also tamper-proof so that the user cannot modify

the correct behavior. As a man-in-the-middle attack is practically unavoidable, tamper-proofness is not enough, and

other additional specific cryptographic mechanisms have tobe considered also for the protocol to be valid against

malicious adversaries.

It is remarkable, though, the strength shift in the smart metering roles when tackling privacy constraints: in a

non-private system the utility company has all the control and concentrates the need of trust from the consumers,

that must blindly assume that they will be billed correctly for their consumptions. Conversely, if consumer privacy

is guaranteed, then it is the utility company who must trust that the measurement aggregation and billing calculation

are correctly performed, as it will not have access to specific individual measurements. This is the main reason for

the grid operators to be reluctant to adopt a privacy preserving solution if it does not come together with a fraud

detection mechanism and technical guarantees that cheating customers will not succeed.

2) Key management:For private protocols based on homomorphic processing, it is a common requirement that

all the encrypted values be produced with the same key in order to be homomorphically “combinable” [12], [8],

in such a way that the secret key is shared among several customers and even the utility company. In an ordinary

setting, this key disclosure would imply losing the possibility of correct authentication, and pose other problems
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related to the possibility of forgeries by dishonest users with decryption capabilities. The solution to these problem

passes through unusual key distribution mechanisms, like the sub-key generation process by Erkin and Tsudik [8],

or the peer-to-peer key establishment byÁcs and Castelluccia [4], in which each two coupled users share a uniquely

generated key for each iteration of the private consumptioncalculation protocol. Hence, it is not yer possible to

have fixed unique individual secret keys without having to resort to too costly strategies like proxy-reencryption or

encryption delegation.

3) Securing Billing Calculations:Billing B(t) is one of the private utility functions needed by Electricity

Producers. But the peculiarities of the billing process pose additional issues [17]. A simple privacy-preserving

protocol could calculate a certified private bill combiningthe encrypted measurements and the appropriate tariffs; but

an integral privacy protection mechanism would also include secure deposits and anonymous payments. Furthermore,

when the used protocol is differentially private, like those in [17] (See Box III), the output billing isfuzzy, and

the noise added to the calculations involves producing inaccurate invoices. There will be a noisyfakeconsumption

(positive or negative for each client) that the protocol itself has to compensate by providing secure mechanisms of

in advance payments anda posteriori rebates, together with an assertion protocol for avoiding fraud or abuse by

the noise addition procedures [17]. While there are already proposed solutions for this scenario [17], it is likely

that some customers will not be comfortable with paying in advance for a fake consumption, so there is still room

for improvement and further research in this area.

C. Challenges related to Signal Processing

1) Complex utility functions:Throughout this article, we have only presented and discussed the problem of

private total consumption calculation, for which the general summation functionGS(t) takes a very simple form.

More complex functions may be desirable from the utility company point of view, ranging from billing with non-

linear tariffs, to more complex statistical calculations related to profiling, load forecasting, state estimation, adaptive

frequency estimation, or network modeling2. Devising privacy-preserving protocols that deal with these complex

functions while keeping a low overhead that does not exceed the capabilities of smart meters is a challenging task;

this cannot be handled by homomorphic encryption alone, andusing further secure interactive protocols increases

communication and computation complexity.

Furthermore, restricting the possible utility functions that the providers may privately obtain from the measure-

ments has the effect of limiting the functionality of the grid operators and bounding the information that they might

otherwise get from an indiscriminate access to fine-grainedconsumption data. This is not desirable for providers,

but it is beneficial from a privacy point of view, as it forces the providers to explicitly specify which computations

and which results they want to obtain from the private data atevery moment, in fulfillment of the Data Protection

Directives.

But this problem is not exclusively a cryptographic issue; signal processing can also play a fundamental role

in solving this challenge: the signal processing algorithms for performing complex calculations like forecasting

2We refer the interested reader to [3] for a current view of complex signal processing related tasks and challenges in future smart grids.
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(e.g., predictive filtering) or profiling (e.g., maximum likelihood estimation) have been originally developed without

privacy in mind, and without the restrictions that current cryptographic privacy-preserving techniques pose. There

is a very interesting challenge in finding approximate signal processing analogous protocols that conform to the

limitations of the cryptographic techniques while providing, with a bounded error, similar results to those complex

forecasting and profiling algorithms.

2) Accuracy loss:For fuzzymechanisms that add noise in order to guarantee differential privacy [7], there is an

accuracy loss for the information that providers might get as the outcomes of these mechanisms. There is a direct

relationship [7] between the induced noise power (measurement accuracy) and theǫ level of differential privacy

that the mechanism achieves. This tradeoff has to be carefully considered and evaluated for each utility function, as

it might be the case in some scenarios that the obtained results get lost in noise and become useless if the needed

privacy level is too high (i.e., too noisy billing data). This is closely related to the use of approximate algorithms

to achieve strict efficiency goals.

V. CONCLUSION

Deployment of smart grids is progressing fast in many countries despite several challenges in the legal, business

and technology point of view. One related research challenge for the signal processing community is the protection

of private smart meter measurements from the untrustworthystakeholders while the core smart grid functions

stay intact. Secure Signal Processing, which aims for computing a signal processing function with private signal

inputs, presents itself as a powerful technological solution which can make the deployment of smart grids more

acceptable for the end-users. The distributed setting of the smart meters, different involved parties, and the functions

to be realized in a privacy-preserving manner with hardwareconstraints constitute an appealing problem domain

for the signal processing research community, which can take advantage of experiences in distributed computing,

optimization and efficient communication. Certainly, for privacy protection, the researchers should also invest in

cryptography, getting familiar with its utility and limitations. With this paper, we identify the privacy problems

in smart grids, summarize the recent research on data aggregation, and present an overview of existing research

challenges for SSP.

BOX I: HOMOMORPHICENCRYPTION

A plain text messagem is encrypted in Paillier [21] with the following function:

Epk(m) = gm · rn mod n2 , (13)

wheren is a product of two large primes,p and q, g is a random number inZ∗
n2 with an ordern, meaning that

gn mod n2 = 1. The tupleg, n is the public key. The random numberr is chosen such thatgcd(r, n) = 1. Using a

different random value for every encryption guarantees that the cipher text for the same plain text will be different

in each case, hence the encryption scheme is called probabilistic. Note that the recipient of the cipher text does

not need to knowr to decrypt the message since(rn)λ mod n2 = 1, whereλ is the secret key and it is given by
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lcm(p− 1, q − 1). Therefore, anyr that is co-prime ton can be removed easily if it is raised first to the power of

n and thenλ.

The Paillier encryption scheme is additively homomorphic,meaning that multiplication of cipher texts of two

messages results in an encryption of the sum of these two messages:

Epk(m1) · Epk(m2) = gm1 · rn1 · gm2 · rn2 mod n2

Epk(m1 +m2) := gm1+m2 · (r1r2)
n mod n2 . (14)

We refer readers to [21] for more details on the decryption function. Interested readers can find more information

on Homomorphic Encryption in [10] and its usage in encryptedsignal processing in [19]. For other cryptographic

notions, we refer the reader to [20].

BOX II: SECRETSHARING

The main idea in secret sharing is dividing a secrets into m pieces called shares. Each of these shares are then

sent to a user in a secure way. A coalition of some of users is later able to reconstruct the secret. Shamir explains

a threshold secret sharing scheme in [25], where any combination of k shares out ofm can be used to reconstruct

the secret. The proposed method is based on generating random points on a polynomial of degreek whose constant

term is the secret. Clearly, when anyk points are combined, the polynomial can be reconstructed, and the secret

can be revealed.

BOX III: D IFFERENTIAL PRIVACY

A function F is ǫ-differentially private, if for all data setsD1 andD2, whereD1 andD2 differ on at most one

element, and for all subsets of possible answersS ⊆ Range(F),

P (F(D1) ∈ S) ≤ eǫ · P (F(D2) ∈ S) . (15)

The above definition says that a differentially private function produces indistinguishable outputs for inputs that

differ by a single element, meaning that a modification in onedata set changes the probability of any output by a

factor of eǫ at most. Here,ǫ controls the level of privacy: the lower values ofǫ, the stronger privacy.

REFERENCES

[1] Directive 95/46/EC of the European Parliament and of the Council. Official Journal L 281, 23/11/1995 P. 0031 - 0050, October 1995.

[2] Directive 2002/58/EC of the European Parliament and of the Council. Official Journal L 201, 31/07/2002 P. 0037 - 0047, July 2002.

[3] Special Issue on: The Future Smart Grid, Signal Processing Challenges.Signal Processing Magazine, IEEE, 29(5), sept. 2012.
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