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ABSTRACT

In this paper, a novel method for detection in quantization-based watermarking is introduced. This method
basically works by quantizing a projection of the host signal onto a subspace of smaller dimensionality. A
theoretical performance analysis under AWGN and fixed gain attacks is carried out, showing great improvements
over traditional spread-spectrum-based methods operating under the same conditions of embedding distortion
and attacking noise. A security analysis for oracle-like attacks is also accomplished, proposing a sensitivity attack
suited to quantization-based methods for the first time in the literature, and showing a trade-off between security
level and performance; anyway, this new method offers significant improvements in security, once again, over
spread-spectrum-based methods facing the same kind of attacks.
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1. INTRODUCTION

Although the problem of detection for spread-spectrum-based watermarking has been extensively studied, it has
been rarely addressed for quantization-based methods,1 maybe because the latter are considered to be better
suited for data hiding applications, but we will show that quantization-based methods present good performance
in detection applications. The problem of detection is usually formulated as a binary hypothesis testing; if z is
the signal at the input of the detector, the two considered hypothesis are the following

H0 : z is not watermarked;
H1 : z contains the watermark w.

Thus, the the answer of the detector is binary, being the space of messages restricted to M̂ = 0 when no
watermark is found, and M̂ = 1 when it decides that the received signal is a watermarked one.

The method proposed in this paper is based on a data hiding scheme named QP2 (Quantized Projection),
which belongs to the well known family of spread transform methods, originally proposed by Chen and Wornell3

with their implementation ST-DM (Spread Transform - Dither Modulation). The main difference between QP
and ST-DM relies on the formulation of the unprojection function; in its simplest form, our method is essentially
equivalent to ST-DM, but its general formulation clearly differs from that, as we will see in Section 3.3.

Two different analysis are carried out in this paper, in an attempt at separating clearly the robustness
(performance) and security4 issues. The robustness of our method is measured by the Receiver Operating
Characteristic (ROC), showing great improvements over traditional spread-spectrum-based schemes; on the
other hand, the security assessment is accomplished in an oracle-attack scenario by measuring the difficulty for
an attacker to estimate the secrets of the system. As we will see, the security level (to be defined in Section 4) can
be increased by constructing more involved detection regions taking advantage of the features of the generalized
QP scheme. The idea of improving the security of a scheme under oracle-attacks by complicating the detection
region is not new in watermarking, as it was proposed before in several works5–8; however, these approaches
were developed under the rationale of asymmetric watermarking scenarios, whereas the method proposed here
belongs to the class of symmetric schemes.

Throughout the text, boldface lower-case letters will denote column vectors of length L, whereas boldface
capital letters are reserved for matrices, and scalar variables will be denoted by italicized lower-case letters. In



this paper, all vectors will be regarded as zero-mean signals, and more specifically, the host x and the noise n

signal will be modeled as i.i.d. with variance σ2
X and σ2

N , respectively, in each component. To clearly reflect the
influence of the embedding distortion and the noise power in the results, two parameters will be introduced: 1)
the Document to Watermak Ratio, defined as DWR = 10 log10(λ), with λ = σ2

X/Dw, being Dw the embedding
distortion; and 2) the Document to Noise Ratio, defined as DNR = 10 log10(ξ), with ξ = σ2

X/σ2
N .

The paper is structured as follows. In Section 2, the basic principles of detection in spread-spectrum (SS)
based watermarking are reviewed. Section 3 is devoted to the performance analysis of the proposed scheme under
AWGN and fixed gain attacks. In Section 4, some security issues are discussed, and an oracle attack suited to
our new scenario is proposed, showing some results. Finally, the conclusions are summarized in Section 5.

2. DETECTION IN SPREAD-SPECTRUM-BASED WATERMARKING

This section briefly reviews the basic principles of detection on spread-spectrum-based methods, in order to
better understand differences and similarities with the methods proposed in this paper. The embedding function
in classical additive spread spectrum is

y = x + w = x + γv, (1)

being γ a parameter controlling the watermark power, and v a pseudorandom vector such that ||v||2 = L. The
embedding distortion is defined as

Dw ,
1

L

L
∑

k=1

E{w2[k]}. (2)

Clearly, for SS, Dw = γ2. In the general case where the signal at the input of the detector, z, may be corrupted
by additive white Gaussian noise (AWGN) n, the detector must solve the following hypothesis test

H0 : z = x + n

H1 : z = x + w + n

where z, x, w and n are L-dimensional vectors. The hypothesis test is solved by means of a likelihood ratio.
When analyzing spread-spectrum-based methods it is usual to assume that the host signal follows a Gaussian
distribution; under this assumption, the likelihood ratio becomes equivalent to performing a cross-correlation
between the received signal and the vector v. For instance, under hypothesis H1:

rz =
1

L

L
∑

k=1

z[k]v[k] =
1

L

L
∑

k=1

x[k]v[k] + γ
1

L

L
∑

k=1

v[k]v[k] +
1

L

L
∑

k=1

n[k]v[k] = γ +
1

L
(rx + rn), (3)

with rx =
∑L

k=1 x[k]v[k] and rn =
∑L

k=1 n[k]v[k]. The detection function decides whether the received signal is
marked or not by means of a thresholding in the cross-correlation

dSS(rz) ,

{

1, rz ≥ T
0, rz < T

(4)

being T a threshold to adjust the operating point of the detector, and dSS(rz) ≡ M̂ . The resulting detection
region is parameterized by a hyperplane in a L-dimensional space. The performance of the system is measured
by the probabilities of false alarm (Pf ) and missed detection (Pm), which are defined as

Pf = Pr{M̂ = 1|H0} = Pr{rz ≥ T |H0} (5)

Pm = Pr{M̂ = 0|H1} = Pr{rz < T |H1} (6)

The values of Pf and Pm can be easily calculated, yielding9

Pf = Q

( √
LT

√

σ2
X + σ2

N

)

, (7)

Pm = Q

(√
L(γ − T )

√

σ2
X + σ2

N

)

, (8)

where Q(x) , 1√
2π

∫∞
x

e−
t2

2 dt.



+
-

++

x

s corr
rx QΛ(rx)

QΛ(·)
1
L

ρ w

m

y

Figure 1. Embedding function in QPD when M = 1.

3. QUANTIZATION-BASED DETECTION

Since our method is based on the QP data hiding scheme,2 we will refer to it as QPD (QP-based Detection)
in the sequel. We begin by describing the embedding and detection functions of QPD. Figure 1 depicts the
embedding process when the message M = 1 is transmitted: first, the correlation between the host signal x and
a pseudorandom vector s such that ||s||2 = L is computed yielding a scalar value rx

rx =

L
∑

k=1

x[k]s[k]. (9)

The correlation value rx is quantized using an Euclidean scalar quantizer QΛ(·) of step ∆, with its centroids
defined by the points in the shifted lattice Λ , ∆Z + ∆/2 (the offset ∆/2 is chosen by symmetry reasons). Let
ρ = (QΛ(rx) − rx), the watermarked vector is given by y = x + w, with w = 1

L
ρs.

For the given projection function and vector s, the embedding distortion (2) is2 Dw =
σ2

Rw

L2 , being σ2
Rw

the
variance of the quantization error in the projected domain, given by

σ2
Rw

=

∫ ∞

−∞
(Q(rx) − rx)

2
fRx

(rx)drx =
∞
∑

i=−∞

∫ (i+1)∆

i∆

(

i∆ +
∆

2
− rx

)2

fRx
(rx)drx

=

∞
∑

i=−∞

∫ ∆

0

(

∆

2
− rx

)2

fRx
(rx + i∆)drx. (10)

The detection function is depicted in Figure 2. In quantization-based detection, the evaluation of the likeli-
hood ratio is difficult, so we propose a suboptimal detection based on the thresholding of the quantization error
resulting of applying the quantizer QΛ(·) to the cross-correlation rz =

∑L
k=1 z[k]s[k], that is

dQPD(rz) ,

{

1, |QΛ(rz) − rz| ≤ T
0, |QΛ(rz) − rz| > T

(11)

where T , as in the case of spread-spectrum, can be varied to adjust the operating point of the detector, and
dQPD(rz) ≡ M̂ . The resulting detection regions are shown in Figure 3-a. The performance of the system is
assessed by means of the probabilities of false alarm (Pf ) and missed detection (Pm), which in this case are
defined as

Pf = Pr{M̂ = 1|H0} = Pr{|QΛ(rz) − rz| ≤ T |H0} (12)

Pm = Pr{M̂ = 0|H1} = Pr{|QΛ(rz) − rz| > T |H1} (13)

3.1. Performance under AWGN attacks

The to-be-solved hypothesis test is the same as that of Section 2. In order to calculate (12) and (13) we must take
into account the probability density function of the received signal z, which will depend on what is the hypothesis
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Figure 2. Detection function in QPD.

in force. First, we will accomplish the calculation of the probability of false alarm: under the hypothesis H0,
due to the linearity of the projection function, we can write

rz =
L
∑

k=1

z[k]s[k] =
L
∑

k=1

x[k]s[k] +
L
∑

k=1

n[k]s[k] = rx + rn. (14)

By resorting to the Central Limit Theorem (CLT) it is possible to show that, for the given projection function
and a wide variety of host pdf’s, rx can be accurately modeled by a Gaussian pdf with variance σ2

Rx
= Lσ2

X ;
obviously, the projection of the Gaussian noise is also Gaussian, with variance σ2

Rn
= Lσ2

N . Thus, we can
conclude that fRz

(rz|H0) = N (0, σ2
Rx

+ σ2
Rn

). Hence, the probability of false alarm is given by

Pf =

+∞
∑

i=−∞

∫ ∆(i+ 1
2 )+T

∆(i+ 1
2 )−T

fRz
(rz|H0)drz =

+∞
∑

i=−∞



Q





∆(i + 1/2) − T
√

σ2
Rx

+ σ2
Rn



− Q





∆(i + 1/2) + T
√

σ2
Rx

+ σ2
Rn







 . (15)

The pdf of the watermarked signal when hypothesis H1 is in force is

fRz
(rz|H1) = fRy

(ry) ∗ fRn
(rn), (16)

where ∗ denotes the convolution operator, fRn
(rn) = N (0, σ2

Rn
), and fRy

(ry) is the pdf of the projected water-
marked signal in the absence of noise, given by

fRy
(ry) =

+∞
∑

i=−∞
δ(ry − ∆(i + 1/2))p(ci), (17)

where δ denotes the Dyrac’s delta function, and p(ci) is the probability of the i-th centroid, which under the
assumption of Gaussian rx, is

p(ci) = Q

(

i∆

σRX

)

− Q

(

(i + 1)∆

σRX

)

. (18)

Thus, the probability of missed detection reads as

Pm = 1 −
+∞
∑

i=−∞

∫ ∆(i+ 1
2 )+T

∆(i+ 1
2 )−T

fRz
(rz|H1)drz = 1 −

+∞
∑

i=−∞

[

Q

(

i∆ − T

σRn

)

− Q

(

i∆ + T

σRn

)]

. (19)

Notice that, in the absence of noise, the probability of missed detection would be null. In Figure 3-b, the
ROC for QPD and spread spectrum (SS) are represented, showing that QPD outperforms SS by several orders of
magnitude; these results were obtained by setting DWR = DNR = 20 dB, but similar conclusions can be drawn
from any other typical values for this variables. Figure 4 shows a comparison between the detection statistics
in QPD and SS operating under the same conditions. It can be seen that, for sufficiently large values of L, the
probability that rx is quantized to other centroids than the closest ones to the origin is negligible2, 10; the reason
for this behavior of QPD is the decreasing of the effective value of the DWR in the projected domain: if we
denote by DWRp the document to watermark ratio in the projected domain, recalling the expressions of Dw

and σ2
RX

it is easy to realize that DWRp = DWR − 10 log10(L); for instance, for DWR = 30 dB and L = 1000,
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Figure 3. Detection regions for QPD (a), and ROC curves for QPD and SS under AWGN attacks, with DWR = DNR
= 20 dB and different values of L (b).

we have DWRp = 0 dB. (which is the case in Figure 4-c). When the two centroids closest to the origin are the
only with non-negligible occurrence probability, the detection statistics strongly resemble those of SS, but the
host-rejecting feature of QPD reveals its advantage over SS: in SS, the variance of the detection statistics is the
same whatever the received signal is watermarked or not, whereas in QPD the variance of the detection statistic
under hypothesis H1 only depends on the noise power.

3.2. Performance under fixed gain attacks

The fixed gain attack accounts for the addition of Gaussian noise plus scaling by an unknown gain factor g.
This attack is the Achilles’ heel of traditional quantization-based methods, but note that any correlation-based
method (as it is also the case of SS) is affected by fixed gain attacks, especially when the decision threshold is
not set to 0. The new hypothesis test is the following

H0 : z = gx + n

H1 : z = g(x + w) + n

Clearly, this new scenario encompasses that analyzed in Section 3.1. The probability of false alarm Pf is given
by Equation (15), but taking into account that now σ2

Rx
= Lg2σ2

X . For the calculation of the probability of
missed detection, notice that the pdf of the received signal can be written exactly as in Equation (16), but in
this case the expression of fRy

(ry) is

fRy
(ry) =

+∞
∑

i=−∞
δ(rz − g∆(i + 1/2))p(ci), (20)

where, again, p(ci) is given by (18). The probability of missed detection is

Pm =

+∞
∑

i=−∞
p(ci)Pm|ci

, (21)

with Pm|ci
= 1 − Pd|ci

, and

Pd|ci
=

+∞
∑

k=−∞

∫ ∆(k+ 1
2 )+T

∆(k+ 1
2 )−T

fRN
(rz − g∆(i + 1/2))drz

=

+∞
∑

k=−∞

[

Q

(

∆(k + 1/2) − T − g∆(i + 1/2)

σRn

)

− Q

(

∆(k + 1/2) + T − g∆(i + 1/2)

σRn

)]

. (22)
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Figure 4. Comparison of the detection statistics in QPD and SS, for DWR = 30 dB, DNR = 20 dB.

Figure 5 shows the ROC for several values of the gain factor g, evidencing a significant degradation of performance
for moderately high values of g. Notice that now, if g 6= 1, a null probability of missed detection is no longer
guaranteed in the absence of AWGN attacks.

3.3. Generalized QPD

QPD can be generalized2 so that quantization takes place in a vector subspace. The projection of the host signal
into a D-dimensional subspace can be achieved by means of a L × D projection matrix S = (s1, s2, . . . , sD) as
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Figure 5. ROC for fixed gain attack, with DWR = DNR = 20 dB.

follows
rx = ST x = (sT

1 x, sT
2 x, . . . , sT

Dx)T = (rx[1], rx[2], . . . , rx[D])T . (23)

The watermark in the projected subspace is given by

rw = QD(rx) − rx, (24)

where QD is any D-dimensional quantizer. The vector w is obtained by projecting rw onto another subspace
with the same dimensionality that the host vector, i.e. L, by means of a L × D unprojection matrix U

w = Urw, (25)

so the embedding distortion in this case is

Dw =
1

L

L
∑

k=1

E







(

D
∑

i=1

ui[k]rw[i]

)2






, (26)

where ui[k] is the k-th element in the i-th column of U. Matrices S and U can be whatever matrices which fulfill
the following condition, necessary to ensure that ST w = rw

ST U = ID, (27)

where ID is the D-th order identity matrix. Clearly, there exist infinite matrices U which fulfill that condition,
but we are interested in finding the matrix U such that, given S, the embedding distortion (26) is minimized.
Such matrix is given by

U = S(ST S)−1. (28)

The condition (27) can be easily satisfied if S is chosen as a matrix with orthogonal columns. Furthermore,
the use of a matrix S with these characteristics considerably simplifies the theoretical analysis which will be
carried out in the following; to this end, we choose the simplest form of orthogonality, which consists of dividing
the set of indices L = {1, 2, . . . , L} in D non-overlapping subsets Li of cardinality L/D∗, in such a way that

si[k] =

{

m[k], k ∈ Li

0, otherwise,
(29)

∗We assume that L/D is an integer value
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where m is any L-dimensional vector such that, for the resulting si, ||si||2 = L/D. Finally, for the given matrix
S, the unprojection matrix is simply given by U = D

L
S. The quantization of rx may be performed by means of

any D-dimensional quantizer; for our analysis we will consider the simplest approach, i.e. the use of a quantizer
consisting of the D-Cartesian product of a uniform scalar quantizer. Due to the particular structure imposed to
matrix S, we have that† Rz ∼ N

(

0, L
D

σ2
XID

)

and Rn ∼ N
(

0, L
D

σ2
NID

)

. The D-dimensional detection regions
depend on the formulation of the detection function, thus providing an additional degree of freedom. We propose
two different detection functions, defined as follows

dAND(rz) ,

{

1, |QΛ(rz[i]) − rz[i]| ≤ T for all i
0, otherwise

dOR(rz) ,

{

1, |QΛ(rz[i]) − rz[i]| ≤ T for at least one i
0, otherwise.

Note that the dAND function yields detection regions (namely, AND regions) consisting of D-dimensional non-
overlapping hypercubes, but the OR regions resulting from the dOR function are more involved. As an illustrative
example, the resulting detection regions for D = 2 are illustrated in Figure 6. Needless to say that these two
detection functions are equivalent in scalar quantization. The probabilities of false alarm and missed detection
for the D-dimensional AND region are given by

Pf,AND(D) = PD
f , Pm,AND(D) = 1 − (1 − Pm)D, (30)

whereas for the OR region are the following

Pf,OR(D) = 1 − (1 − Pf )D, Pm,OR(D) = PD
m . (31)

In (30) and (31), Pf and Pm stand for the expressions in the unidimensional case, namely (12) and (13),
respectively. The OR function provides poorer performance, but it may be interesting from a security perspective,
as we will see in Section 4. Figure 7 shows the resulting ROC’s for different dimensionalities using the AND
function; it can be seen that, given one of the probabilities, Pf or Pm, there exists an optimum number of
dimensions D∗ which minimizes the other probability. The calculation of D∗ is rather involved, since it depends
on the DWR and the DNR, and it will not be accomplished in this paper. Although in our analysis we have
assumed the particular form of orthogonality given by (29), the results are essentially the same for any general

†Note that the value of L/D must be large enough to assure the validity of the CLT.
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Figure 7. ROC for AND region and different dimensionalities of the projection subspace, with DWR = 20 dB and
L = 1000.

case of orthogonality. Figure 8-a compares the theoretical results with numerical ones by means of Monte Carlo
simulations using matrices S whose elements are i.i.d. Gaussian random variables‡.

Orthogonality in the columns of S is desirable to achieve the best performance possible; however, as we will
discuss in Section 4, the introduction of a certain correlation between the components of the projected signal
may be interesting from a security point of view. The obtention of a specified covariance matrix in the projected
domain is very simple: let R be the D × D desired covariance matrix whose eigen-decomposition is

R = PΛPT . (32)

If S is an orthonormal matrix and we use the projection matrix defined as

S′
, SΛ

1
2 PT , (33)

then it is easy to show that Rrx
= E{rxr

T
x } = σ2

XR, with rx = S′T x. Figure 8-b shows numerical results by
means of Monte Carlo simulations for different degrees of correlation between components in 2-D quantization,
with stronger correlations yielding poorer performance.

4. SECURITY

The concept of security in watermarking is still diffuse, in the sense that there is no full agreement on what are
the relevant variables to assess the security of a system. For people working in the field of cryptography it is well
known the Kerckhoff’s principle,11 which claims that the security of a cryptographic system must rely solely on
the secret key; the translation of this principle to our scenario implies that all parameters of the algorithm (∆, T ,
L, D and the chosen detection function, in our case) are publicly known, with exception of the projection matrix
S, which can be made pseudorandom to play the role of the secret key. This way, the security analysis of this
section will deal with attacks (obviously intentional) whose aim is to gain knowledge of the secret matrix S. This
approach allows to make a clear distinction between attacks to security and attacks to robustness, which were
addressed in Section 3. Another approach to the assessment of watermarking security relying on these concepts
can be found in.4

Although a great amount of threats to security exist, much of the researchers’ attention has been paid to the
category of oracle attacks, i.e. those attacks which try to exploit the availability of detection devices (usually in

‡Note that, with i.i.d. Gaussian elements, the columns of S will be almost perfectly orthogonal for moderately high
values of L.
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the form of a black box). We will focus on the so-called sensitivity attack ,12 which consists in modifying the
signal at the detector input in a component-by-component basis, in order to estimate the points on the boundary
of the detection region; when this region is given by a hyperplane, which is the case of SS detection based on linear
correlation (4), the attack succeeds when L different points of the boundary are correctly estimated; moreover,
this is equivalent to estimating the secret vector v of Equation (1). The complexity of a successful attack for
SS-based methods have been shown to be O(L).13 Most of the proposed approaches in the literature5, 7, 8 to
overcome this problem rely on the construction of more involved detection regions, much of them parameterized
in a non-linearly fashion, which in many cases may yield hard-to-implement schemes. What we propose here is to
take advantage of the properties of the generalized QPD scheme described in Section 3.3 to construct detection
regions based on the combination of linearly parameterized regions. The advantage of this approach is that the
detection region can be progressively complicated just by increasing the dimensionality of the projected subspace,
but still allowing the design of implementable schemes from a practical point of view.

It its important to note that classical sensitivity attacks performed for spread spectrum will not work well for
QPD, since that algorithm is designed assuming that there is only a single boundary to estimate. For example,
in the simplest form of QPD, with scalar quantization (D = 1), the detection function strongly resembles that
of SS, but the boundary of the detection region in QPD (Figure 3-a) is multiple, since it is defined by shifted
versions of the hyperplane orthogonal to the secret vector s. In this section, a new sensitivity attack suited to
this new scenario is proposed. The main steps of the algorithm are outlined in the following lines.

The proposed algorithm tries to estimate a projection vector in the AND region case or a linear combination
of the projection vectors in the OR region case. In fact, in both cases it tries to compute the minimum-normed
vector which modifies the watermarked vector in such a way that the output of the detector is M̂ = 0.

The algorithm consists in the addition of an attacking vector α to the watermarked signal y. This α is
initially set to an observation of a random variable which is iteratively modified. In the k-th iteration, one of Lβ

possible modification vectors βk mod Lβ

§, scaled by τk (τ0 is a parameter of the algorithm), is chosen, and added

and subtracted to the attacking vector, yielding γ+
k = α + τkβk mod Lβ

and γ−
k = α − τkβk mod Lβ

. The two
resulting vectors are scaled to be in the boundary of the detection region:

δ+
k = a+

k γ+
k (34)

with a+
k the minimum positive number such that dAND(y + δ+

k ) = 0 or dOR(y + δ+
k ) = 0, and equivalently for

δ−
k . If min(||δ+

k ||, ||δ−
k ||) < ||α|| (but always in the first iteration), then α = arg minρ={δ+

k
,δ−

k
} ||ρ||.

§In our implementation we have chosen that the modification is component-by-component, but it could also be done
by choosing a random vector for the modification.



If α is not modified for any βk mod Lβ
, the value of τk is reduced¶; otherwise, τk+1 = τk. The value of τ0

will determine the rate of convergence of the algorithm. The computation of a+
k (or a−

k ) is performed by a first

step multiplying the γ+
k (γ−

k ) by a constant (2 in the implementation) until the detector output is M̂ = 0. After
that, the boundary is estimated by a bisection algorithm.

When successful, the algorithm provides one vector y + α at the boundary of the detection region which is
at minimum distance of the watermarked vector y. For the AND region, the vector α is co-linear with one of
the columns of S; for the OR region, α is a linear combination of the columns of S. Note that, due to the nature
of the algorithm, the addition of a random dither signal in the projected domain will not provide any additional
security to the system.

To quantitatively assess the security of our system, we must first define some measures:

• For the AND region, we define

ηAND(α,S) , max
i=1,...,D

{ |αT si|
||α|| · ||si||

}

, (35)

where si is the i-th column of the projection matrix S. Notice that (35) can be interpreted as the cosine
of the minimum angle formed by α and the columns of S, and gives a measure of the co-linearity between
α and the column of S that the algorithm tried to estimate. Similarly, we can define for the OR region

ηOR(α,S) , max
i=1,...,2D

{ |αT vi|
||α|| · ||vi||

}

, (36)

where vi is one of the 2D possible linear combinations obtained by multiplying the columns of S by ±1.

• Let us also define

ϕ(α) , 20 log10

( ||α||
K

)

, (37)

where K is the norm of the minimum-normed vector which moves the marked signal outside of the detection
region. Note that, for the AND region, K = T , but for the OR region we have K =

√
DT . Equation

(37) is related to the saving in the power necessary to perform a successful attack (i.e. generating an
unwatermarked signal) when the output of the algorithm is taken into account.

With the definitions given by (35), (36) and (37), we can give two alternative, although related, definitions
of security level :

1. the number of iterations N∗ of the algorithm which are necessary to bring the value of (35) or (36),
depending on the considered detection function, above a certain threshold;

2. the number of iterations N∗ of the algorithm necessary to bring the value of (37) below a certain threshold.

Figure 9 shows the results for the AND regions: as can readily be seen, the larger D, the better the estimate
for a given number of iterations of the algorithm. This seems to be somewhat contradictory, but bear in mind
that the probability of finding a correct projection direction is increasing with D. Anyway, the algorithm succeeds
in finding a correct direction regardless the value of D. The results for the OR region are represented in Figure
10. The situation with respect to the AND region is radically different: the estimation becomes more difficult
for increasing values of D, and even for a large number of iterations, the estimation is really poor, which can
be attributed to the characteristics of the to-be-minimized function (the norm of vector α). At this point, we
want to remark that the classical sensitivity attack (i.e., intended for SS) applied to QPD in the simplest case
of D = 1 yielded really poor results (ηAND = ηOR < 0.1).

¶In our implementation, Lβ = L and τk+1 = 0.7τk.
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Figure 9. Security levels for the AND region (L = 1024).
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Figure 10. Security levels for the OR region (L = 1024).

Be aware that the proposed algorithm provides a method to unwatermark watermarked signals, but it is not
sufficient to generate valid watermarked signals, because the it is only aimed at disclosing one secret vector or a
linear combination of all of them, depending on the detection function. To disclose the whole projection matrix,
the algorithm should be modified to search only in the remaining possible directions. For example, considering
an AND detection function, if the attacker knows that the projection matrix is orthogonal, once one column is
disclosed, the algorithm proposed here can be used to estimate the other ones by restricting the modifying vectors
to directions orthogonal with the already disclosed one. Of course, this simple adaptation of the algorithm is
not suitable to perform a complete attack when OR functions are considered. Taking into account the previous
adaptation, we want to note that the use of non-orthogonal projection matrices can be interesting to improve
security.

5. CONCLUSIONS AND FURTHER WORK

In this paper, a novel method for detection in quantization-based watermarking has been presented and analyzed.
The method is based on the quantization of a projection function applied to the host signal, and it can be adapted



to the requirements of a wide variety of scenarios by an appropriate selection of its parameters, which allow to
select the desired levels of robustness and security, but keeping always in mind the existence of a trade-off between
these two quantities, in the sense that their simultaneous maximization, although desirable, is not possible. The
most remarkable features of this new method are its great improvement in performance compared to traditional
spread spectrum methods, and the high security level against oracle-like attacks provided by the the combination
of the OR detection function with a moderately high number of dimensions in the projected domain.

Although the results presented in this paper are very promising, a lot of work remains to be done. Concerning
robustness, the optimization of the number of dimensions of the projected subspace, and the study of the
threshold in QPD in terms of the Neyman-Pearson criterion appear as interesting future lines to explore. Finally,
concerning the security aspects, we are mainly interested in the refinement of the proposed sensitivity attack for
the estimation of the whole projection matrix, so as to provide a more exact security level.
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