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osende s/n, 36200 Vigo, SpainABSTRACTDistortion-Compensated Dither Modulation (DC-DM), also known as S
alar Costa S
heme (SCS), has beentheoreti
ally shown to be near-
apa
ity a
hieving thanks to its use of side information at the en
oder. Inpra
ti
e, 
hannel 
oding is needed in 
onjun
tion with this quantization-based s
heme in order to approa
h thea
hievable rate limit. The most powerful 
oding methods use iterative de
oding (turbo 
odes, LDPC), but theyrequire knowledge of the 
hannel model. Previous works on the subje
t have assumed the latter to be knownby the de
oder. We investigate here the possibility of undertaking blind iterative de
oding of DC-DM, usingmaximum likelihood estimation of the 
hannel model within the de
oding pro
edure. The unknown atta
k isassumed to be i.i.d. and additive. Before ea
h iterative de
oding step, a new optimal estimation of the atta
kmodel is made using the reliability information provided by the previous step. This new model is used forthe next iterative de
oding stage, and the pro
edure is repeated until 
onvergen
e. We show that the iterativeExpe
tation-Maximization algorithm is suitable for solving the problem posed by model estimation, as it 
an be
onveniently intertwined with iterative de
oding.Keywords: Side-informed data hiding, Distortion-Compensated Dither Modulation (DC-DM), S
alar CostaS
heme (SCS), blind iterative de
oding, Expe
tation-Maximization algorithm1. INTRODUCTIONThe use of side information at the en
oder has proven 
ru
ial to the data hiding problem. The solution providedby Costa1 for a 
ommuni
ations setting resembling the data hiding s
enario has been de
isive to show that host-signal-indu
ed self-distortion 
an be e�e
tively removed through a 
lever design of the transmission 
odebook. Infa
t, using this very 
odebook design, Costa showed that exa
tly the same 
apa
ity holds for a s
heme with sideinformation only at the en
oder and another one having the same side information available at the de
oder, i.e.,without self-distortion. This derivation assumed Gaussian-distributed side information and an additive whiteGaussian noise 
hannel independent from the former, but extensions of the same basi
 result have been madesin
e. In the 
ontext of data hiding this result was �rst pointed out by Chen and Wornell, who showed2 that theirDistortion-Compensated Quantization Index Modulation (DC-QIM) theoreti
al s
heme 
losely resembled Costa'sen
oding and de
oding pro
edure, and hen
e that it was optimal in the same sense. In addition, they studiedthe a
hievable rate of a parti
ular implementable 
ase of DC-QIM with uniform s
alar quantizers. This s
hemewas 
alled Distortion-Compensated Dither Modulation (DC-DM), whi
h was shown to be, asymptoti
ally, only1:53 dB away from Costa's 
apa
ity.Afterwards, Eggers et al. followed the inverse path to show with their S
alar Costa S
heme (SCS)3 that apra
ti
al implementation of Costa's random 
odebook was possible. A
tually, SCS happens to be equivalent toDC-DM, and for this reason we will use the latter term to refer to this parti
ular s
heme. Nevertheless, thetimely and thorough analysis made for SCS 
omplemented and extended the previous one. Apart from manyFurther author information: (Send 
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other pra
ti
al issues, it 
onsidered non-asymptoti
 assumptions |e.g., the use of binary 
onstellations| and
hannel 
oding.As already pointed out in the aforementioned works and elsewhere, 
hannel 
oding is the way to approa
h
hannel 
apa
ity in any 
ommuni
ations s
enario, and, therefore, also in data hiding using side information atthe en
oder. A number of prior works have studied the use of state-of-the-art 
hannel 
oding for side-informeddata hiding.4, 5, 6 All these proposals use turbo 
odes7 |whi
h have been shown to be able to asymptoti
allya
hieve error-free de
oding for a signal-to-noise ratio near the Shannon limit| over s
alar side informed s
hemesfollowing Costa's guidelines. The s
hemes used therein involve s
alar uniform quantizers whi
h are resized using as
aling fa
tor before quantization |i.e., amounting to distortion 
ompensation|, and hen
e they are equivalentto DC-DM. To be pre
ise, the methods used by Kesal et al. and Chou et al. are equivalent to DC-DM for highdo
ument-to-watermark ratios (see Se
tion 1.1), but this is the usual 
ase in data hiding.In addition to turbo 
odes, other less powerful iteratively de
odable te
hniques are tested in,4 while 
on-
atenation with an outer 
onvolutional 
ode is explored in6 to build a turbo-trellis method. Disregarding the
hannel 
oding method used, these approa
hes bear in 
ommon the ne
essity of knowing the type of 
hanneland the level of distortion for undertaking de
oding. This information is required to obtain the soft reliabilityvalues of the symbol de
isions in the de
oding pro
edure. In
identally, all these works have worked under thehypothesis that this information was known to the de
oder. Moreover, and ex
ept for the works of Eggers et al.,the statisti
al model used by the de
oder in most of this prior art is not the exa
t one, but an approximationthat avoids having to deal with the nonlinear modular nature of quantization latti
es. In this paper we explorehow to perform blind� iterative de
oding of DC-DM, i.e., without prior knowledge of the atta
k 
hannel modeland level of distortion, and taking into a

ount simultaneously the modularity of the method at the re
eiver.1.1. FrameworkFirstly, we will establish the framework used in this paper. We assume that N samples x = (x[1℄; : : : ; x[N ℄)are pseudorandomly 
hosen from a host signal; the samples in x are zero-mean Gaussian with 
ovarian
e matrix�x = �2x � I . The 
orresponding watermarked signal y, resulting from embedding a given binary informationve
tor b, undergoes a zero-mean random additive atta
k 
hannel, so that the signal re
eived at the de
oder isz = y + n. The samples of the random variable n are assumed to be independent identi
ally distributed (i.i.d.)and independent of x, but having unknown probability density fun
tion (pdf) and varian
e �2n. In pra
ti
e, theindependen
e between the samples of n is approximately granted by the pseudorandom 
hoi
e of x. Through thepaper we will �nd useful to de�ne the watermark-to-noise ratio (WNR) and the do
ument-to-watermark ratio(DWR), as the ratios in de
ibels between the watermark and atta
k power, and the host and watermark power,respe
tively.Next, we will brie
y re
all the basi
 formulation of DC-DM and some of its properties. In binary DC-DM oneinformation symbol b[k℄ 2 f�1g is hidden by quantizing a sample of the host signal x[k℄ to the nearest 
entroidQb[k℄(x[k℄) belonging to the uniform latti
ey �b[k℄ given by�b[k℄ = 2�Z+� (b[k℄ + 1)2 + d[k℄; (1)with d[k℄ a key-dependent value that we will take as zero for simplifying the analysis without loss of generality.M -ary versions of the same s
heme 
an be used, but the a
hievable rate has been shown to be essentially thesame than the binary 
ase for WNR's lower than approximately 4 dB.3 The watermarked signal is obtained asy[k℄ = x[k℄ + � � e[k℄ ; (2)i.e, the watermark is the quantization error e[k℄ , Qb[k℄(x[k℄) � x[k℄ weighted by an optimizable 
onstant �,0 � � � 1. If �� �x, what holds true for usual DWR's due to per
eptual reasons, then e[k℄ 
an be assumed to�Not to be 
onfused with blind data hiding, that refers to the unavailability of the host signal at the de
oder.yExtending the usual de�nition of latti
e, whi
h in prin
iple must in
lude the origin.



be independent of x[k℄ and uniformly distributed, e[k℄ � U(��;�). Then, the watermark w[k℄ = y[k℄� x[k℄ isalso uniform, and the embedding power is Efw2[k℄g = �2�2=3.The de
oder a
ts by quantizing sample by sample the re
eived signal z to the 
losest 
odebook latti
e. Hen
ewe have that b̂[k℄ = arg minb2f�1g ��Qb(z[k℄)� z[k℄��: (3)In the pre
eding exposition we have assumed that the embedding distortion at ea
h sample is identi
al,i.e., �[k℄ = � for all k = 1; : : : ; N . We 
ould have allowed instead the quantization step �[k℄ to vary atea
h sample proportionally to �[k℄, where � responds to a set of lo
al per
eptual energy restri
tions su
h thatEfw2[k℄g � 
 � �2[k℄, for some 
onstant 
. Still, if the atta
k 
hannel abides by the same per
eptual 
onstraints|what it is reasonable if the maximum imper
eptible atta
k power is to be used|, we 
an renormalize theproblem to the situation with 
onstant � and �n assumed above.Channel Coding. Following what was stated in the introdu
tion, we will hide a binary 
odeword 
 = (
[1℄; : : : ;
[N ℄) instead of N un
oded bits. The 
odeword is obtained by en
oding a binary information ve
tor b =(b[1℄; : : : ; b[M ℄), M < N , using a rate R =M=N 
ode. For notational simpli
ity, and without loss of generality,we have assumed that the 
odeword length is equal to the length N of the host signal ve
tor x. For embeddingand de
oding we will 
onsider that the 
odeword symbols are given in antipodal form, i.e., 
[k℄ 2 f�1g. In thisway, ea
h 
oded symbol 
[k℄ is embedded on x[k℄ to obtain y[k℄ as done above using b[k℄.We will 
enter our attention on parallel 
on
atenated 
odes with iterative de
oding, i.e., turbo 
odes. Al-though we will parti
ularize our proposal to these 
odes due to pra
ti
al purposes, it will be
ome 
lear thatthe basi
 idea 
an be similarly applied to other iteratively de
odable pro
edures. We re
all that the parallel
on
atenated turbo 
odewords have the form 
 = (
s j 
p1 j 
p2); (4)where the subve
tor 
s = b is the systemati
 output, and the subve
tors 
p1 and 
p2 are the parity outputs
orresponding to the 
onstituent re
ursive systemati
 
onvolutionals (RSC's). The output 
p1 is due to the inputof b to the �rst RSC, and the output 
p2 is due to the input of a pseudorandom permutation of b to the se
ondRSC.Choi
e of �. This 
hoi
e is important be
ause it is known3 that there is a di�erent optimum at ea
h WNR forthe a
hievable rate of DC-DM. In the framework that we have established above, WNR = 10 log10 �2�2=(3�2n).As dis
ussed elsewhere,8 the WNR is not known beforehand by the en
oder what be
omes a pra
ti
al problemfor DC-DM optimization. Previous works4, 5, 6 have assumed anti
ausal knowledge of this amount, and so theyhave used the optimal s
aling of their latti
es |i.e., the optimal distortion 
ompensation fa
tor| at ea
h WNR.Here we will set a �xed distortion 
ompensation parameter � regardless of the WNR, taking pro�t of thepe
uliarities of near-optimal 
odes. Turbo 
odes present a distin
tive abrupt de
rease |usually termed 
li� orwaterfall| of the bit error rate at the de
oder as the WNR in
reases. If the turbo 
ode is well designed, thiswaterfall o

urs relatively 
lose to minimum WNR ne
essary for asymptoti
ally errorless de
oding. Due to thise�e
t we 
an approximately 
hoose the optimal � as the one that 
orresponds to the WNR at the a
hievablerate R imposed by the turbo 
ode. As a real 
ode 
annot be perfe
t, the optimum will a
tually 
orrespondto a slightly higher WNR. Noti
e however that this 
hoi
e of � requires knowledge of the 
hannel model (i.e.,whether this is Gaussian, uniform, et
) for 
omputing the a
hievable rate vs. WNR plots.3 In addition, thisoptimization strategy does not hold for WNR's more negative than the waterfall area, but this is unimportantdue to the high probabilities of error asso
iated to turbo de
oding in this range.



2. EXACT ITERATIVE DECODING OF DC-DMIn this se
tion we will explain the way to exa
tly establish the reliability of the 
hannel de
isions when the 
hannelmodel is known by the de
oder to be Gaussian with varian
e �2n. This 
omputation has a twofold purpose: 1)making expli
it the modular nature of the DC-DM de
oding pro
edure; 2) obtaining the exa
t reliability valuesto be used for later 
omparisons of exa
t iterative de
oding against blind iterative de
oding, when this parti
ularatta
k 
hannel is used.The de
oder re
eives the noisy signal z = y+n and pro
eeds to performMAP iterative de
oding. This requiresthe probabilities p(z[k℄ j 
[k℄ = 
) for 
 2 f�1g, what amounts to a statisti
al des
ription of z[k℄ depending onea
h possible symbol de
ision. As the watermark w[k℄ 
an be assumed to follow a uniform distribution (seeSe
tion 1.1) we have that y[k℄ is also uniform, asy[k℄ = Q
(x[k℄) � (1� �) � e[k℄; (5)with 
 the embedded symbol value. Then, z[k℄ = y[k℄ + n[k℄ is the sum of two independent random variables,the �rst of them uniform and the se
ond one Gaussian. The pdf of z[k℄ is 
onsequently the 
onvolution of the
orresponding pdf's. We 
an write this pdf as f(z[k℄) � Æfz[k℄�Q
(x[k℄)g, withf(z) , 12(1� �)� �Q�z � (1� �)��n ��Q�z + (1� �)��n �� ; (6)and Q(z) , R1z exp(�x2=2)=p2� dx. This pdf of z[k℄ is 
onditioned to a 
on
rete 
entroid assumption, but weneed the pdf for a generi
 symbol de
ision. For obtaining this expression noti
e that, due to using (3) at thede
oder, the de
ision 
̂[k℄ 
an be seen as being based on the modular o�sets~z
[k℄ , fz[k℄ mod �
g ��= �z[k℄ + �(
+ 1)2 � mod 2��� (7)to ea
h one of the two latti
es �
, with 
 2 f�1; 1g. Using these o�sets, the minimum distan
e de
ision 
an berewritten as 
̂[k℄ = argmin
 ��~z
[k℄��: (8)Considering (8), it is 
lear that the reliability measure for the de
ision 
̂[k℄ = 
 is justp(z[k℄ j 
[k℄ = 
) , ~f(~z
[k℄); (9)with ~f(�) the pdf followed by ~z
[k℄. Noti
e that the operation (7) implies that this pdf is just the aliasing of these
tions of (6) 
orresponding to the Voronoi regions of the latti
e 2�Z, that is~f(z) = �Pw22�Zf(z � w); jzj � �0; jzj > � : (10)Using (10) the a posteriori log-likelihood ratio for a re
eived value z[k℄ is justL(
[k℄) = log ~f (~z+1[k℄)~f (~z�1[k℄) : (11)This is the method used by Eggers et al. for 
omputing the reliability of the symbol de
isions. The approxi-mations by Kesal et al. and Chou et al. amount to say that (10) is Gaussian with varian
e �2n + (1� �)2�2=3,what does not render a true pdf due to the amplitude limitation of the de
ision variable. Nevertheless, experi-ments show that this approximation is suÆ
iently good when the turbo 
li� happens at not too negative WNRvalues.



3. BLIND ITERATIVE DECODING OF DC-DMIn a general 
ase the de
oder does not know (10) be
ause no knowledge is usually available about the type ofatta
k pdf or its power (i.e., the a
tual value of WNR). First, it has to be remarked that none of these twoquestions pose diÆ
ulties to iterative de
oding of spread-spe
trum data hiding. The reason for this is that, asthe DWR is usually high, the 
hannel model is largely dominated by the host signal model, that 
an be assumedas known by the de
oder. Nevertheless, the mu
h lower a
hievable rate of spread-spe
trum requires in turn mu
hlower 
ode rates for a
hieving the same performan
e at the same WNR values.In order to envisage how to surmount these diÆ
ulties for DC-DM we may review �rst several relatedsolutions. Most of them stem from the s
enario of 
ommuni
ations without side information using iterativede
oding. For instan
e, some authors9, 10 have proposed the estimation of the SNR (i.e., WNR) value at thede
oder for 
hannels known to be Gaussian. Alternatively, other approa
hes11 involve 
hoosing a pdf from afamily of possible distributions, assuming knowledge of the SNR. But blind methods whose approa
h relies onestimating the a
tual pdf are more interesting for data hiding, as they jointly address both sket
hed problems.Among them we �nd that by Huang et al.,12 who use a one-step histogram estimation, and the one by Li et al.,13who propose to heuristi
ally re�ne a kernel-based model at ea
h iterative de
oding step, using the in
reasinglya

urate de
oded information.Motivated by the latter approa
h, but, as we will see, using sounder theoreti
al grounds, we 
an take advantagefrom turbo-
oded DC-DM to iteratively estimate the unknown atta
k pdf jointly with the de
oding pro
ess. Asthe pdf (10) is not known beforehand at the de
oder, we will assume at least a model with enough degrees offreedom. Taking pro�t that the support set of ~f(z) is limited to jzj < �, we 
an resort to approximating it usinga simple but general model based on a �nite number Nq of re
tangular kernels. Then, we will assume that (10)may be approximated using h(�; z) , NqXi=1 �[i℄ � ��z � (i� 1) ��q +��; (12)with the kernels �(z) de�ned as �(z) , � 1=�q; 0 < z � �q0; otherwise ; (13)and Nq , 2�=�q , whi
h we assume integer. Of 
ourse, h(�; z) = 0 for jzj > �. Noti
e that a further advantageof (12) is that it makes no assumptions on the symmetry of the atta
k pdf. This model is usually 
onsidered to benon-parametri
, although we 
an see it as a parametri
 one in whi
h the parameters ve
tor � = (�[1℄; : : : ; �[Nq ℄)has to be adjusted.Our initial obje
tive is therefore to optimally estimate � from the re
eived ve
tor z. The maximum likelihoodapproa
h for this estimation 
an be stated as �̂ = max� P (z;�): (14)This estimation problem is inherently involved. Still, we may noti
e that the elements of z stem from the mixtureof data drawn from two di�erent distributions. At ea
h z[k℄ these two possible distributions (whi
h are in fa
tthe same one shifted by the o�set �) 
orrespond to ea
h of the two possible embedded symbols 
[k℄ 2 f�1g.This is the situation for whi
h the Expe
tation-Maximization (EM) algorithm14 was 
on
eived, aiming at�nding the solution of (14) iteratively. The EM algorithm is a long-standing pro
edure with theoreti
ally proven
onvergen
e properties14 that, in order to iteratively solve (14), uses two alternating steps 
alled E-step andM-step.Unfortunately, we 
annot a�ord the hypothesis of independen
e between the elements of z 
orresponding tothe 
odeword parities. As we will see, this 
auses the problem (14) not to be expli
itly solvable using EM. For



PSfrag repla
ements zL(b) L(b)0Maximization �� ChannelModelh(��; �) BCJR(Expe
tation)Figure 1. One step of the iterative EM algorithm intertwined with iterative turbo de
oding. Ne
essary interleav-ings/deinterleavings of zs and L(b) for BCJR are not expli
itly shown for simpli
ity.this reason we will resort instead to solve �̂ = max� P (zs;�); (15)with zs the subve
tor of z 
orresponding to the systemati
 part of the 
odeword 
s = b, following the notationin (4). Anyway, and as we will see next, the subve
tors 
orresponding to the parities zp1 and zp2 
an be used toimprove the E-step beyond what we 
ould get with zs alone. In this way, we 
an intertwine the turbo de
odingwith the estimation problem. We des
ribe next the steps of the Expe
tation-Maximization algorithm and theirappli
ation to our problem, that is summarized in Figure 1.3.1. Expe
tation StepThis step is equivalent to 
omputing a probability mass fun
tion (pmf) of 
s = b (hidden data) under theknowledge of zs and �, that is q(b) , P (b j zs;�): (16)If we disregard the subve
tors of z 
orresponding to the 
odeword parities, our best estimate of (16) would beq(b) = P (zs;b;�)Pb0 P (zs;b0;�) : (17)Nevertheless, the subve
tors zp1 and zp2 
orresponding to the parity symbols allow us to 
ompute the pmf (16)more reliably than (17). A
tually, ea
h iterative turbo de
oding stage optimally updates the previous extrinsi
pmf of b using the BCJR algorithm, whi
h takes into a

ount z, the 
ode used for the 
urrent parity, and the
hannel model h(�; �).Therefore, the probabilities q(b[k℄), for k = 1; : : : ;M , given by the BCJR algorithm, are the best way to
ompute the distribution we need. Assuming that the information bits b[k℄ are independent, we 
an writeq(b) = MYk=1 q(b[k℄): (18)Remember that we 
an straightforwardly 
ompute these probabilities from the log-likelihood ratios L(b[k℄) =logfq(b[k℄ = +1)=q(b[k℄ = �1)g.We have to remark that this kind of approa
h involving iterative de
oding and EM has already been usedin 
ommuni
ations for purposes su
h as 
hannel state estimation15, 16 |di�erently to this 
ase, using pilotinformation|, or syn
hronization.173.2. Maximization StepNow, using the pdf (18) and zs we need to 
ompute the new � that maximizes the EM fun
tional,18 that 
anbe written as max� Eq(b)flogP (zs;b;�)g: (19)



It is shown in Appendix A that the solution �� to this optimization problem is given by the expression��[i℄ = Pb=�1Pk2Pib q(b[k℄ = b)M ; (20)for i = 1; : : : ; Nq, and with P ib de�ned in (27).After the M-step we go ba
k to the E-step, for whi
h a new iteration of turbo de
oding is performed usingthe pdf update given by (20) (see Figure 1). This pro
edure is 
ontinued until 
onvergen
e.Simpli�
ations. In order to gain further insight from (20) we 
an 
onsider to use, instead of the soft valuesq(b[k℄), the de
isions b̂[k℄ = sign L(b[k℄) in that equation. With this 
hoi
e the pmf's be
ome as a matter of fa
tdeterministi
, as if q(b[k℄ = +1) = 1 then q(b[k℄ = �1) = 0, and vi
e versa.Interestingly, in this suboptimal 
ase (20) be
omes the normalized histogram of zs on the bins Bi, using thehard de
isions b̂[k℄ to make the bin assignment of the 
orresponding zs[k℄. This de
ision-based approximation,that would be the intuitive way to update � in the EM iterative pro
ess (see13), is known as winner-take-all18or 
lassi�
ation EM (CEM) and it presents several advantages:� Convergen
e is a
hieved in less steps, although not to the true maximum (but generally to a good approx-imation).� Ea
h iteration step is slightly faster.� The �nal � value of this simpli�ed iterative approa
h 
an be used as an initial value to a

elerate the
onvergen
e of the exa
t method.Initialization of �. As in any iterative method, the ele
tion of the initial values of � is 
riti
al, be
ause a bad
hoi
e 
an imply 
onvergen
e to a lo
al optimum. Nevertheless, there is partial information available for thisinitialization, using the symbol-by-symbol hard de
isions (3) that would be made if the re
eived 
odeword werejust 
onsidered as un
oded information.These hard de
isions 
an be used to make the initial 
omputation of (20), just as we have explained inthe pre
eding simpli�
ation of the method. Nevertheless, noti
e that with this approa
h only values of h(�; z)
orresponding to jzj < �=2 
an be initialized. All we 
an do in this initial iteration is to set the remaining valuesto a uniform non-zero value, and normalizing (12) so that it remains a pdf. These values 
annot be initialized tozero, be
ause these \impossible values" would penalize una

eptably the performan
e of the iterative de
oding.4. EXPERIMENTAL RESULTSWe present next the results of the tests 
arried out using turbo 
oding to empiri
ally validate our approa
h. Theturbo 
odes used in this se
tion use pseudorandom interleavers, and the 
omponent 
oders have been 
hosen bytrial-and-error, without using extensive optimizations.The initialization of the pdf model follows the method explained in Se
tion 3, and the updates of � are madewith the suboptimal winner-take-all method. First we show in Figure 2 the de
oding performan
e of the blindde
oder proposed in front of Gaussian noise, for a pdf model (12) 
onsisting of Nq kernel fun
tions. We 
ouldtend to think that, the higher the number of kernel fun
tions, the more a

urate the estimation we 
ould get. Inprin
iple this is true, but as the resolution Nq in
reases so does the varian
e of �, and therefore the estimated pdfbe
omes eventually too noisy and useless for de
oding. This behavior is re
e
ted in Figure 2, where values of Nqup to 8 give in
reasingly better performan
e. Starting from that value we observe an in
rease in the probabilitiesof error, apart from a more errati
 de
oding pro�le |despite a suÆ
iently high number of simulations.
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Exa
t de
odingNq = 4Nq = 8Nq = 16Nq = 32P b

WNRFigure 2. Gaussian noise. Performan
e of turbo-
oded DC-DM with blind de
oding for pdf models with di�erentresolutions (number Nq of kernel fun
tions in the non-parametri
 model), RSC (31 27)/31, � = 0:65, M = 1; 000.Comparing the best blind result in Figure 2 with the probabilities of error 
orresponding to exa
t de
odingfollowing Se
t. 2 (in this 
ase, for a better performing � = 0:60) we see that quite good results are possible forblind de
oding. An interesting side e�e
t of the blind method proposed is that de
oding resembles to the use ofa lookup table, whi
h allows for a high de
oding speed. We have also veri�ed that, as it 
ould be expe
ted, thehighest useful value of Nq is limited by M . For instan
e, for M = 10; 000 the best Nq has been observed to bearound 32. Also, a slight variability of the best Nq with di�erent types of noise was dete
ted.The gain due to using a blind de
oder instead of a Gaussian-mat
hed one in the presen
e of non-Gaussiannoise should be displayed for non-Gaussian distortions. For a fair 
omparison we will assume that the Gaussian-mat
hed de
oder estimates the noise power �2n, as the knowledge of this parameter is too strong an assumption.This estimation 
an be made using the expressionEfz2[k℄g = EfQ2b[k℄(x[k℄)g+ (1� �)2�2=3 + �2n; (21)that 
an be easily derived from the expression of z[k℄ for DC-DM. As b is not known initially by the de
oder,the approximation �2x � EfQ2b[k℄(x[k℄)g 
an be used in (21). Then, using an estimate of the expe
tation Efz2gobtained from the re
eived z, we 
an write�̂2n = 1M MXk=1 z2[k℄� �2x � (1� �)2�2=3: (22)Unfortunately, this estimation is too sla
k, espe
ially for high DWR's. A se
ond, more a

urate way to obtainthe estimate is by means of iterative re�nements of �̂2n at ea
h step of the turbo de
oding pro
ess. Using theintermediate de
oded information b̂ at a given turbo de
oding iteration we 
an write�̂2n = 1M MXk=1 �Qb̂[k℄(z[k℄)� z[k℄�2 � (1� �)2�2=3: (23)This estimate is used on the next de
oding step, that will serve to re�ne again �̂2n and so on. In Figure 3 weshow the performan
e obtained with these two approa
hes versus blind de
oding when the atta
k is uniformi.i.d. noise. In the 
ase of non-iterative estimation we have used DWR = 10 dB, instead of the 25 dB 
onsideredin the other two 
ases. The �gure stresses the importan
e of having a good estimate of the 
hannel varian
e inorder to 
orre
tly de
ode the turbo-
oded information, but in any 
ase we 
an see that the blind method is ableto yield a gain over the less adaptive Gaussian-mat
hed one.
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odes permit to greatly enhan
e the properties of DC-DM. This is so be
ause turbo 
odewords are random-like, as required by Costa's theorem, and we have an eÆ
ient way to de
ode them iteratively. Nevertheless,both the la
k of 
hannel model knowledge and the sele
tion of the distortion 
ompensation parameter involveimportant pra
ti
al problems for their implementation. In this paper we have provided some lines to addressthese problems, showing how to undertake iterative de
oding in a blind way. It is interesting to realize that theestimation method provided, involving the EM algorithm, is a quite general one, and quite amenable to solvingmany other estimation problems that are bound to appear in pra
ti
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e TIC2001-3697-C03-01; and FIS, IM3 Resear
hNetwork, referen
e FIS-G03/185.APPENDIX A. OPTIMAL UPDATE OF � FOR BLIND ITERATIVE DECODINGFirst, noti
e that the expression (19) 
an be 
onsiderably simpli�ed assuming the independen
e of the samplesin zs and b, and using the linearity of the expe
tation operator:F (�) , Eq(b)flogP (zs;b;�)g= Eq(b)( MXk=1 logP (zs[k℄; b[k℄;�))= MXk=1Eq(b) flogP (zs[k℄; b[k℄;�)g : (24)A small digression now to dis
uss why the assumptions in the pre
eding paragraph are the reason for only
onsidering the problem (15) and not (14). Even if it is possible to solve the E-step 
omputing the pmf q(
)for all the 
odeword symbols |using for instan
e the SISO algorithm by Benedetto et al.19 that generalizes



BCJR|, the parity symbols 
annot be assumed to be independent. This does not allow the simpli�
ationin (24), obs
uring an analyti
al solution to the M-step.Returning to our problem, and using again the independen
e of the b[k℄, we 
an writeF (�) = MXk=1Eq(b[k℄) flogP (zs[k℄; b[k℄;�)g= MXk=1 Xb=�1 q(b[k℄ = b) logP (zs[k℄; b[k℄ = b;�): (25)In order to undertake the optimization of this expression, we will �nd it 
onvenient to rewrite it using someuseful de�nitions that we will establish next. First, we de�ne the intervals Bi of the support set 
orrespondingto the i-th kernel in (12), that is, Bi , �(i� 1) ��q �� ; i ��q ���; (26)with i = 1; : : : ; Nq . Using them we 
an de�ne in turn the sets of indi
esP ib , fk j ~zsb [k℄ 2 Big ; (27)with b = �1, i = 1; : : : ; Nq , and ~zsb [k℄ the modularization (7) applied on zs[k℄.Now, (25) 
an be put as F (�) = NqXi=1 Xb=�1 Xk2Pib q(b[k℄ = b) log �[i℄: (28)A

ording to (19) we have now to maximize (28) with the restri
tionNqXi=1 �[i℄ = 1; (29)that guarantees that (12) is a pdf. To this end, we build the LagrangianL(�) = NqXi=1 Xb=�1 Xk2Pib q(b[k℄ = b) log �[i℄� 
0� NqXi=1 �[i℄� 11A : (30)Di�erentiating with respe
t to �[i℄, and equating to zero to obtain the extreme, we 
an write�L(�)��[i℄ = Xb=�1 Xk2Pib q(b[k℄ = b) 1�[i℄ � 
 = 0; (31)for i = 1; : : : ; Nq. The solution is a maximum due to the negativeness of the se
ond derivative. In order to solvethe Lagrange multiplier 
 we just plug the solution of the equation above into the restri
tion (29), obtaining
 = NqXi=1 Xb=�1 Xk2Pib q(b[k℄ = b): (32)As q(b) is a pmf, and as we are summing up in (32) the pmf's for every b[k℄, we have that 
 =M . Therefore,the optimal parameter ve
tor �� is given by the expression��[i℄ = Pb=�1Pk2Pib q(b[k℄ = b)M ; i = 1; : : : ; Nq: (33)
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