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ABSTRACT

Structured codes are known to be necessary in practical implementations of capacity-approaching “dirty paper
schemes”. In this paper we study the performance of a recently proposed dirty paper technique, by Erez and
ten Brink which, to the authors’ knowledge, is firstly applied to data-hiding, and compare it with other existing
approaches. Specifically, we compare it with conventional side-informed schemes previously used in data-hiding
based on repetition and turbo coding. We show that a significant improvement can be achieved using Erez and
ten Brink’s proposal. We also study the considerations we have to take into account when these codes are used
in data-hiding, mainly related with perceptual questions.

1. INTRODUCTION.

In the last years the usefulness of approaching watermarking as a communication problem with side information
known at the encoder but not at the decoder has been proven. This model was shown by Costa1 to achieve
the same capacity as if the side information were also made available to the decoder. Nevertheless, the main
problem with Costa’s construction is that it relies on random codes, which require an exhaustive search strategy
for selecting the codeword to be used, something that is largely impractical. Due to the importance of Costa’s
result, not only to watermarking, but also to many other applications in communications, a large number of
papers dealing with the possibility of approaching the same result using structured codes have been written.2, 3

Erez and Zamir have recently shown3 that Costa’s result can be achieved with nested lattices. In fact, they
have proven a stronger result in which a modulo-lattice transformation of the received signal is considered at the
decoder (lattice decoding will be dealt with in Section 3). This obviously implies a huge reduction in complexity,
as well as the possibility of achieving capacity without explicitly knowing the probability density function (pdf)
of the host signal. Nevertheless, the question of code construction is not completely solved: Erez and Zamir’s
result applies to lattices verifying quite strict conditions which require that the fundamental regions approach
hyperspheres asymptotically as the number of dimensions is increased. Unfortunately, those conditions fall short
of being met by the simplest (and mostly used) lattices, such as the cubic ones. Therefore, practical solutions
demand the use of strategies whose complexity does not rely exclusively on lattices.

The usually followed solution is to encode the information bits with a near-Shannon-limit channel code and
then take the output bits to index the sub-lattice used to quantize the host signal. Due to the redundancy
introduced by the channel code, this lattice can be a very simple one, even allowing for scalar quantization.
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Figure 1. General structure of a dirty-paper encoder.

The good results obtained with this kind of schemes can be explained from the fact that the channel code
concatenated with the simple lattice is equivalent to a better (and also more involved) lattice.

Summarizing, most of the practical schemes that use structured codes to approach Costa’s result are composed
of a good channel code concatenated with a quite simple lattice. The encoding and decoding with the channel
code is usually relatively easy, and the same applies when a simple lattice is chosen, in such a way that the
resulting dirty paper coding schemes fall very close to Shannon’s limit, while keeping a reasonable computational
cost.

The rest of the paper is organized as follows: In Sect. 2 the notation and a unified framework are introduced.
In Sect. 3 the lattice decoding strategy is reviewed. The classical dirty paper coding schemes are studied following
the unified framework in Sect. 4 whereas Erez and ten Brink’s scheme constitutes the main subject of Sect. 5.
Experimental results are shown in Sect. 6 and conclusions in Sect. 7.

2. NOTATION AND UNIFIED FRAMEWORK

We will denote scalar random variables with capital letters (e.g., X), and their outcomes with lowercase letters
(e.g., x). The same notation criterion applies to random vectors and their outcomes, denoted in this case by
bold letters (e.g., X, x).

The general diagram of the dirty-paper coding schemes studied in this paper is plotted in Fig. 1. We assume
without loss of generality that the host signal is represented by a zero-mean random vector Xo = (Xo

1 , · · · ,Xo
L)T .

If necessary, these particulars can always be achieved by subtracting any non-zero mean from the host, and
by using an arbitrary bijective transformation from the original arrangement of the host signal samples to a
unidimensional one. Prior to embedding we apply a key-dependent pseudorandom permutation Π(·) to Xo. The
permuted host is X , Π(Xo). Apart from the security increase due to the uncertainty that this permutation
procedure causes to an attacker unaware of the key, an important advantage from an analytical point of view
is the statistical independence between consecutive samples brought about by such key-dependent permutation.
We will denote the average host signal power as

Dh =
1

L

L
∑

i=1

σ2
Xi

, (1)



where σ2
Xi

, Var{Xi}. The permuted host could be projected onto a P -dimensional space (P < L), in order
to perform the embedding in the new domain (as, for instance, in the Spread Transform Dither Modulation
proposed by Chen and Wornell2), yielding

Xp = S · X, (2)

being S a P × L matrix.

In side-informed schemes (on which we will exclusively focus), the watermarked signal Y will be obtained
from both the projected host signal Xp and the Mb-length information message b to be embedded. We will
assume that b = (b1, · · · , bMb

)T is a binary vector, bj ∈ {0, 1} for j = 1, · · · ,Mb. This message could go through
a binary channel encoder f(·), so c = f(b) is the Mc-length channel-coded message.

The code in the vector quantizer h(·, ·) will transform the Mc-length channel-coded binary message c into a
P -length vector v, with elements in the alphabet V. The vector v will depend on both c and Xp. Therefore,
h(·, ·) will only make sense when the vector quantizer is really use; for example, in Sect. 4, where cartesian
products of scalar vectors are used, its output v will be just c.

Let

Λ , |V|ZP , (3)

then, given v, a shifted-lattice quantizer, Qv(·), based on a minimum Euclidean distance criterion is defined as

Qv(a) = QΛ (a − t(v)) + t(v), for any a ∈ R
P (4)

where QΛ(·) is the minimum Euclidean distance quantizer induced by the lattice Λ, and t(v) = v + d. Vector
d is a realization of a key-dependent pseudorandom dither vector D, which is uniformly distributed over the
Voronoi region of Λ, so in the j-th component Dj ∼ U [−|V|/2, |V|/2), 1 ≤ j ≤ P . The purpose of vector d is to
increase security by making it available only to encoder and decoder.

The watermark in the projected domain (Wp) will be then computed as

Wp , Qv(νXp) − νXp, (5)

which is nothing but the quantization error resulting when quantizing νXp with the quantizer Qv(·) correspond-
ing to the message v. Considering the structure of the lattice defined in (3), it is clear that the quantization in
(5) can be implemented in sample-by-sample basis. The distortion-compensation parameter ν, 0 < ν ≤ 1, is an
optimizable variable akin to the one in Costa’s paper.‡

The inverse projection will be given by the L × P -matrix T, so

W = TWp, (6)

where T could be any matrix verifying

S · T = IP×P , (7)

although the minimum-norm valid matrix is the pseudoinverse ST (SST )−1.

In a similar way that the average host signal power, the embedding distortion is defined as

Dw ,
1

L

L
∑

i=1

E{W 2
i }. (8)

The imperceptibility of the differences between X and Y , X + W has to be guaranteed by means of
a perceptual analysis of the host signal previous to the embedding operation. This procedure is intrinsically

‡In fact ν should be a Wiener filter, as it is discussed by Yu et al.4 Nevertheless, since this would require the embedder
to know the noise power distribution we will assume it to be a scalar, even if it is not the optimal choice.
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Figure 2. Scheme of the channel and predecoder.

dependent on the type of host signal in question. Due to this fact, we will consider that the host (Xo) is a
multimedia signal given in a certain domain of interest. The only requirement is that the domain chosen is
suited to compute a perceptual mask α, taking into account human perceptual features. We assume in the
following that the maximum unnoticeable amplitude modification of the corresponding host signal sample Xi is
proportional to αi; therefore, the quantization step in each dimension ∆i will be made proportional to αi.

Decoding is accomplished by the receiver after the watermarked signal y has undergone an attack channel.
Throughout this paper we will focus on the case where this channel is a zero-mean additive probabilistic channel
independent of X and b, yielding a received signal Z = Y+N. This type of channel model has been consistently
used for benchmarking purposes in most relevant data hiding research. We will also assume that the samples in
N are mutually independent, with diagonal covariance matrix Γ = diag(σ2

N1
, · · · , σ2

NL
). The channel distortion

Dc can be then defined in a similar fashion as the embedding distortion, i.e.,

Dc ,
1

L

L
∑

i=1

σ2
Ni

. (9)

We would like to remark that this kind of measurement would in principle allow to concentrate all the attacking
distortion on a single sample of Y or spread it over all the vector. This freedom to distribute distortion hints
at the poor connection existing between perceptual issues and this kind of mean square error (MSE) distortion
measurements.

Nevertheless, we will undertake all subsequent analyses using MSE, as this criterion has been the most
employed in the literature so far for the sake of tractability. Notice, for instance, that the hypotheses of Costa’s
result are stated for this type of restriction. In any case, an attacker may try to partially relieve the intrinsic
inconveniences of MSE in order to comply with the usual requirement of minimal perceptual impact of the attack.
Assuming the adequacy of the perceptual mask, it is clear that one way to meet this condition is to perceptually

shape the added noise, such that its variance at each dimension is proportional to the corresponding allowable
perceptual energy. Last, we will find it useful to introduce the watermark-to-noise ratio as

WNR ,
Dw

Dc

, (10)

that relates the power of the embedding and channel distortion, establishing a working point similar to the
signal-to-noise ratio (SNR) in communications.

The received signal Z will be projected using S in order to obtain Zp = S ·Z, the projected signal which will
be used in the decoding process. In a similar way, Np = S · N denotes the projected noise.

3. LATTICE DECODING

In this section we describe the lattice decoding technique proposed by Erez et al.,3 and which is used by all the
methods studied in this paper. Both the channel and predecoder are plotted in Fig. 2. Lattice decoding is solely
based on the statistic

Z′
p = (νZp − d) mod Λ (11)

= (Wp − d + (ν − 1)Wp + νXp + νNp) mod Λ (12)

= [(v + d − νXp) mod Λ − d − (1 − ν)Wp + νXp + νNp] mod Λ (13)

= [v − (1 − ν)Wp + νNp] mod Λ, (14)



This means that not all the possible centroids associated to a symbol have to be considered, but just one.
Moreover, a huge complexity reduction can be achieved when Wp = [d + v − νXp] mod Λ is assumed to be
uniform in the Voronoi region of Λ. This assumption can be justified by making two considerations:

• Although the decoder knows the value of d, since he/she requires it to perform the predecoding (11),
this knowledge is disregarded in the decoding stage in order to reduce its complexity. In this case, the
distribution of D is assumed to be uniform over the fundamental Voronoi region of Λ, yielding an identical
distribution for Wp

§.

• The decoder knows the value of d, and he/she tries to use this knowledge in both the predecoding and
decoding stages. Nevertheless, the pdf of νX is so smooth, that (νX) mod Λ is almost uniform in the
fundamental Voronoi region of Λ. This gives again a uniform distribution for Wp, and it is reasonable in
in data hiding applications, where the power of the host signal is orders of magnitude larger than that of
the watermark.

The component (1 − ν)Wp is usually termed as self-noise, since it is caused by the watermarking process itself
due to the distortion compensation. As it is well-known, performance improvements are obtained by using ν < 1,
i.e., allowing a certain degree of self-noise.

Finally, the decoder decision will only rely on the observation of Z′
p, using some criteria, as ML-lattice

decoding or Euclidean (minimum distance) lattice decoding.3 Therefore, the decoder has not to perform an
exhaustive search but he/she has only to look for the most suitable symbol in the Voronoi region of Λ.

4. CLASSICAL APPROACHES.

Once the general framework for decoding has been introduced in the previous section, we will show how classical
approaches fit in this framework. These methods are typically based on the use of scalar quantizers instead of a
vectorial one, and the differences among them are given by their values of S, T, f(·) and h(·, ·).

4.1. Repetition coding with no projection.

In this case, the following values are taken:

S = diag(1/∆1, · · · , 1/∆L), (15)

T = diag(∆1, · · · ,∆L), (16)

cj = bi, (i − 1)L/Mb < j ≤ iL/Mb, and 1 ≤ i ≤ Mb, (17)

vj = cj , 1 ≤ j ≤ L, (18)

in such a way that any bit bj is repeated L/Mb times¶, so Mc = L = P . Note also that given (18), v will not
depend on Xp but only on c, since a scalar quantizer is being used.

Summarizing, the initial values of X are normalized by the corresponding quantization step ∆ in order to
take into account the perceptual constraints in the embedding, and the input bits are repeated L/Mb times.

4.2. Repetition coding with projection.

For this method, we have:

sij =

{

Mb

L

qj

∆j
, if (i − 1)L/Mb < j ≤ iL/Mb, and 1 ≤ i ≤ Mb

0, otherwise
, (19)

tij =

{

qi∆i, if (j − 1)L/Mb < i ≤ jL/Mb, and 1 ≤ j ≤ Mb

0, otherwise
, (20)

cj = bj , 1 ≤ j ≤ L, (21)

vj = cj , 1 ≤ j ≤ L, (22)

§In the paper by Erez and Zamir3 this simplification does not imply any loss in performance, since capacity can be
achieved even when Wp is assumed to be uniform. Nevertheless, this is only possible for asymptotically spherical lattices.

¶We will assume that L/Mb is an integer.
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Figure 3. Structure of f(·) for Erez and Ten Brink’s scheme.

with qj ∈ {−1,+1} a pseudorandomly generated spreading sequence, known to both encoder and decoder. Note
that q could follow any other zero-mean unit-variance distribution (e.g., a Gaussian). The definition of T is also
based on perceptual constraints. The fact of not having a vector quantizer, but a scalar one is again reflected in
(22).

Be aware that both of these methods could be seen as extreme cases of a general one, where the repetition
rate L/Mb is achieved by a first step which projects from L dimensions to L′ and then a repetition channel code
which transforms the Mb bits into L′. Nevertheless, the optimal value for L′ when all the samples are idependent
and identically distributed is L′ = Mb, as was shown in.5

4.3. Channel coding with no projection

In this case, we have:

S = diag(1/∆1, · · · , 1/∆L), (23)

T = diag(∆1, · · · ,∆L), (24)

c = f(b), (25)

vj = cj . 1 ≤ j ≤ L, (26)

As it can be clearly seen, repetition coding without projection is just a particular case of the previous methods.
Nevertheless, it is interesting to address it separately due to its practical importance. In practical situations f(·)
could be any kind of channel code: turbo,6, 7 serially concatenated,8 block,9 LDPC,10 etc.

4.4. Channel coding with projection

Finally a last alternative could be:

sij =

{

Mc

L

qj

∆j
, if (i − 1)L/Mc < j ≤ iL/Mc, and 1 ≤ i ≤ Mc

0, otherwise
, (27)

tij =

{

qi∆i, if (j − 1)L/Mc < i ≤ jL/Mc, and 1 ≤ j ≤ Mc

0, otherwise
, (28)

c = f(b), (29)

vj = cj , 1 ≤ j ≤ L, (30)

where the same comments made in Sect.4.3 are still valid.

5. EREZ AND TEN BRINK’S APPROACH.

Erez and ten Brink’s scheme11 can be regarded to as one of the foremost existing dirty paper codes, which to
the best of our knowledge has not been applied yet in data hiding scenarios.

It consists of a check-biregular, repeat-irregular nonsystematic repeat-accumulate code concatenated with a
vector quantizer. In other words, the encoder is composed of a variable node encoder (VNE), which is nothing
but a variable-rate repetition encoder, whose output is permuted using Π2(·) to become the input of a check
node encoder (CNE), which is a single parity check encoder. The variable node encoder has 64.36% of the nodes
of degree 3, 31.24% degree 10 and 4.4% of degree 76. 80% of the check nodes have degree 1 and 20% degree 3.
The concatenation of both of them, yields a total rate 1/6. The bits in the output of this check node encoder go
through a recursive accumulator (ACC). All the variable node encoder, the permuter, the check node encoder



Channel metrics

VQ+ACC

decod.

CND

CND

Π−1
2 (·)

Π2(·)

VNDlog(0.5)
b̂

Figure 4. Structure of Erez and ten Brink’s decoder. The lower input and output to the decoding blocks are the a

priori and a posteriori log-probabilities of the input of the corresponding encoding block. The upper ones are the same
probabilities, but corresponding to the output of the encoding block.

and the recursive accumulator can be seen as a channel code f(·) and its output c constitutes the input of a
vector quantizer, that will be explained in Sect. 5.1. The structure of f(·) for this scheme is plotted in Fig. 3.

This quantizer finds that centroid of a lattice (which depends on the input bits) which minimizes the distortion
between the side information (X) and the output signal (Y). This distortion measure can be changed depending
on the requirements of our system, although for Erez and ten Brink’s paper the Euclidean distance between both
signals is employed. The search of this centroid implies using a Viterbi algorithm, so the embedding process is
computationally much more expensive than for turbo-codes. In the data-hiding problem, a typical choice for
the distortion measure could be a perceptual measure, which will obviously depend on the nature of the host
signal. For example, when X is the 8× 8 block-wise DCT of an image, the perceptual measure by Watson could
be used.12 Other alternative could be a weighted Euclidean distance, which normalizes the distortion in each
dimension by the perceptual mask (α). In our implementation, we have followed the last strategy for the sake
of simplicity.

Another problem to be solved is how to increase the redundancy for a fixed structure (which implies a fixed
rate) of the channel code and vector quantizer. The solution we have adopted is based on projecting the initial
vector X onto a lower-dimensional space (using S). In this way the SNR per dimension will be increased in
average by L/P .

As a consequence of the previous discussion, we can write

sij =

{

P
L

qj

∆j
, if (i − 1)L/P < j ≤ iL/P, and 1 ≤ i ≤ P

0, otherwise
, (31)

tij =

{

qi∆i, if (j − 1)L/P < i ≤ jL/P, and 1 ≤ j ≤ P
0, otherwise

, (32)

The decoding is carried out by the iterative decoding of three blocks: vector quantizer and accumulator
(VQ + ACC), check node decoder (CND), and variable node decoder (VND). In exchange for this increase in
complexity, significant performance gains can be achieved, as it is shown in Sect. 6. Fig. 4 shows the structure
of the decoder.

5.1. Vector Quantizer.

The vector quantizer proposed by Erez and ten Brink11 (see Fig. 5) groups the bits into triplets. One bit per
triplet is duplicated and combined with the output of a non-systematic convolutional code with feedforward
polynomials 078 and 058, whose input are the virtual bits. These virtual bits are not information bits but a
tool to shape the quantization region of the vector quantizer; they can be arbitrarily flipped and give a degree
of freedom to modify the watermark in such a way that a distortion measure between the original host signal
and the watermarked one is minimized. The presence of these virtual bits is what accounts for the difference
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between a scalar quantizer and a vectorial one. The optimal sequence of virtual bits, i.e. that minimizing the
target distortion measure, is computed using a Viterbi algorithm, and the resulting output is combined with the
information coded bits, yielding 4 bits which are used to index two 4-PAM symbols (or, equivalently, a 16-QAM
symbol) with alphabet V = {−3/2,−1/2, 1/2, 3/2}, obtaining v, wich is used in (5) to get Wp. Moreover, v

is taken into account to measure the distortion, which is used by a Viterbi algorithm to determine the optimal
virtual bits sequence. Bearing this structure in mind, the total rate of the scheme is 1/4.

This vector quantizing resembles the method proposed by Miller et al.,13 since both of them try to find
a watermark which minimizes a distortion measure taking into account all the components of the watermark.
Nevertheless, the differences are evident: Miller et al.’s method is based on trellis coding, while the search of the
optimal watermark is more systematic in Erez and ten Brink’s scheme.

6. EXPERIMENTAL RESULTS.

For the experimental part of this paper we have watermarked Lena 256×256 in the mid-frequencies of the 8×8-
DCT domain,14 using a perceptual mask based on Watson’s distortion.12 In all experiments each information
bit was hidden in 20 coefficients, giving a total payload of 1, 122 bits. The channel-noise was chosen to be
Gaussian with the same power in all the coefficients (i.i.d.). In order to address a real scenario, a value of ν was
set for each experiment and hold constant for the entire range of WNR’s.

First of all, we have compared the repetition coding schemes, both with and without projecting. The values
of ν were 0.5 and 0.9 respectively. This difference is due to the different SNR per dimension in each scheme,
since the optimal ν in the first case is computed by taking into account the SNR in the projected domain, which
is increased by 10 log10 of the projection factor. In Fig. 6 the improvement due to projecting is shown. Both of
them were decoding using Maximum Likelihood (ML) lattice decoding.3

In order to compare dirty paper schemes which use repetition coding with those using channel coding, we have
chosen a serially concatenated code proposed by Benedetto et al.8 with outer code Go(D) = [1 + D, 1 + D + D3]
and inner Gi(D) = [1, (1+D+D3)/(1+D)], giving a total rate 1/4, which is used with projection of rate 1/5. In
Fig. 7(a) the turbo-cliff of this code for dirty paper coding when all the components are i.i.d. is shown. Fig. 7(a)
also shows the turbocliff of Erez and ten Brink’s scheme for the same scenario. In the paper by Erez and ten
Brink11 the turbocliff was at WNR = −1.9 dB (1.93 dB from capacity limit) or, equivalently, Eb/No = 1.1 dB,
so taking into account the increase in the WNR due to the projection, one would expect such turbocliff to show
up at −8.9 dB (2.55 dB from capacity limit). Nevertheless, Fig. 7(a) (where we use ν = 0.42) shows it around
−7.8 dB. In fact, we can decompose the gap to the capacity limit (3.64 dB) in a gap due to the method itself
(1.92 dB), other part due to projecting instead of using a more sophisticated code (0.63 dB), and finally the part
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Figure 7. (a): Comparison between a serially-concatenated code concatenated (ν = 0.5) with a scalar quantizer and
Erez and ten Brink’s scheme (ν = 0.42) when the noise components are i.i.d.. Mb/Mc = 1/4 and Mc/L = 1/5 with
projection.(b): Comparison between a serially-concatenated code concatenated with projection (ν = 0.6) and with no
projection (ν = 0.3) with a scalar quantizer, and Erez and ten Brink’s scheme (ν = 0.415) when the noise components
after normalizing by the perceptual mask are independent but not identically distributed. Mb/Mc = 1/4 and Mc/L = 1/5.

corresponding to the use of a limited-size permuter (1.09 dB). In any case, the gain achieved by using Erez and
ten Brink’s scheme compared with the serially concatenated codes is around 1.3 dB, see Fig. 7(a).

Fig. 7(b) shows the results when noise samples are Gaussian and independent but not identically distributed.
The gain by using Erez and ten Brink’s scheme is still around 1.5 dB, but both plots are now shifted almost 2
dB to the right, so the turbocliffs are found now at −5.8 dB and −4.5 dB. Finally, it is interesting to remark
that the gain due to projecting when the serially concatenated codes are used, is almost negligible, as can be
seen in Fig. 7(b).



7. CONCLUSIONS.

In this paper we have proposed a framework that encompasses many side-informed methods with coding for
data-hiding, and reviewed state-of-the-art methods, specifying two possible ways to increase the operating SNR:
repetition coding with and without projection. Moreover, we have introduced for what we believe is the first
time in watermarking a capacity-approaching dirty-paper scheme by Erez and ten Brink. The gap to capacity of
this scheme is measured for Gaussian i.i.d. noise, showing the different causes of this loss. Experimental results
comparing the performance of that scheme with serially concatenated codes and repetition, with and without
projection, are also introduced for non-i.i.d. noise, showing again a similar improvement when the new scheme
is used.

Further research lines include a varying distortion compensating parameter ν, replacing it by its optimal
value, i.e., the Wiener filter. This would improve the system performance in the case of Gaussian, independent
but not identically distributed noise. Another challenge is the design of similar methods to those introduced
here, by specifying different repetition and checking rates for the VNE and CNE repectively, in order to use
them in scenarios with lower SNR’s, instead of increasing the operating SNR through projection.
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