
Blind Iterative Deoding of Side-informed Data Hiding Usingthe Expetation-Maximization AlgorithmF�elix Baladoa, Fernando P�erez-Gonz�alezb and Pedro Comesa~nabaUniversity College Dublin, Bel�eld, Dublin 4, Ireland;bUniversity of Vigo, Lagoas-Marosende s/n, 36200 Vigo, SpainABSTRACTDistortion-Compensated Dither Modulation (DC-DM), also known as Salar Costa Sheme (SCS), has beentheoretially shown to be near-apaity ahieving thanks to its use of side information at the enoder. Inpratie, hannel oding is needed in onjuntion with this quantization-based sheme in order to approah theahievable rate limit. The most powerful oding methods use iterative deoding (turbo odes, LDPC), but theyrequire knowledge of the hannel model. Previous works on the subjet have assumed the latter to be knownby the deoder. We investigate here the possibility of undertaking blind iterative deoding of DC-DM, usingmaximum likelihood estimation of the hannel model within the deoding proedure. The unknown attak isassumed to be i.i.d. and additive. Before eah iterative deoding step, a new optimal estimation of the attakmodel is made using the reliability information provided by the previous step. This new model is used forthe next iterative deoding stage, and the proedure is repeated until onvergene. We show that the iterativeExpetation-Maximization algorithm is suitable for solving the problem posed by model estimation, as it an beonveniently intertwined with iterative deoding.Keywords: Side-informed data hiding, Distortion-Compensated Dither Modulation (DC-DM), Salar CostaSheme (SCS), blind iterative deoding, Expetation-Maximization algorithm1. INTRODUCTIONThe use of side information at the enoder has proven ruial to the data hiding problem. The solution providedby Costa1 for a ommuniations setting resembling the data hiding senario has been deisive to show that host-signal-indued self-distortion an be e�etively removed through a lever design of the transmission odebook. Infat, using this very odebook design, Costa showed that exatly the same apaity holds for a sheme with sideinformation only at the enoder and another one having the same side information available at the deoder, i.e.,without self-distortion. This derivation assumed Gaussian-distributed side information and an additive whiteGaussian noise hannel independent from the former, but extensions of the same basi result have been madesine. In the ontext of data hiding this result was �rst pointed out by Chen and Wornell, who showed2 that theirDistortion-Compensated Quantization Index Modulation (DC-QIM) theoretial sheme losely resembled Costa'senoding and deoding proedure, and hene that it was optimal in the same sense. In addition, they studiedthe ahievable rate of a partiular implementable ase of DC-QIM with uniform salar quantizers. This shemewas alled Distortion-Compensated Dither Modulation (DC-DM), whih was shown to be, asymptotially, only1:53 dB away from Costa's apaity.Afterwards, Eggers et al. followed the inverse path to show with their Salar Costa Sheme (SCS)3 that apratial implementation of Costa's random odebook was possible. Atually, SCS happens to be equivalent toDC-DM, and for this reason we will use the latter term to refer to this partiular sheme. Nevertheless, thetimely and thorough analysis made for SCS omplemented and extended the previous one. Apart from manyFurther author information: (Send orrespondene to F�elix Balado.)F�elix Balado: E-mail: �z�ihl.ud.ie, Telephone: +353 (0)1 716 2454



other pratial issues, it onsidered non-asymptoti assumptions |e.g., the use of binary onstellations| andhannel oding.As already pointed out in the aforementioned works and elsewhere, hannel oding is the way to approahhannel apaity in any ommuniations senario, and, therefore, also in data hiding using side information atthe enoder. A number of prior works have studied the use of state-of-the-art hannel oding for side-informeddata hiding.4, 5, 6 All these proposals use turbo odes7 |whih have been shown to be able to asymptotiallyahieve error-free deoding for a signal-to-noise ratio near the Shannon limit| over salar side informed shemesfollowing Costa's guidelines. The shemes used therein involve salar uniform quantizers whih are resized using asaling fator before quantization |i.e., amounting to distortion ompensation|, and hene they are equivalentto DC-DM. To be preise, the methods used by Kesal et al. and Chou et al. are equivalent to DC-DM for highdoument-to-watermark ratios (see Setion 1.1), but this is the usual ase in data hiding.In addition to turbo odes, other less powerful iteratively deodable tehniques are tested in,4 while on-atenation with an outer onvolutional ode is explored in6 to build a turbo-trellis method. Disregarding thehannel oding method used, these approahes bear in ommon the neessity of knowing the type of hanneland the level of distortion for undertaking deoding. This information is required to obtain the soft reliabilityvalues of the symbol deisions in the deoding proedure. Inidentally, all these works have worked under thehypothesis that this information was known to the deoder. Moreover, and exept for the works of Eggers et al.,the statistial model used by the deoder in most of this prior art is not the exat one, but an approximationthat avoids having to deal with the nonlinear modular nature of quantization latties. In this paper we explorehow to perform blind� iterative deoding of DC-DM, i.e., without prior knowledge of the attak hannel modeland level of distortion, and taking into aount simultaneously the modularity of the method at the reeiver.1.1. FrameworkFirstly, we will establish the framework used in this paper. We assume that N samples x = (x[1℄; : : : ; x[N ℄)are pseudorandomly hosen from a host signal; the samples in x are zero-mean Gaussian with ovariane matrix�x = �2x � I . The orresponding watermarked signal y, resulting from embedding a given binary informationvetor b, undergoes a zero-mean random additive attak hannel, so that the signal reeived at the deoder isz = y + n. The samples of the random variable n are assumed to be independent identially distributed (i.i.d.)and independent of x, but having unknown probability density funtion (pdf) and variane �2n. In pratie, theindependene between the samples of n is approximately granted by the pseudorandom hoie of x. Through thepaper we will �nd useful to de�ne the watermark-to-noise ratio (WNR) and the doument-to-watermark ratio(DWR), as the ratios in deibels between the watermark and attak power, and the host and watermark power,respetively.Next, we will briey reall the basi formulation of DC-DM and some of its properties. In binary DC-DM oneinformation symbol b[k℄ 2 f�1g is hidden by quantizing a sample of the host signal x[k℄ to the nearest entroidQb[k℄(x[k℄) belonging to the uniform lattiey �b[k℄ given by�b[k℄ = 2�Z+� (b[k℄ + 1)2 + d[k℄; (1)with d[k℄ a key-dependent value that we will take as zero for simplifying the analysis without loss of generality.M -ary versions of the same sheme an be used, but the ahievable rate has been shown to be essentially thesame than the binary ase for WNR's lower than approximately 4 dB.3 The watermarked signal is obtained asy[k℄ = x[k℄ + � � e[k℄ ; (2)i.e, the watermark is the quantization error e[k℄ , Qb[k℄(x[k℄) � x[k℄ weighted by an optimizable onstant �,0 � � � 1. If �� �x, what holds true for usual DWR's due to pereptual reasons, then e[k℄ an be assumed to�Not to be onfused with blind data hiding, that refers to the unavailability of the host signal at the deoder.yExtending the usual de�nition of lattie, whih in priniple must inlude the origin.



be independent of x[k℄ and uniformly distributed, e[k℄ � U(��;�). Then, the watermark w[k℄ = y[k℄� x[k℄ isalso uniform, and the embedding power is Efw2[k℄g = �2�2=3.The deoder ats by quantizing sample by sample the reeived signal z to the losest odebook lattie. Henewe have that b̂[k℄ = arg minb2f�1g ��Qb(z[k℄)� z[k℄��: (3)In the preeding exposition we have assumed that the embedding distortion at eah sample is idential,i.e., �[k℄ = � for all k = 1; : : : ; N . We ould have allowed instead the quantization step �[k℄ to vary ateah sample proportionally to �[k℄, where � responds to a set of loal pereptual energy restritions suh thatEfw2[k℄g �  � �2[k℄, for some onstant . Still, if the attak hannel abides by the same pereptual onstraints|what it is reasonable if the maximum impereptible attak power is to be used|, we an renormalize theproblem to the situation with onstant � and �n assumed above.Channel Coding. Following what was stated in the introdution, we will hide a binary odeword  = ([1℄; : : : ;[N ℄) instead of N unoded bits. The odeword is obtained by enoding a binary information vetor b =(b[1℄; : : : ; b[M ℄), M < N , using a rate R =M=N ode. For notational simpliity, and without loss of generality,we have assumed that the odeword length is equal to the length N of the host signal vetor x. For embeddingand deoding we will onsider that the odeword symbols are given in antipodal form, i.e., [k℄ 2 f�1g. In thisway, eah oded symbol [k℄ is embedded on x[k℄ to obtain y[k℄ as done above using b[k℄.We will enter our attention on parallel onatenated odes with iterative deoding, i.e., turbo odes. Al-though we will partiularize our proposal to these odes due to pratial purposes, it will beome lear thatthe basi idea an be similarly applied to other iteratively deodable proedures. We reall that the parallelonatenated turbo odewords have the form  = (s j p1 j p2); (4)where the subvetor s = b is the systemati output, and the subvetors p1 and p2 are the parity outputsorresponding to the onstituent reursive systemati onvolutionals (RSC's). The output p1 is due to the inputof b to the �rst RSC, and the output p2 is due to the input of a pseudorandom permutation of b to the seondRSC.Choie of �. This hoie is important beause it is known3 that there is a di�erent optimum at eah WNR forthe ahievable rate of DC-DM. In the framework that we have established above, WNR = 10 log10 �2�2=(3�2n).As disussed elsewhere,8 the WNR is not known beforehand by the enoder what beomes a pratial problemfor DC-DM optimization. Previous works4, 5, 6 have assumed antiausal knowledge of this amount, and so theyhave used the optimal saling of their latties |i.e., the optimal distortion ompensation fator| at eah WNR.Here we will set a �xed distortion ompensation parameter � regardless of the WNR, taking pro�t of thepeuliarities of near-optimal odes. Turbo odes present a distintive abrupt derease |usually termed li� orwaterfall| of the bit error rate at the deoder as the WNR inreases. If the turbo ode is well designed, thiswaterfall ours relatively lose to minimum WNR neessary for asymptotially errorless deoding. Due to thise�et we an approximately hoose the optimal � as the one that orresponds to the WNR at the ahievablerate R imposed by the turbo ode. As a real ode annot be perfet, the optimum will atually orrespondto a slightly higher WNR. Notie however that this hoie of � requires knowledge of the hannel model (i.e.,whether this is Gaussian, uniform, et) for omputing the ahievable rate vs. WNR plots.3 In addition, thisoptimization strategy does not hold for WNR's more negative than the waterfall area, but this is unimportantdue to the high probabilities of error assoiated to turbo deoding in this range.



2. EXACT ITERATIVE DECODING OF DC-DMIn this setion we will explain the way to exatly establish the reliability of the hannel deisions when the hannelmodel is known by the deoder to be Gaussian with variane �2n. This omputation has a twofold purpose: 1)making expliit the modular nature of the DC-DM deoding proedure; 2) obtaining the exat reliability valuesto be used for later omparisons of exat iterative deoding against blind iterative deoding, when this partiularattak hannel is used.The deoder reeives the noisy signal z = y+n and proeeds to performMAP iterative deoding. This requiresthe probabilities p(z[k℄ j [k℄ = ) for  2 f�1g, what amounts to a statistial desription of z[k℄ depending oneah possible symbol deision. As the watermark w[k℄ an be assumed to follow a uniform distribution (seeSetion 1.1) we have that y[k℄ is also uniform, asy[k℄ = Q(x[k℄) � (1� �) � e[k℄; (5)with  the embedded symbol value. Then, z[k℄ = y[k℄ + n[k℄ is the sum of two independent random variables,the �rst of them uniform and the seond one Gaussian. The pdf of z[k℄ is onsequently the onvolution of theorresponding pdf's. We an write this pdf as f(z[k℄) � Æfz[k℄�Q(x[k℄)g, withf(z) , 12(1� �)� �Q�z � (1� �)��n ��Q�z + (1� �)��n �� ; (6)and Q(z) , R1z exp(�x2=2)=p2� dx. This pdf of z[k℄ is onditioned to a onrete entroid assumption, but weneed the pdf for a generi symbol deision. For obtaining this expression notie that, due to using (3) at thedeoder, the deision ̂[k℄ an be seen as being based on the modular o�sets~z[k℄ , fz[k℄ mod �g ��= �z[k℄ + �(+ 1)2 � mod 2��� (7)to eah one of the two latties �, with  2 f�1; 1g. Using these o�sets, the minimum distane deision an berewritten as ̂[k℄ = argmin ��~z[k℄��: (8)Considering (8), it is lear that the reliability measure for the deision ̂[k℄ =  is justp(z[k℄ j [k℄ = ) , ~f(~z[k℄); (9)with ~f(�) the pdf followed by ~z[k℄. Notie that the operation (7) implies that this pdf is just the aliasing of thesetions of (6) orresponding to the Voronoi regions of the lattie 2�Z, that is~f(z) = �Pw22�Zf(z � w); jzj � �0; jzj > � : (10)Using (10) the a posteriori log-likelihood ratio for a reeived value z[k℄ is justL([k℄) = log ~f (~z+1[k℄)~f (~z�1[k℄) : (11)This is the method used by Eggers et al. for omputing the reliability of the symbol deisions. The approxi-mations by Kesal et al. and Chou et al. amount to say that (10) is Gaussian with variane �2n + (1� �)2�2=3,what does not render a true pdf due to the amplitude limitation of the deision variable. Nevertheless, experi-ments show that this approximation is suÆiently good when the turbo li� happens at not too negative WNRvalues.



3. BLIND ITERATIVE DECODING OF DC-DMIn a general ase the deoder does not know (10) beause no knowledge is usually available about the type ofattak pdf or its power (i.e., the atual value of WNR). First, it has to be remarked that none of these twoquestions pose diÆulties to iterative deoding of spread-spetrum data hiding. The reason for this is that, asthe DWR is usually high, the hannel model is largely dominated by the host signal model, that an be assumedas known by the deoder. Nevertheless, the muh lower ahievable rate of spread-spetrum requires in turn muhlower ode rates for ahieving the same performane at the same WNR values.In order to envisage how to surmount these diÆulties for DC-DM we may review �rst several relatedsolutions. Most of them stem from the senario of ommuniations without side information using iterativedeoding. For instane, some authors9, 10 have proposed the estimation of the SNR (i.e., WNR) value at thedeoder for hannels known to be Gaussian. Alternatively, other approahes11 involve hoosing a pdf from afamily of possible distributions, assuming knowledge of the SNR. But blind methods whose approah relies onestimating the atual pdf are more interesting for data hiding, as they jointly address both skethed problems.Among them we �nd that by Huang et al.,12 who use a one-step histogram estimation, and the one by Li et al.,13who propose to heuristially re�ne a kernel-based model at eah iterative deoding step, using the inreasinglyaurate deoded information.Motivated by the latter approah, but, as we will see, using sounder theoretial grounds, we an take advantagefrom turbo-oded DC-DM to iteratively estimate the unknown attak pdf jointly with the deoding proess. Asthe pdf (10) is not known beforehand at the deoder, we will assume at least a model with enough degrees offreedom. Taking pro�t that the support set of ~f(z) is limited to jzj < �, we an resort to approximating it usinga simple but general model based on a �nite number Nq of retangular kernels. Then, we will assume that (10)may be approximated using h(�; z) , NqXi=1 �[i℄ � ��z � (i� 1) ��q +��; (12)with the kernels �(z) de�ned as �(z) , � 1=�q; 0 < z � �q0; otherwise ; (13)and Nq , 2�=�q , whih we assume integer. Of ourse, h(�; z) = 0 for jzj > �. Notie that a further advantageof (12) is that it makes no assumptions on the symmetry of the attak pdf. This model is usually onsidered to benon-parametri, although we an see it as a parametri one in whih the parameters vetor � = (�[1℄; : : : ; �[Nq ℄)has to be adjusted.Our initial objetive is therefore to optimally estimate � from the reeived vetor z. The maximum likelihoodapproah for this estimation an be stated as �̂ = max� P (z;�): (14)This estimation problem is inherently involved. Still, we may notie that the elements of z stem from the mixtureof data drawn from two di�erent distributions. At eah z[k℄ these two possible distributions (whih are in fatthe same one shifted by the o�set �) orrespond to eah of the two possible embedded symbols [k℄ 2 f�1g.This is the situation for whih the Expetation-Maximization (EM) algorithm14 was oneived, aiming at�nding the solution of (14) iteratively. The EM algorithm is a long-standing proedure with theoretially provenonvergene properties14 that, in order to iteratively solve (14), uses two alternating steps alled E-step andM-step.Unfortunately, we annot a�ord the hypothesis of independene between the elements of z orresponding tothe odeword parities. As we will see, this auses the problem (14) not to be expliitly solvable using EM. For



PSfrag replaements zL(b) L(b)0Maximization �� ChannelModelh(��; �) BCJR(Expetation)Figure 1. One step of the iterative EM algorithm intertwined with iterative turbo deoding. Neessary interleav-ings/deinterleavings of zs and L(b) for BCJR are not expliitly shown for simpliity.this reason we will resort instead to solve �̂ = max� P (zs;�); (15)with zs the subvetor of z orresponding to the systemati part of the odeword s = b, following the notationin (4). Anyway, and as we will see next, the subvetors orresponding to the parities zp1 and zp2 an be used toimprove the E-step beyond what we ould get with zs alone. In this way, we an intertwine the turbo deodingwith the estimation problem. We desribe next the steps of the Expetation-Maximization algorithm and theirappliation to our problem, that is summarized in Figure 1.3.1. Expetation StepThis step is equivalent to omputing a probability mass funtion (pmf) of s = b (hidden data) under theknowledge of zs and �, that is q(b) , P (b j zs;�): (16)If we disregard the subvetors of z orresponding to the odeword parities, our best estimate of (16) would beq(b) = P (zs;b;�)Pb0 P (zs;b0;�) : (17)Nevertheless, the subvetors zp1 and zp2 orresponding to the parity symbols allow us to ompute the pmf (16)more reliably than (17). Atually, eah iterative turbo deoding stage optimally updates the previous extrinsipmf of b using the BCJR algorithm, whih takes into aount z, the ode used for the urrent parity, and thehannel model h(�; �).Therefore, the probabilities q(b[k℄), for k = 1; : : : ;M , given by the BCJR algorithm, are the best way toompute the distribution we need. Assuming that the information bits b[k℄ are independent, we an writeq(b) = MYk=1 q(b[k℄): (18)Remember that we an straightforwardly ompute these probabilities from the log-likelihood ratios L(b[k℄) =logfq(b[k℄ = +1)=q(b[k℄ = �1)g.We have to remark that this kind of approah involving iterative deoding and EM has already been usedin ommuniations for purposes suh as hannel state estimation15, 16 |di�erently to this ase, using pilotinformation|, or synhronization.173.2. Maximization StepNow, using the pdf (18) and zs we need to ompute the new � that maximizes the EM funtional,18 that anbe written as max� Eq(b)flogP (zs;b;�)g: (19)



It is shown in Appendix A that the solution �� to this optimization problem is given by the expression��[i℄ = Pb=�1Pk2Pib q(b[k℄ = b)M ; (20)for i = 1; : : : ; Nq, and with P ib de�ned in (27).After the M-step we go bak to the E-step, for whih a new iteration of turbo deoding is performed usingthe pdf update given by (20) (see Figure 1). This proedure is ontinued until onvergene.Simpli�ations. In order to gain further insight from (20) we an onsider to use, instead of the soft valuesq(b[k℄), the deisions b̂[k℄ = sign L(b[k℄) in that equation. With this hoie the pmf's beome as a matter of fatdeterministi, as if q(b[k℄ = +1) = 1 then q(b[k℄ = �1) = 0, and vie versa.Interestingly, in this suboptimal ase (20) beomes the normalized histogram of zs on the bins Bi, using thehard deisions b̂[k℄ to make the bin assignment of the orresponding zs[k℄. This deision-based approximation,that would be the intuitive way to update � in the EM iterative proess (see13), is known as winner-take-all18or lassi�ation EM (CEM) and it presents several advantages:� Convergene is ahieved in less steps, although not to the true maximum (but generally to a good approx-imation).� Eah iteration step is slightly faster.� The �nal � value of this simpli�ed iterative approah an be used as an initial value to aelerate theonvergene of the exat method.Initialization of �. As in any iterative method, the eletion of the initial values of � is ritial, beause a badhoie an imply onvergene to a loal optimum. Nevertheless, there is partial information available for thisinitialization, using the symbol-by-symbol hard deisions (3) that would be made if the reeived odeword werejust onsidered as unoded information.These hard deisions an be used to make the initial omputation of (20), just as we have explained inthe preeding simpli�ation of the method. Nevertheless, notie that with this approah only values of h(�; z)orresponding to jzj < �=2 an be initialized. All we an do in this initial iteration is to set the remaining valuesto a uniform non-zero value, and normalizing (12) so that it remains a pdf. These values annot be initialized tozero, beause these \impossible values" would penalize unaeptably the performane of the iterative deoding.4. EXPERIMENTAL RESULTSWe present next the results of the tests arried out using turbo oding to empirially validate our approah. Theturbo odes used in this setion use pseudorandom interleavers, and the omponent oders have been hosen bytrial-and-error, without using extensive optimizations.The initialization of the pdf model follows the method explained in Setion 3, and the updates of � are madewith the suboptimal winner-take-all method. First we show in Figure 2 the deoding performane of the blinddeoder proposed in front of Gaussian noise, for a pdf model (12) onsisting of Nq kernel funtions. We ouldtend to think that, the higher the number of kernel funtions, the more aurate the estimation we ould get. Inpriniple this is true, but as the resolution Nq inreases so does the variane of �, and therefore the estimated pdfbeomes eventually too noisy and useless for deoding. This behavior is reeted in Figure 2, where values of Nqup to 8 give inreasingly better performane. Starting from that value we observe an inrease in the probabilitiesof error, apart from a more errati deoding pro�le |despite a suÆiently high number of simulations.
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Exat deodingNq = 4Nq = 8Nq = 16Nq = 32P b

WNRFigure 2. Gaussian noise. Performane of turbo-oded DC-DM with blind deoding for pdf models with di�erentresolutions (number Nq of kernel funtions in the non-parametri model), RSC (31 27)/31, � = 0:65, M = 1; 000.Comparing the best blind result in Figure 2 with the probabilities of error orresponding to exat deodingfollowing Set. 2 (in this ase, for a better performing � = 0:60) we see that quite good results are possible forblind deoding. An interesting side e�et of the blind method proposed is that deoding resembles to the use ofa lookup table, whih allows for a high deoding speed. We have also veri�ed that, as it ould be expeted, thehighest useful value of Nq is limited by M . For instane, for M = 10; 000 the best Nq has been observed to bearound 32. Also, a slight variability of the best Nq with di�erent types of noise was deteted.The gain due to using a blind deoder instead of a Gaussian-mathed one in the presene of non-Gaussiannoise should be displayed for non-Gaussian distortions. For a fair omparison we will assume that the Gaussian-mathed deoder estimates the noise power �2n, as the knowledge of this parameter is too strong an assumption.This estimation an be made using the expressionEfz2[k℄g = EfQ2b[k℄(x[k℄)g+ (1� �)2�2=3 + �2n; (21)that an be easily derived from the expression of z[k℄ for DC-DM. As b is not known initially by the deoder,the approximation �2x � EfQ2b[k℄(x[k℄)g an be used in (21). Then, using an estimate of the expetation Efz2gobtained from the reeived z, we an write�̂2n = 1M MXk=1 z2[k℄� �2x � (1� �)2�2=3: (22)Unfortunately, this estimation is too slak, espeially for high DWR's. A seond, more aurate way to obtainthe estimate is by means of iterative re�nements of �̂2n at eah step of the turbo deoding proess. Using theintermediate deoded information b̂ at a given turbo deoding iteration we an write�̂2n = 1M MXk=1 �Qb̂[k℄(z[k℄)� z[k℄�2 � (1� �)2�2=3: (23)This estimate is used on the next deoding step, that will serve to re�ne again �̂2n and so on. In Figure 3 weshow the performane obtained with these two approahes versus blind deoding when the attak is uniformi.i.d. noise. In the ase of non-iterative estimation we have used DWR = 10 dB, instead of the 25 dB onsideredin the other two ases. The �gure stresses the importane of having a good estimate of the hannel variane inorder to orretly deode the turbo-oded information, but in any ase we an see that the blind method is ableto yield a gain over the less adaptive Gaussian-mathed one.
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BCJR|, the parity symbols annot be assumed to be independent. This does not allow the simpli�ationin (24), obsuring an analytial solution to the M-step.Returning to our problem, and using again the independene of the b[k℄, we an writeF (�) = MXk=1Eq(b[k℄) flogP (zs[k℄; b[k℄;�)g= MXk=1 Xb=�1 q(b[k℄ = b) logP (zs[k℄; b[k℄ = b;�): (25)In order to undertake the optimization of this expression, we will �nd it onvenient to rewrite it using someuseful de�nitions that we will establish next. First, we de�ne the intervals Bi of the support set orrespondingto the i-th kernel in (12), that is, Bi , �(i� 1) ��q �� ; i ��q ���; (26)with i = 1; : : : ; Nq . Using them we an de�ne in turn the sets of indiesP ib , fk j ~zsb [k℄ 2 Big ; (27)with b = �1, i = 1; : : : ; Nq , and ~zsb [k℄ the modularization (7) applied on zs[k℄.Now, (25) an be put as F (�) = NqXi=1 Xb=�1 Xk2Pib q(b[k℄ = b) log �[i℄: (28)Aording to (19) we have now to maximize (28) with the restritionNqXi=1 �[i℄ = 1; (29)that guarantees that (12) is a pdf. To this end, we build the LagrangianL(�) = NqXi=1 Xb=�1 Xk2Pib q(b[k℄ = b) log �[i℄� 0� NqXi=1 �[i℄� 11A : (30)Di�erentiating with respet to �[i℄, and equating to zero to obtain the extreme, we an write�L(�)��[i℄ = Xb=�1 Xk2Pib q(b[k℄ = b) 1�[i℄ �  = 0; (31)for i = 1; : : : ; Nq. The solution is a maximum due to the negativeness of the seond derivative. In order to solvethe Lagrange multiplier  we just plug the solution of the equation above into the restrition (29), obtaining = NqXi=1 Xb=�1 Xk2Pib q(b[k℄ = b): (32)As q(b) is a pmf, and as we are summing up in (32) the pmf's for every b[k℄, we have that  =M . Therefore,the optimal parameter vetor �� is given by the expression��[i℄ = Pb=�1Pk2Pib q(b[k℄ = b)M ; i = 1; : : : ; Nq: (33)
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