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Abstract

Growing energy needs forces governments to look for alternativeuress and ways of better energy grid
management and load balancing. As a major initiative, many countriedinglihe UK, the USA and China have
already started deploying smart grids. One of the biggest advantégesaot grids compared to traditional energy
grids is the ability to remotely read fine-granular measurements from saett meter, which enables the grid
operators to balance load efficiently and offer adapted time-depetaté#fd. However, collecting fine-granular data
also poses a serious privacy threat for the citizens as illustrated by tioteof the Dutch Parliament in 2009
that rejects the deployment of smart meters due to privacy considesatitence, it is a must to enforce privacy
rights without disrupting the smart grid services, like billing and data aggiey Secure Signal Processing aims at
protecting the sensitive data by means of encryption and provides toofedess them under encryption, effectively
addressing the smart metering privacy problem.

In this paper we present recent and ongoing research in the fieldvacyrprotection for smart grids, where
individual smart meter measurements are kept secret from owgsigeiuding the utility provider itself, while
processing private measurements under encryption is still feasibléode particularly on data aggregation, which
demonstrates the major research challenges in privacy protectioméot grids.
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I. INTRODUCTION

The Energy Independence and Security Act of 2007 definestsyridras the modernization of the electricity
delivery system that monitors, protects, and automatioafitimizes the operation of its interconnected elements
from generator to end users. Smart grids offer indisputabil@ntages over traditional power grids including remote

readings and load balancing. Consequently, many couritrédsding the UK, the USA and China have already
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started building smart electric grids. The European Corsimishas foreseérthe implementation of smart electric
grids by the Member States, requiring that 80% of consumersduipped with smart metering systems by 2020,
after a viability assessment in 2012.

A smart grid consists of three segments: power generatianstission-distribution network, and smart meters.
In each segment, there are several challenges: power geneia highly related with wind turbines and solar
panels, which are not as predictable as traditional powerces since energy production relies on environmental
factors. Transmission-distribution network deals witficgncy problems, especially in the case of bi-directional
energy transmission and distribution. And smart metersgiea number of challenges in sensing, analyzing, and
communication. Therefore, digital signal processing fmasél application in smart grid systems including specific
hardware and software for sensing, processing digitalatsgrand low-cost communication.

Smart meters introduce new opportunities for the marketedk Whe traditional (analogue) metering systems rely
on tamper-proof devices located at the households and teghgsicallyread by the utility provider monthly. Smart
meters, however, are anticipated to be read periodicalshorter intervals that range from minutes to milliseconds
remotely thus open up a wide range of new business opportunitiebéautility providers. For instance, fine-granular
remote readings can be used for performing statisticalyaaalthat lead to effective consumption forecasting and
profiling, which contribute to the prevention of power slageés and to apply load balancing. At the same time, the
fine-grained readings will assist users in achieving a méfieient energy use and adapting to the network status
and supply by choosing an appropriate and advantageoffs tari

Unfortunately, smart grid systems have a number of seribotesats including security, safety, fraud, and privacy
[5]. A virus or a DoS (Denial of Service) attack can severeimage the power infrastructure of a country. A
remote switch-off button can be an appealing target for ewsafare. And manipulating smart meter readings can
cause severe financial losses. Even though the researcltunitysesafety and fraud prevention are attracting great
attention from the governments, industry and academisagyiaspects are not addressed sufficiently. A proof of
how much privacy-sensitive data a smart meter reveals sty a Dutch student obwi red. nl . It is clear
that the actions of the residents can be easily tracked blyzng the smart meter data (gas, water, and electric
consumption). It is even possible to determine the pregahsence of residents, the number of people living in
a household; even their religion can be identified [5], [1Qbviously, fine-granular smart meter measurements
constitute a serious privacy and, in some cases, securigttifor the citizens.

Many privacy related considerations in other on-line systesuch in as social networks, can be tackled by
raising awareness among people on how to avoid revealinggyrisensitive data. In the case of smart grids, raising
awareness does not help the users sufficiently since regditie-granular consumption measurements is an essential
part of an automated system. Therefore, security techiedpgs well as law and regulations, are necessary to cope
with privacy issues in smart grids. Not surprisingly, at &éral of serious discussions, the Dutch Parliament refused

the bill for smart grid deployment in 2009 on grounds of datatgction concerns. Until a solution is found on the

1Directives 2009/72/EC (electricity) and 2009/73/EC (gak)he European Parliament Council of 13 July 2009.



basis of technology, it will be challenging to convince thevernments and citizens in favor of deploying smart
grids.

In the past years, solutions have been developed for prpegserving billing and data aggregation in smart grids
based on security technology, in particuecure Signal Processif®SP). SSP is a powerful mechanism that, on
one hand, protects the privacy-sensitive smart meter dada @ the other hand, enables the utility provider to
still perform data analysis for the management of the grite Tain idea in SSP is to prevent the untrustworthy
entities, including the utility provider, from accessirtetprivate data, while providing tools to process the smart
meter measurements, e.g. for billing and data analysischieee this goal, cryptographic tools like homomorphic
encryption and secure multi-party computation technigaies being used [19]. In particular, instead of reading
measurements in plaint text, the utility provider receieesrypted measurements from the smart meters. Without
the decryption key, the utility provider cannot access tbetent of the encryptions; this guarantees the privacy
of the residents. To perform the usual smart grid operatsuth as billing, the utility provider interacts with the
smart meters according to a pre-defined protocol [24], [14].

In this paper, we give an overview of recent and ongoing rekei the field of privacy protection for smart
grids. The paper serves as an introduction for the sighatgssing researchers, and thus explains the existing
approaches, corresponding building blocks and currenlectgges. Our focus will be particularly on the computation
of aggregated consumption, which has been addressed in benwhrecent works. Architectural, hardware and
technological limitations in privacy-preserving data egggation are also valid research challenges for realizing
other smart grid functions such as forecasting. To help theas processing community in getting familiar with
the privacy protection research in smart grids, we stractuhis paper as follows. We reserve Section |l for a
discussion on privacy considerations, architecture ardrdkes of stake-holders in smart grids. We present recent
research on the computation of aggregated data in Sectiowél discuss the existing challenges in SSP research
in smart grids and present future work for the signal praogssommunity in Section IV. We conclude the paper

in Section V.

II. PRIVACY MODEL AND SMART METERING ARCHITECTURES

We have argued that privacy is a crucial issue in smart nmgfesve can show it with a specific example of
the privacy breach produced when collecting fine-grainedlireys from a household power consumption. Figure 1,
taken from [14], represents a set of readings for a time sp&rty minutes, where the consumption of each of the
electric appliances of the household can be easily idemtjlist by eye inspection. There are even more powerful
techniques that take the aggregated measurements, andngy determined appliance signal models, they can
disaggregate the measurements and provide an accuratatisti of the moment when each appliance is turned
on and off [11]. These methods are usually called NIALM (Natrusive Appliance Load Monitoring), and they
are based either on transient or harmonic analysis, notserpaecognition, or generic optimization algorithms for
multiple-matching. With these methods and fine-grainediregs, it is very easy to determine when the individual

living in a house is at home, when he/she is having lunchpsige watching TV, taking a shower, etc.
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Fig. 1. Example of consumption readings for a short time peniod household (from [14]).

This reflects how important the privacy protection will beemrsmart metering is widely deployed. As mentioned
before, this has already led some parliaments to paralytiagadoption of smart metering infrastructures due to
the violation of privacy regulations, despite the econobenefits and the energy savings it may produce. Hence,
smart metering cannot be widely adopted until there arentolgical means to conceal the readings and therefore
protect citizen’s privacy. Before going into the detailstbése technological solutions, let us depict in this sectio
the players in the smart metering scenario, the architestur which a smart metering electricity network can be

materialized, and their trust models.

A. Involved Parties in a Private Smart Metering Scenario

For the sake of completeness, we will now briefly describestia&eholders in a Smart Metering scenario. We
present &unctional classification of roles, depicted in Figure 2. It is possiltlkough, that some of the “actual”
stakeholders can simultaneously play several roles fireducer/operator, aggregator/owner of the communicatio
network, producer/aggregator). In fact, most of the woralithg with privacy in Smart Metering consider only two
or three parties, each of them adopting several simultaneaes, as a simplified representation of the problem.

« Consumers/Customerfhe end-userghat receive the power supply, either households or indlistsers. The

consumption patterns and specific individual fine-grain@asomption information belonging to each user are
sensitive data that must be protected for preserving thewnars’ privacy. Commonly, customers have access

to the metered data, either aggregated or not, in order éxtsah appropriate and advantageous tariff and be



Grid Operator _ -

-, -
Consumers - ;o
pey "/ Electricity

\/
Electricity

Distribution 7= _

Grid

Network ~
@ Smart Meters RN egator
............ Electricity Flow i
_—— Data Flow 3;
— . — .. Control/Signalling S

Fig. 2. Smart Metering scenario and its stakeholders.

able to suitably administer their consumption habits amdtet appliances.

« Smart Metering DevicesThey are installed at the customer side of the network;r theiction is to sense
the consumed energy at every time slot (from millisecondsnioutes) and send the measurements to the
consumer and/or the aggregator. One meter must be preseatlkaiconsumer, so they are typically small and
cheap devices with limited computational power and trassion capabilities.

« Grid Operator/Supplier A company that controls the electricity distribution amdnisportation infrastructure.
Operators may employ electricity usage data and distohutieeds in order to optimally dimension and
structure their resources; load balancing is a criticalass

« Communication NetworKt deals with the communication among all the parties in gheart meter scenario.
If sensitive data are interchanged in plain text (i.e.,vidlial consumption data coming from the meters), the
communication channels must be secured.

« Electricity Producer A company that sells the electricity to customers through $upplier's infrastructure.
The price of the supplied electricity is agreed accordingrie or more tariffs. The producer must take into

account a) the demanded power in order to adjust the procdeleetticity, and also b) know the total individual



consumptions for billing each consumer applying the catéch tariff.
o Aggregator This party takes the metered consumption data aggregatesit, producing the relevant and
needed figures, like individual and average total power wampdion, estimation of power demand or average

user profiling. This role is typically played by the same camp that operates the grid.

B. Smart Metering Architectures

The interrelations among the stakeholders of the smartringtecenario differ depending on the implemented
architecture, so the latter highly impacts the trust modslwe will see. There are two main choices of smart
metering architecture, nametentralizedand distributed

A fully centralizedmanagement relegates the meters to just the sensing fansgading the measurements of
short periods to a central data storage that acts as a hute¢mgor head end) and communicates with each smart
meter. The aggregator database is then used for consungaticulation, load balancing and billing; each user may
access the stored data in order to get information aboutdrionsumptions. This approach was the initial trend
for smart metering implementation proposals, and all thepaations are performed at the central aggregator, that
has a high computational power compared to the meter devices

For small grids, like self-sufficient grids in rural areasgliatributed (also known asle-centralizedor peer-to-
peen energy management is usually adopted. In this case, thersmptay the role of aggregators, and all the
calculations over the metered data are distributed amasmgdhsumers, that jointly play the role of grid operators;
the meters perform a partial data aggregation themselwesefivork aggregation [22], [6]), calculating the total
energy consumption in each billable period, and they conicatm the results to the appropriate parties (energy
producer) typically once per billable period. Grid managetrand load balancing are performed collaboratively by

the users, through dedicated interfaces under their domtnd possibly assisted by a subcontracted company.

C. Trust Models

In any privacy-aware scenario, not specifically related @t metering, there is an inherent interdependency
between trust and privacy: those entities, parties andstrincture elements of a smart metering system that are
trusted will need no further privacy protection, and thoksments in which privacy is enforced through a secure
protocol will not need to be trusted. Hence, the definitiorthaf trust model is of high relevance for properly and
effectively preserving users’ privacy. In this sense, ustied parties can be considered mainly semi-honest (they
follow the established protocols, but may try to infer imf@tion from the interchanged values) or malicious (they
may deviate from the protocol, forging the interchangedsagss to gain more information or to alter the output
of the protocol).

Going back to the electricity metering case, the main tretationships are established between the con-
sumers and the suppliers/operator/aggregator. Trust fl@mconsumers is directly related with privacy of the
metered data: which stakeholders can access these data l&gitismate purpose. Conversely, the trust from

the supplier/operator/aggregator focuses on the coesstof the data that the meters provide, so that “trusted



consumers” are assumed to provide the actual consumptlaasvavithout trying to forge these measurements and

the corresponding bills. The traditional sealed meterslabke only at the customer's home/facilities represented

the mutual trust between the supplier/operator and theucoess, in such a way that consumers could not forge the
measurements without tampering the meter and the operatital only access coarse measurements. The adoption
of smart metering reshapes the trust model depending onhitieecof architecture:

A centralized management and data-collection imposes \&engail trust on the grid operator; this party would
play the role of the aggregator, concentrating also theemtitation and storage functionalities, and having access
to all the fine-grained measurements, stored out of contextantral database; furthermore, the grid operator itself
may have access in this scenario to the update and remotdicatidn of the meters, hence the “universal trust”:
users will be concerned not only with privacy, but also witk torrectness of the meter usage and tariff calculation.
This scenario is the prototypical example of privacy ineasihat infringes the data protection directives; it is also
a challenging scenario, for it poses many technical diffieslfor the provision of an actual privacy-preserving
solution.

A certain level of decentralization, together with the poiisy of collaborative calculations among the meters,
possibly grouped into cells, can facilitate the developnudran effective mechanism that provide an actual privacy
protection and correctness guarantees. Consequentlitia gdacentralization is commonly assumed by works in the
field, in such a way that the trust of the users is distribut@dragst other users of the same cell, that are less likely
to mutually collude, while the trust from the suppliers/aiers still resides on the tamper-proofness of some of
the meter elements like the sensors, timing devices, satorage and secure cryptographic modules. Nevertheless,
distributing data and calculations among several custerimtroduces also new challenges related with managing

trust relationships and privacy protection not only betweensumers and providers, but also among users.

D. Functions of Interest: Private Utility

Once we have established the trust model for each archiegate can devote some space to the description of
the figures and statistics that the grid operators or energgiugers, untrustworthy for the consumers, may want
to calculate from the private metered data.

Grid operators are not usually willing to openly disclosevhiliey perform the grid management and which
statistics they calculate. Any fine-granular data that @dallow the grid operators to obtain useful statistics would
be an asset for the business. Nevertheless, obtaining egasumption data would be a breach of customers’
privacy. Furthermore, there are also legal bases thaiaiestis behavior: Data Protection Directives [1], [2] dliya
state that the amount of collected sensitive data mustwalle principles of proportionality and purpose. Hence,
collecting the whole set of measurements without an adecarad rigorous justification would be in breach of these
principles.

Consequently, as a first step for a correct management ddtpridata, the needed statistics and figures for the
proper operation of the Electricity Producer and the Gricge@for should be completely specified, determining also

the processing that the metered data will undergo by the eggdor.



The most obvious needed statistics are total consumpgtign,;(¢) and billing B(t) for a given time period,
both needed by the Electricity Producer. These two figureshearepresented as a general summatighof the
readingsm; ;, GS(t) = >_,, f(mi:), where f(.) is the identity function in the case of total consumption,aor
given cost function in the case of billing (typically, a lareor piecewise linear function), antt, represents the set
of involved measurements, either through time silpthrough space (the meter indéx or through both variables.

The sensitivity of these measurements creates a need foritat privacy preserving solutions that protect them
from the grid operator, the electricity producer or the aggtor itself. This solutions should not to hinder the &bili
of the aggregator to calculate the needgf(¢) and, at the same time, avoid the possibility of fraud (eleityr
theft).

Finally, it is worth mentioning that the general summatiG§(¢) can represent many functions of interest for
either the grid operator or the electricity producer (isatistical measures or consumption forecasts). We will
present the foundations of private solutions to some of theainly related to consumption calculation) in the next
section; we must highlight that there are other private watons on the metered data that may pose additional

problems that fall out of the scope of this paper and will bieflyr discussed in Section IV.

Ill. PRIVACY-PRESERVINGCOMPUTATION OF TOTAL CONSUMPTION

We now focus on the aggregation of measurements in orderdw $fe recent privacy-preserving approaches

presented to date. For a certain time instgrihe total consumption is defined as:
Crotar(t) = f(mig) =Y miy, @
M %

wherem; ; is the measurement of théh smart meter. As argued in the previous section, indiMidusasurements
are very privacy-sensitive, and thus should be protected.

Existing solutions in the literature focusing on the prditat of individual measurements while computing the
total consumption obfuscate the individual measuremeuiteated from the smart meters by means of encryption
and obtain the total by processing the data under encrypfith this approach, also called Secure Signal Processing
[19], it is feasible to protect the privacy of the citizendgmerform the tasks required to run the smart grid.

There are three common assumptions in the literature foaq@yipreserving aggregation in smart metering
systems. The first assumption is that there is a communicattwork available. While a wired communication
link to the utility provider is required, smart meters arscahssumed to be able to communicate with each other,
which can be possible using technologies like Bluetooth AiglBee. A second assumption is the possession of
a valid certificateper smart meter. This is required as a proof of identity so thatittputs from a smart meter
with a valid certificate are accepted by the other partiegrdfiore, a role for a Certification Authority exists. The
third assumption is the capability of performing cryptqrec operations, mostly in a hardware environment with
limited computational power and memory. The type of suchratens differs in every proposal but in general hash
functions, pseudo-random number generators, symmetgcA&S) and asymmetric encryption (e.g. RSA, Paillier,

El Gamal), and Elliptic Curve Cryptography (ECC) are used.



In this paper, we explain four approaches from the liteetarcompute the total consumption. While the proposed
protocols are designed for an arbitrary number of smart maetee prefer to build a story around three customers,
namely Alice, Bob and Charles. Assume that a Utility Compéd), which plays the roles of energy producer,

grid and network operator, wants to compute the total eneagmgumption of these three customers:
Crotal(t) =mis +maos +mszy, )

wherem, ;, mo, andms, are Alice’s, Bob’s and Charles’ measurements, respegtié@lir goal is to enable the
UC to compute the total consumption without revealing thiviilual measurements. The measurements are mostly
kept secret by means of encryption. For the aggregationegticrypted measurements, additively homomorphic
encryption schemes such as Paillier [21] (see Box |) seeitab$el However, for the aggregation using homomorphic
encryption, the same key has to be used. In the case of agigregh measurements from different smart meters,
using the same key for encryption alone does not provideagyiprotection, and thus additional techniques have
to be considered as explained in the following sections.

In the following, it is assumed that all involved parties acicording to the semi-honest security model as

described in Section II-C.

A. Using Homomorphic Encryption and Secret Sharing

Garcia and Jacobs propose a privacy-preserving protos®@dansecret sharing(see Box Il) in [12]. This
protocol described below defines two roles: 1) the UC as tlyeeggtor, and 2) customers with smart meters. The
proposal completely hides the measurements from the U@ simeceives encrypted measurements that it cannot
decrypt, and random shares of the total consumption. At #mestime, neither of the participants can retrieve
meaningful information on the consumption of others as thiely see the random shares.

The protocol starts with each user splitting their measergminto random shares, one share for each person:
Alice: my ;= ma (1) + mq 4(2) + m1+(3) mod 7,
Bob: ma s = ma (1) + ma(2) + ma . (3) mod n,

Charles:mg; = mg (1) +ms,(2) + m3,(3) mod 7, 3)
wheren is a large integer. Keeping, (1) for herself, Alice sendsn, ,(2) andm, +(3) to the UC after encrypting
them with Bob’s and Charles’ public keys, respectively. Boid Charles also repeat the same steps with their
shares.

Assuming that the UC receives encrypted shares from Aliad Bnd Charles, it adds the shares, which are

encrypted by the same key, using the homomorphic propertiieoencryption scheme as follows:

Epr (1) = T [ Epi (myo(8)) = Epns Y- mya(d)) “4)

JAi i
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wherepky, pko andpks are Alice’s, Bob’s and Charles’ public keys, respectivalge UC then sends§,, (m ;) to
Alice, who can decrypt it using her secret key. She adds hanesh, ;(1) to m/ ,, obtainingm, ;(1) +mq (1) +
ms(1) in clear text, and sends it to the UC. Bob and Charles also dcséime. Upon receiving sums in plain
text, the UC adds all inputs and obtains the total consumptio

Being very simple, the proposed scheme perfectly achidveptivacy goal as the UC cannot access the private
individual measurements. Unfortunately, the cryptogiagirotocol relies on secret sharing, which increases the
amount of data (note the moduilg which is a large integer). Table | shows the complexity gsial with respect
to the homomorphic operations. The protocol is not scalablee the total number of homomorphic encryptions
and modular multiplications is in either caé¥ N?), where N is the number of smart meters. As each cipher text

is in the order of thousands of bits, this amount of encrypt®also communication-wise expensive.

B. Using Masking and Brute Forcing

The second approach we consider in detail is proposed byakerst al. in [18]. The authors propose two
ways to efficiently compute the total consumption in a smagtering system with limited hardware resources.
In the first one, called aggregation protocols, Alice, Bol &harles mask their measurement in such a way that
when inputs from all parties are summed, masking valuesetaach other out and the aggregator obtains the total

consumption. In the second approach, named comparisoocpist authors make an assumption that the aggregator

ma, 1 +12
%

(UC) roughly knows the total consumption. In this approaglice and the others computg™ ™™, ¢ and
L

mg,t+rs
[

, respectively, wherg; is computed as the hash of a unique identifier, e.g. a seriabeu or time and
date of the measurement. The random numbers,, andrs are generated in such a way that they sum to zero
and are used for masking the measurements. It is clear taai@hcan easily aggregate the inputs from Alice and
the others:

3

3 3
st 3 mytr
| I g;n*”'” = g,ZJ_lm]'t " mod p , (5)
=1

wherep is a large prime number.
Obviously, the UC cannot obtain the actual sum since thisiireg solving a discrete-log problem, which is
infeasible. As the UC is giveg; and has an approximation of the total consumptﬁ‘}gml(t), it can compute

values and test for equality, thus brute-forcing value@féT"“’(t), gf“”l(”’l,giCT"““(t)+1

,... until a match is
found.

The authors propose four protocols that provide differeaysvfor a number of smart meters to deriveand
g"7: one based on secret sharing and other three on Diffie-Helkeg exchange protocol and bi-linear map. In the
following, we only summarize one of the protocols based ofii@Hellman key-exchange protocols to generate
random numbers.

The protocol assumes that each customer has a uniqyealdl a secret key?;. To generate the; values, a
generator of a Diffie-Hellman groug is computed using a hash function, witlbeing the time slot for computing

the total consumption. Then, each smart meter computesutié key gff and distributes it to others with valid
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certificates. After verification of the public keys, evergocomputes,

k-<jR7.

=T )" ©)

k#j
wherek < j is 1 if the index of metek is smaller than the index of metgr and zero otherwise. Clearly the sum

of all r; is zero:

S =SS DR By =0, ™

J k#j
Once these random numbers are generated, Alice and thes athercontinue with the computation of the total
consumption as explained before.

Table | shows the complexity of the above described proto€be number of messages to be exchanged is
O(N?), as each smart meter has to access a new Diffie-Hellman kethdomggregation of the measurements
in the most secure form of the protocol. The number of moduiaitiplications isO(N) and the number of
exponentiations i€ (1). Notice that the computations are on a Diffie-Hellman grdop,which the key length is
suggested to be 256 bits in the original work. Compared teipus work from Section IlI-A, that suggests to
use the Paillier cryptosystem, which relies on very large $iees, the small size of the key presents a significant

advantage in performance.

C. Using Modified Homomaorphic Encryption

The third approach we consider is a cryptographic protogolEkin and Tsudik that computes the total
consumption in a smart metering system using a modified arersi the Paillier cryptosystem [8]. Based on
this modification, the authors propose three schemes focofjputing the aggregated consumption of a number
of customers for a specific time slot (spatial case), 2) camguhe total consumption of a single customer for a
time interval (temporal case), and 3) computing total camsion in a neighborhood for a specific time slot and
the total consumption of each customer for a time intervalibiyng only one encryption per smart meter in each
time slot (spatio-temporal case).

In the spatial computation case, Alice and the others coenthé total consumption on their own, hence there
are only customers, one of which acts as an aggregator. Itethporal computation of a single customer, which
is interesting for billing purposes, the authors introducdJC as an aggregator. The UC receives encrypted
measurements from the smart meters but it is unable to dewrigbout help from the smart meters. Only by
receiving the last encryption, the UC is able to obtain thtaltoonsumption in plain text. In the spatio-temporal
case, Alice, Bob and Charles disseminate their encrypteasurements in every time slot and each of them is able
to easily compute the total consumption for that time slanifr to the temporal case, the UC relies on the last
input from the smart meter to compute the total consumptiothat single customer. Figure 3 summarizes these
three scenarios.

The idea in [8] relies on the use of Paillier cryptosystemerehthe modulo is split into random shares (Box

II). Assume that Alice, Bob and Charles have three randombmussuch that; + ns + n3 = n. In such a case,
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Timeslot t=1 t=2 e t=T

Alice O m(1,1)

Bob O m(2,1)

Charles O mN,1| M(N,2) o mav —>

Aggregator ue
|

Fig. 3. Spatio-Temporal Consumption from [8].

Alice and the others can encrypt their measurements asmvsllo

Alice: Fpp(mi) = g™+t - r™ mod n?,
Bob: Fpi(ma) = g™2* - " mod n?

Charles:F,i(ms,) = g™t - ™ mod n?, (8)

where functionF denotes the modified encryption function. Here we use theiflraddPaillier cryptosystem for
its homomorphic property and thus, the decryption key is algilable to everyone. It is clear that even with the
public decryption key, no one can decrypt the encryptions sinceahdom numbers cannot be removed as they
are not in the form of-”. However, an aggregator, anyone in the group, can collecietictryptions and form a

proper encryption of the total consumption:
1 For(mi) = g - rZ mod n?
= g> ™" mod n® = Ep (Y miy) - )

Certainly, individual measurements are kept secret busting can be obtained by everyone easily. For this technique
to work, Alice, Bob and Charles should use the same randonbaum This is achieved by generating a hash
value of the time-stamp, which also associates the enorypti a specific measurement in a certain time slot.
While Erkin and Tsudik propose very simple protocols for sptgmporal total consumption, the schemes still
require smart meters to be able to perform Paillier encoypthash functions, random number generation and,
most importantly, to communicate with each other. The cexipt of the protocol is lower than the scheme in
Section IlI-A as shown in Table I: only one encryption by eachart meter in each time slot aid®( N') modular

multiplication for the aggregation.
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D. Using Masking and Differential Privacy

The last approach we consider is proposedﬁta,ys and Castelluccia in [4]. The proposed solution alsceseli
on an additively homomorphic encryption scheme but doesnmake use of expensive secret sharing or public
cryptosystems such as Paillier. Private measurementsdnoant meters are encrypted with a simple and yet efficient
cryptosystem, where the encryption is defined€gs(m, k,n) = m + k mod n, wherem is the measurement;
is the encryption key and is a large number. Since addition over a modulo is signiflgafatster to perform
compared to other encryption functions, for example thdi®aéencryption function requires computing powers of

large numbers, this simple cryptosystem is significantficieht. It is additively homomorphic as well:

Eky(m1) + Eky(Ma) = my + k1 + ma + ka mod n

= gk1+1€2 (ml + m2) : (10)

The aggregation protocol presented in [4] defines an aggregahich can be any customer or the UC. The
protocol starts with smart meters choosing a set of othertsmeters randomly. For the sake of simplicity, assume
that Alice chooses Bob and Charles. The coupling betweent@nysmart meter is bi-directional, so Bob and
Charles choose Alice as well. Once Alice and Bob are couplital @ach other, they generate a random number,
r1,2, by feeding a Pseudo Random Function (PRF) [13] with thearest keys. Alice adds; » to her measurement
while Bob subtracts it from his own. Alice generates anotia@dom number with Charles; 3, and adds it to her

measurement too. Alice finally encrypts the resulting sumgua key, K 47, which is shared with the UC:
EKAU(ml)t) =mit+7T1,2+71,3 + K4y mod n . (11)
Similarly, Bob and Charles encrypt their masked measuré&mnen

Bob: EKBU<ﬁL2’t) =Mg¢—T12+ 723+ Kpy modn

CharIeS:é‘KCU (’ﬁlg}t) =mi+—T1,3 —T23+ Key mod n (12)

where Ky is the shared key between Bob and the UC, &hgl; between Charles and the UC. Alice, Bob and
Charles then send the encryptions to the UC.

Upon receiving the encryptions, the UC computes the totabemption by aggregating them. When added, the
random numbers that are mutually generated cancel eachathand the UC obtains the aggregated sum in plain
text by subtractingK 4y, Ky and Koy as he knows these values.

Clearly, the UC cannot observe the actual measurementsyoharsince each measurement is masked by a set
of random numbers, which cancel each other out only whenahewll added. Therefore, individual measurements
are kept completely hidden from the UC. However, for thisesoh to work, each smart meter has to share keys
with the UC and exchange pseudo-random numbers with margy sthart meters.

One difference in [4] compared to previously discussed @gres is thafAcs and Castelluccia obscure the

aggregated data prior to encryption usiDgferential Privacy (Box Ill) [7]. In particular, the UC is assumed to



14

access only) . m; ¢ + L(c), whereL(«) is the Laplacian noise generated according toctharameter. Assuming
that aggregator is a different entity from the UC, the Lajlacoise could be added by the aggegator prior to
sending the encrypted total to the UC. However, for this sehéo work, the aggregator should be trustworthy.
Instead of relying on a aggregator, the authors prefer ttljogenerate the Laplacian noise by the smart meters.
This is made possible by using a lemma that states that thadiap noise is divisible and can be constructed as the
sum of i.i.d. gamma distributionsC (o) = 3 ".(G1 (4, @) — Ga(i, @), whereG (i, ) and G (i, o) are i.i.d. random
variables having gamma distribution with a probabilitytdizition function (PDF) as specified in [4].

Given that the gamma distributions with this specificatioa generated locally, each smart meter adds gamma
noise to its measurement to obtain) ;, + G (¢, o) — G2 (4, o) before encrypting it. When aggregated, the sum yields
to >, m; + L(«). Note that with this construction, the UC and aggregator lwarthe same entity.

The overall complexity of the protocol given in Table | is mifjcantly lower than the previously mentioned
methods due to the very simple encryption function. Comation, however, is dominated by the exchange of
random numbers. Note that the computational complexitynisar in the number of smart meters as the previous
approaches. However, due to thparameter for differential privacy, the number of smarteredirectly influences
the level of privacy. The original work suggests to have gdatluster of smart meters as the noise is calibrated
according to the maximum consumption. Interested readersind a thorough discussion on the number of smart

meters and the average privacy achieved in [4].

TABLE |
COMPLEXITY ANALYSIS OF DESCRIBEDAPPROACHES FOR ASMART METER (SM) AND AN AGGREGATOR(A).

Garcia&Jacobs [12] Kursaweet. al[18] | Erkin&Tsudik [8] | Acs&Castelluccia [4]
Operations SM ] A SM ] A SM | A SM | A

Paillier (2048 bits) | DH Group (256 bits)| Paillier (2048 bits) HE (32 bits)
Encryption O(N) - - - o(1) - - -
Decryption o) - - - - o) - -
Multiplication - O(N?) - O(N) - O(N) - -
Exponentiation - - o) - - - - -
Addition - - - - - - O(1) O(N)
Subtraction - - - - - - - 0(1)
Communication| O(N) | O(N?) | O(N) O(N?) O(1) O(N) O(1) O(N)

IV. DISCUSSION

We have presented several examples of technological prjwaserving solutions to the computation of total
consumption. These solutions try to tackle the privacydssof current smart metering infrastructures, in order to
avoid the need for a universal trust on the grid operator armbiply with data protection regulations. As we have
seen, the peculiarities of each model (i.e., different rgangent, authentication and storage, and their correspgndi
trusted elements) highly influence the optimal way to gu@=privacy with the minimal interference into the service
provision and utility. At the same time, it is also desirabdeminimize the extra hardware requirements that, if

excessive, can negate the benefits of the smart meterindigaradiscouraging its deployment and implementation.
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From this starting point, we can identify and foresee sdwateial challenges for addressing the privacy-aware

smart metering scenario, taking into account the strengitlsweaknesses of the compared approaches.

A. Challenges derived from hardware limitations

1) Scalability and flexibility:A cluster in a grid can provide supply to a number of users thages from a few
hundreds (in distributed networks) to tens of thousands.aFproper operation of the grid, it is essential that all
the implemented systems scale well. For the protocolsweden the previous section, Table | gives a glimpse of
their scalability properties with respect to the number afisumers in the same cluster. While both [12] and [18]
present a communication complexity that is quadratic fer dlggregator and linear for each meter, both [8] and
[4] present a linear complexity for the aggregator and aonisfor the meters. Hence, the latter two protocols will
scale much better than the former. A similar conclusion canltawn for the computational complexity, for which
[4] presents a really lightweight protocol. It must be notdtbugh, that [4] needs that the number of customers
per cluster be large enough, or the differentially privatetq@col will introduce an excessive noise power into the
results.

2) Communication bottleneckMeter devices have to communicate with the aggregator oh wie utility
company to send the (authenticated) measurements, dithavtole sequence or a partially aggregated summary.
This is the minimum communication that the meters must perfon terms of energy consumption for embedded
devices, using a wireless link for sending a bit is equivatencarrying out around one hundred microcontroller
instructions [23], so data transmission should be kept taranmum, and only triggered when strictly necessary.

Nevertheless, the proposed simplified homomorphic eniotytchemes and key exchanges between meters, as
well as the distributed noise generation processes [4navamany interaction rounds among the meters. Thus, the
concealment of the private values through reduced-cortipatanechanisms is achieved through a collaborative
process among meters, at the cost of increasing the comatiomiaccomplexity in the network. This overhead can
be the true bottleneck of the smart metering system. Herateally optimizing communication, computation and
power drain at the meters is a hard task that has not beenddtlyessed in privacy-preserving approaches.

3) Limited resources of smart meters and efficient homonomgatcryption: For the smart metering scenario to
be economically viable from the point of view of Grid Openmatosmart meters must be cheap and easily replaceable
and/or reconfigurable devices. This need responds to abdisglgrinciple, for which the cost of deploying all
the meter devices in all the households and facilities of dbered users must be manageable and covered by
the energy savings and consumption reduction that the t8rmae of the grid and the optimal load balancing
will provide. Hence, smart meters cannot be fully-fledgedsPRut small embedded devices with very limited
computation resources and, obviously, small power con§omp

Due to these fundamental constraints, some of the proptmagsivacy-preserving smart metering consumption
have targeted the use of simple homomorphic encryptioks,tlie modular addition ofics and Castelluccia [4],

or the use of light secret sharing schemes.
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It is worth noting that existing current meters do not cors@rirusted elements capable of performing complex
homomorphic encryption; if any, they use symmetric crypapdry [16], [9], usually supporting “light” cryptographic
functions like hashes and secret-key encryption/deayptind HMAC signatures. Most of the proposed privacy-
preserving solutions require [12] the inclusion at the meewf tamper-proof cryptographic modules (similar to
smart cards); these modules must handle integrity, digebauthentication and heavy public key data encryption
and signatures. Furthermore, if homomorphic processingséd, the meters must also cope with homomorphic
operations that involve large modular additions, multiplions and exponentiations. It is worth noting also that th
encryption techniques used by privacy-preserving prasogike Paillier) are not a widely used standard like RSA,
and they are not present by default in typical cryptographiciules, so they have to be recompiled and optimized;
this may be a problem in the short term, while there is no aosise in the encryption methods needed for an
integral privacy-preserving solution. Neverthelesshia iong term this will not be a major problem, as the massive

adoption of smart metering will lower the production costsh® chosen solution.

B. Challenges related to secure cryptographic protocols

1) Malicious parties and tamperingAll the presented solutions to private smart metering andased for a
semi-honest adversarial model, in which none of the pawtigisdeviate from the established protocol or forge
any results. This is a very optimistic model, unlikely for eak scenario with malicious parties. These malicious
parties will find more opportunities to compromise the corri@peration of the system as the communication needs
of the used protocol grow, so these needs have to be minimigdditionally, meter tamper-proofness is essential
to prevent forgeries and deviations. In a non-private systhe tamper-proof section of the device will comprise
only the sensors and timing, but when privacy-preservirgggmols come into play, the cryptographic module in
charge of producing and receiving the needed transcrigddbe also tamper-proof so that the user cannot modify
the correct behavior. As a man-in-the-middle attack is toralty unavoidable, tamper-proofness is not enough, and
other additional specific cryptographic mechanisms haveeteaonsidered also for the protocol to be valid against
malicious adversaries.

It is remarkable, though, the strength shift in the smartemieg roles when tackling privacy constraints: in a
non-private system the utility company has all the contral aoncentrates the need of trust from the consumers,
that must blindly assume that they will be billed correctly their consumptions. Conversely, if consumer privacy
is guaranteed, then it is the utility company who must trhat the measurement aggregation and billing calculation
are correctly performed, as it will not have access to sgeriflividual measurements. This is the main reason for
the grid operators to be reluctant to adopt a privacy préasgrsolution if it does not come together with a fraud
detection mechanism and technical guarantees that cheaistomers will not succeed.

2) Key managementtor private protocols based on homomorphic processing, at gommon requirement that
all the encrypted values be produced with the same key inrdodbe homomorphically “combinable” [12], [8],
in such a way that the secret key is shared among severalnoeist@and even the utility company. In an ordinary

setting, this key disclosure would imply losing the podgipiof correct authentication, and pose other problems
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related to the possibility of forgeries by dishonest useith @ecryption capabilities. The solution to these problem
passes through unusual key distribution mechanisms, tikestib-key generation process by Erkin and Tsudik [8],
or the peer-to-peer key establishmentAns and Castelluccia [4], in which each two coupled userseshainiquely
generated key for each iteration of the private consumptloulation protocol. Hence, it is not yer possible to
have fixed unique individual secret keys without having toreto too costly strategies like proxy-reencryption or
encryption delegation.

3) Securing Billing Calculations:Billing B(t) is one of the private utility functions needed by Electsicit
Producers. But the peculiarities of the billing processepadditional issues [17]. A simple privacy-preserving
protocol could calculate a certified private bill combinithg encrypted measurements and the appropriate tariffs; bu
an integral privacy protection mechanism would also inelsdcure deposits and anonymous payments. Furthermore,
when the used protocol is differentially private, like thas [17] (See Box lll), the output billing isuzzy and
the noise added to the calculations involves producingcimate invoices. There will be a noigke consumption
(positive or negative for each client) that the protocctlithas to compensate by providing secure mechanisms of
in advance payments aradposteriorirebates, together with an assertion protocol for avoidimagd or abuse by
the noise addition procedures [17]. While there are alreadpgsed solutions for this scenario [17], it is likely
that some customers will not be comfortable with paying ineate for a fake consumption, so there is still room

for improvement and further research in this area.

C. Challenges related to Signal Processing

1) Complex utility functions:Throughout this article, we have only presented and discligse problem of
private total consumption calculation, for which the gehesummation functiorGS(¢) takes a very simple form.
More complex functions may be desirable from the utility gamy point of view, ranging from billing with non-
linear tariffs, to more complex statistical calculatioe$ated to profiling, load forecasting, state estimatiompide
frequency estimation, or network modelfndDevising privacy-preserving protocols that deal withséeomplex
functions while keeping a low overhead that does not exceedapabilities of smart meters is a challenging task;
this cannot be handled by homomorphic encryption alone,usiy further secure interactive protocols increases
communication and computation complexity.

Furthermore, restricting the possible utility functiomat the providers may privately obtain from the measure-
ments has the effect of limiting the functionality of thedydperators and bounding the information that they might
otherwise get from an indiscriminate access to fine-grac@tsumption data. This is not desirable for providers,
but it is beneficial from a privacy point of view, as it forcdmetproviders to explicitly specify which computations
and which results they want to obtain from the private datavaty moment, in fulfilment of the Data Protection
Directives.

But this problem is not exclusively a cryptographic issugnal processing can also play a fundamental role

in solving this challenge: the signal processing algorghior performing complex calculations like forecasting

2We refer the interested reader to [3] for a current view of clemgignal processing related tasks and challenges indigrart grids.
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(e.g., predictive filtering) or profiling (e.g., maximum dikhood estimation) have been originally developed withou
privacy in mind, and without the restrictions that currentptographic privacy-preserving techniques pose. There
is a very interesting challenge in finding approximate sigiacessing analogous protocols that conform to the
limitations of the cryptographic techniques while prowigli with a bounded error, similar results to those complex
forecasting and profiling algorithms.

2) Accuracy loss:For fuzzymechanisms that add noise in order to guarantee diffetgmtiacy [7], there is an
accuracy loss for the information that providers might getle outcomes of these mechanisms. There is a direct
relationship [7] between the induced noise power (measeméraccuracy) and the level of differential privacy
that the mechanism achieves. This tradeoff has to be chrefutsidered and evaluated for each utility function, as
it might be the case in some scenarios that the obtainedtseget lost in noise and become useless if the needed
privacy level is too high (i.e., too noisy billing data). Bhis closely related to the use of approximate algorithms

to achieve strict efficiency goals.

V. CONCLUSION

Deployment of smart grids is progressing fast in many caesitlespite several challenges in the legal, business
and technology point of view. One related research chafldngthe signal processing community is the protection
of private smart meter measurements from the untrustwosthikeholders while the core smart grid functions
stay intact. Secure Signal Processing, which aims for cdimgua signal processing function with private signal
inputs, presents itself as a powerful technological sotutivhich can make the deployment of smart grids more
acceptable for the end-users. The distributed settingeoithart meters, different involved parties, and the funstio
to be realized in a privacy-preserving manner with hardwamestraints constitute an appealing problem domain
for the signal processing research community, which caa talkvantage of experiences in distributed computing,
optimization and efficient communication. Certainly, faivacy protection, the researchers should also invest in
cryptography, getting familiar with its utility and limit@ns. With this paper, we identify the privacy problems
in smart grids, summarize the recent research on data ajgnegand present an overview of existing research

challenges for SSP.

Box |: HOMOMORPHICENCRYPTION

A plain text message: is encrypted in Paillier [21] with the following function:
Epr(m) = g™ - ™ mod n? | (13)

wheren is a product of two large primes, and g, g is a random number iZ*., with an ordern, meaning that
g" mod n? = 1. The tupleg, n is the public key. The random numbeiis chosen such thajicd(r,n) = 1. Using a
different random value for every encryption guarantees tthea cipher text for the same plain text will be different
in each case, hence the encryption scheme is called prigbabiNote that the recipient of the cipher text does

not need to know- to decrypt the message sinte’)* mod n? = 1, where\ is the secret key and it is given by
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lcm(p — 1,9 — 1). Therefore, any- that is co-prime ton can be removed easily if it is raised first to the power of
n and then\.
The Paillier encryption scheme is additively homomorpinieaning that multiplication of cipher texts of two

messages results in an encryption of the sum of these twoagess

Epk(ma) - Epp(ma) = g™ -1 - g™? - ry mod n?

Ep(my +my) := g™ ™2 . (r17r5)" mod n? . (14)

We refer readers to [21] for more details on the decryptiarcfion. Interested readers can find more information
on Homomorphic Encryption in [10] and its usage in encrypigghal processing in [19]. For other cryptographic

notions, we refer the reader to [20].

Box IlI: SECRETSHARING

The main idea in secret sharing is dividing a secr@ito m pieces called shares. Each of these shares are then
sent to a user in a secure way. A coalition of some of userdes &ble to reconstruct the secret. Shamir explains
a threshold secret sharing scheme in [25], where any contitrinaf & shares out ofn can be used to reconstruct
the secret. The proposed method is based on generatingmgmaints on a polynomial of degrdewhose constant
term is the secret. Clearly, when ahypoints are combined, the polynomial can be reconstructed tlae secret

can be revealed.

Box Ill: D IFFERENTIAL PRIVACY

A function F is e-differentially private, if for all data set®; and D,, where D, and D, differ on at most one

element, and for all subsets of possible answ#rs Range(F),
P(F(Dy) e S)<e-P(F(Dy)€S). (15)

The above definition says that a differentially private fiime produces indistinguishable outputs for inputs that
differ by a single element, meaning that a modification in data set changes the probability of any output by a

factor of e€ at most. Hereg¢ controls the level of privacy: the lower values @fthe stronger privacy.
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