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ABSTRACT

The problem of asymptotically optimum watermark detection and embedding has been addressed in a recent
paper by Merhav and Sabbag where the optimality criterion corresponds to the maximization of the false negative
error exponent for a fixed false positive error exponent. In particular Merhav and Sabbag derive the optimum
detection rule under the assumption that the detector relies on the second order statistics of the received signal
(universal detection under limited resources), however the optimum embedding strategy in the presence of attacks
and a closed formula for the negative error exponents are not available. In this paper we extend the analysis by
Merhav and Sabbag, by deriving the optimum embedding strategy under Gaussian attacks and the corresponding
false negative error exponent. The improvement with respect to previously proposed embedders are shown by
means of plots.

1. INTRODUCTION

About one decade ago the watermarking and data hiding researching community was surprised by the rediscovery
of an important result by Costa,1 and its application to watermarking field.2, 3 Costa’s result is that the capacity
of the additive white Gaussian noise (AWGN) channel with an additional independent interfering signal, known
non–causally to the transmitter, is not reduced by the lack of availability of this knowledge at the decoder. When
applied in the realm of watermarking and data hiding systems, this means that host signal (playing the role of
the interfering signal), should not actually be considered as an interference since the embedder (the transmitter)
can incorporate its knowledge upon generating the watermarked signal (the codeword). The methods based
on that paradigm, usually known as side-informed methods, can even asymptotically eliminate (under some
particular conditions) the interference due to the host signal, that was previously believed to be inherent to any
watermarking system.

From the rediscovery of Costa’s result, numerous works can be found in the literature proposing practical
implementations of this paradigm for the so-called multibit watermarking,3–6 where the decoder estimates which
message among several messages in a given message set has been transmitted. Nevertheless, far less attention has
been devoted to the problem of deciding on the presence or absence of a given watermark in the observed signal.
In fact, for many of the recent works that deal with this binary hypothesis testing problem, usually known as
one-bit (or also zero-bit) watermarking, the watermarking signal is not dependent on the the host signal.7–9 To
the best of our knowledge, exceptions to this statement are the works due to Cox et al.,2, 10 Liu and Moulin,11
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Merhav and Sabbag12 and Furon.13 In the next few paragraphs, we briefly describe the main results in these
works.

Cox et. al.2, 10

In their paper, Cox et. al.2 introduce the paradigm of watermarking as a communication system with side
information at the embedder. Based on this paradigm and considering a statistical model for the attacking vectors
(based on the correlation between the noise and the watermarked signal), the authors propose a detection rule
based on the Neyman-Pearson test. Nevertheless, the detection region obtained this way is replaced by the

union of two hypercones; mathematically
|qt·u|

||q||||u|| ≥ τ(α), with q being the received signal, u the watermark,

(x)t the transpose of x, qt ·u the inner product of q and u, α the bound on the probability of false positive, and
τ(α) the decision threshold, which will be a function of α. In a successive paper, Miller et al. also compare the
performance of the strategy derived there with other typical embedding strategies.10

Liu and Moulin11

In Liu and Moulin’s paper11 the error exponents of both false positive and false negative probabilities are
studied for the one-bit watermarking problem, both for Additive Spread Spectrum (Add-SS) and a Quantization
Index Modulation (QIM) based techniques. In this case, the constraint on the embedding distortion is imposed
on the mean Euclidean norm of the watermarking signal, and the unwatermarked signals are also considered to
be attacked. For Additive Spread Spectrum the exact expressions for the error exponents of both false positive
and false negative are computed; for QIM the authors provide bounds to those values. The obtained results show
that although the error exponents for QIM are larger than those obtained for public Add-SS (where the host
signal is not available at the detector), they are still smaller that those computed for private Add-SS (where the
host signal is also available at the detector side). This seems to indicate that the interference due to the host is
not completely removed.

Merhav and Sabbag12

Merhav and Sabbag12 dealt with the problem of one-bit watermarking from an information theoretic point
of view. The authors look for the optimal embedder and detector, in the sense of minimizing the probability of
false negative while the exponential decay rate of the probability of false positive is larger than or equal to a
given constant λ, under a certain limitation on the kind of empirical statistics gathered by the detector. Another
important feature of Merhav and Sabbag’s analysis is that the statistics of the host signal are assumed to be
unknown (thus making this analysis very practical given that in real systems this is often the case). For the
continuous case, it is shown that a detector based on the normalized correlation between the received signal y

and the deterministically known watermark u, i.e.
(ut·y)2

||y||2·||u||2 , is optimal for the case of Gaussian distributed

host and attack–free scenario. Merhav and Sabbag also derive the optimal embedding strategy for the no-attack
case and find a lower bound on the false negative error exponent in this case. Furthermore, the optimization
problem is reduced to an easily implementable 2D problem yielding a very simple embedding rule. In the same
paper, Merhav and Sabbag study the scenario where the watermarked signal is attacked, using the concept of
strongly exchangeable attack channels. In this case, however, closed formulas for the error exponents and the
optimum embedding rule are not available due to the complexity of the obtained optimizations.

Furon13

In a very recent work13 Furon uses the Pitman-Noether theorem14 to derive the form of the best detector
for a given embedding function, and the best embedding function for a given detection function; by combining
both of them, a differential equation is obtained, that the author refers to as “fundamental equation of zero-bit
watermarking”. Compared with the framework introduced by Merhav and Sabbag, two important differences
must be highlighted:

• For Furon13 the watermarking signal is constrained to be just a function of the host signal which is scaled
to yield a given embedding distortion. This means that the direction of the watermarking signal can not
be changed as a function of the allowed embedding distortion.



• One of the conditions that must be verified in order to apply the Pitman-Noether theorem is that the power
of the watermarking signal has to go to zero when the dimensionality is increased. In fact, the author
hypothesizes that this is the reason why neither the absolute normalized correlation nor the normalized
correlation are solutions to the fundamental equation.

In this paper we extend the analysis carried out by Merhav and Sabbag to derive the optimum embedding
strategy for Gaussian host and Additive White Gaussian attack. In order to do so, an exact expression for
the false negative error exponent is derived in Section 2; then, this expression is maximized as a function of
the watermarking signal in Section 3. As a particular case of the obtained result, the error exponent of the
noiseless case is computed in Section 4, comparing the currently proposed exact results with previous bounds in
the literature. Finally, the main conclusions of this work are summarized in Section 5.

2. PROPOSED FRAMEWORK AND COMPUTATION OF FALSE NEGATIVE
PROBABILITY

We denote scalar random variables with capital letters (e.g., X) and their realizations with lowercase letters (e.g.
x). The same notation convention applies to n-dimensional random vectors and their outcomes, denoted by bold
letters (e.g. X, x). The ith component of a vector X is denoted as Xi. The probability density function (pdf)
of a random variable A is denoted by fA(a).

Let u be the watermark and x the host sequence, both of them n-dimensional vectors; u is considered to be a
binary vector whose components belong to {−1,+1}, while the components of x are real-valued. The embedder
will produce a watermarked sequence y = x + w, with w, the so called watermarking signal, being a function
of x and u. The embedder must keep the embedding distortion de(x,y) = ||x − y||2 within a prescribed limit,
i.e., de(x,y) ≤ nDe, where De > 0 is the maximum allowed distortion per dimension. Note that this embedding
distortion constraint must be satisfied for every value of the host signal and watermark. The watermarked signal
could be manipulated by an attacker trying to make the watermark detection more difficult. In this paper, the
attacker is modeled by a discrete–time additive white Gaussian channel whose noise variance is σ2

Z ; the attacking
signal is denoted by z, and the attacked signal, which will be the detector observation, by s = y + z, that takes
values in R

n.

R
n is partitioned into two complementary regions, Λ and Λc, where in the former (usually known as detection

region), the detector decides that the watermark is present and in the latter, it decides that it is absent. In this
work we assume that the detector knows the watermark signal u, whereas it does not know the host signal x.
The design of the detection region was studied by Merhav and Sabbag.12

The performance of one-bit watermarking is usually measured using the false positive and false negative
probabilities, defined as the probability of deciding that the received signal is watermarked when it is not (Pfp),
and the probability of deciding that the received signal is not watermarked when it is actually watermarked (Pfn),
respectively. As n grows without bound, these probabilities normally decay exponentially rapidly. Accordingly,
the corresponding exponential decay rates of these error probabilities, i.e. the error exponents, are defined as

Efp , lim
n→∞

− 1

n
lnPfp,

Efn , lim
n→∞

− 1

n
lnPfn.

The main aim of this paper is to determine the optimum choice of the watermarking signal w for the case of
i.i.d. Gaussian host with variance σ2

X , where optimality corresponds to the maximization of the false negative
error exponent (Efn) in the presence of an i.i.d. AWGN attack z with variance σ2

Z , subject to a guaranteed
false positive exponent of at least λ, where λ is a prescribed positive real. Note that our setup assumes that
the attacker knows whether the signal he is observing is watermarked or not; this seems to be a reasonable
assumption, as he usually knows the source of the observed signals, being able to guess if the observed signal is
watermarked or not. Practical examples of this discussion could be attacker’s personal photo database, where
he knows that the photos are not watermarked, on one hand, and the photos available in the webpage of a
news agency, that will be watermarked with a very high probability, on the other hand. Therefore, the attacker



will focus his attack only on the watermarked contents. Given that the detection rule proposed by Merhav and
Sabbag12 is derived as a function of the false positive probability, therefore depending on the statistics of non-
watermarked contents, it will not be modified when just the watermarked signals are attacked. The mentioned
rule is based on the comparison of squared normalized correlation between the received signal and the watermark,

i.e. (st·u)2

||s||2||u||2 , with a threshold that depends on the probability of false positive. The methodology we follow for

our derivation is the following: we fix w, then we calculate Efn, and finally we maximize it to find the optimum
watermarking signal w.

In order to simplify the subsequent analysis, it is convenient to introduce an ad hoc coordinate system for
which the only components of u, x and w are along the first three coordinate axes. In particular, given u, x and w,
we apply the Gram-Schmidt orthogonalization procedure to u, x and w, and fix the other directions arbitrarily.
By remembering that the optimum detection region derived in Merhav and Sabbag’s paper12 corresponds to the
set of vectors forming an angle lower than a limit angle β (with β ≤ arcsin(e−λ)) with the watermark direction
u, the optimum detection rule can be written as

(x1 + w1 + z1)
2

(x1 + w1 + z1)2 + (x2 + w2 + z2)2 + (w3 + z3)2 +
∑n

j=4 z2
j

< cos2(β), (1)

where w2
1 + w2

2 + w2
3 ≤ nDe, and

x2
1 = n · r · sin2(α), (2)

x2
2 = n · r · cos2(α), (3)

where r ,
||x||2

n , and α , arcsin
(

<x,u>
||x||·||u||

)

. In order to also make explicit the growth of the embedding

distortion when the number of dimensions is increased, we define v = w√
n
, so ||v||2 ≤ De. In this way, a false

negative event occurs if

(x1 +
√

nv1 + z1)
2

(

1

cos2(β)
− 1

)

− (x2 +
√

nv2 + z2)
2 − (

√
nv3 + z3)

2

= (
√

nr sin(α) +
√

nv1 + z1)
2

(

1

cos2(β)
− 1

)

−
[√

nr cos(α) +
√

nv2 + z2

]2 − (
√

nv3 + z3)
2 <

n
∑

j=4

z2
j = (n − 3)q, (4)

where q , 1
n−3

∑n
j=4 z2

j .

Defining

T1 , (
√

r sin(α) + v1)
2

(

1

cos2(β)
− 1

)

−
[√

r cos(α) + v2

]2 − v2
3 , (5)

and

T2 , −[z2
1 + 2z1(

√
nr sin(α) +

√
nv1)]

(

1

cos2(β)
− 1

)

+ z2
2

+ 2z2

[√
nr cos(α) +

√
nv2

]

+ z2
3 + 2

√
nv3z3, (6)

the condition for a false negative can be rewritten as

nT1 < (n − 3)q + T2, (7)

or equivalently

q >
nT1

n − 3
− T2

n − 3
. (8)



Recalling that pdf of (n−3)Q
σ2

Z

is a χ2 distribution of n − 3 degrees of freedom, we can write

fQ(q) =







(

1
2

)(n−3)/2 1

Γ(n−3
2 )

(

(n−3)q
σ2

Z

)(n−3
2 −1)

e
− (n−3)q

2σ2
Z , if q ≥ 0

0, elsewhere
. (9)

For the random variable R, corresponding to the squared Euclidean norm of the host signal normalized by the
number of dimensions, nR

σ2
X

follows a χ2 distribution with n degrees of freedom, so we can write

fR(r) =







(

1
2

)n/2 1

Γ(n
2 )

(

nr
σ2

X

)(n
2 −1)

e
− nr

2σ2
X , if r ≥ 0

0, elsewhere
. (10)

Furthermore, if we denote by Ψ the random variable whose samples are the values of α, we can see that the
probability distribution of Ψ is

P (Ψ ≤ α) = 1 − An(π/2 − α)

2An(π/2)
, (11)

where An(θ) is the surface area of the n-dimensional spherical cap cut from a unit sphere about the origin by a
right circular cone of half angle θ, i.e.

An(θ) =
(n − 1)π(n−1)/2

Γ
(

n+1
2

)

∫ θ

0

sin(n−2)(ϕ)dϕ. (12)

From the last formula, it is easy to see that the pdf of Ψ is given by

fΨ(α) =
∂P (Ψ ≤ α)

∂α
=

2Γ
(

n
2

)

√
πΓ
(

n−1
2

) cosn−2 (α) . (13)

Therefore, we can write the probability of false positive as

Pfn =

∫ π/2

α=−π/2

∫ +∞

r=0

∫ +∞

z3=−∞

∫ +∞

z2=−∞

∫ +∞

z1=−∞

∫ +∞

q=max(0,
nT1
n−3−

T2
n−3 )

(

1

2

)(n−3)/2

1

Γ
(

n−3
2

)

(

(n − 3)q

σ2
Z

)(n−3
2 −1)

e
− (n−3)q

2σ2
Z

e
− z2

1
2σ2

Z

√

2πσ2
Z

e
− z2

2
2σ2

Z

√

2πσ2
Z

e
− z2

3
2σ2

Z

√

2πσ2
Z

(

1

2

)n/2
1

Γ
(

n
2

)

(

nr

σ2
X

)(n
2 −1)

e
− nr

2σ2
X

2Γ
(

n
2

)

√
πΓ
(

n−1
2

) cosn−2 (α) dqdz1dz2dz3drdα. (14)

Considering that limn→∞
nT1

n−3 −
T2

n−3 = T1, since T2 grows sublinearly with the dimensionality of the problem,
we can replace the inner integral as below:

Pfn =

∫ π/2

α=−π/2

∫ +∞

r=0

∫ +∞

z3=−∞

∫ +∞

z2=−∞

∫ +∞

z1=−∞

∫ +∞

q=max(0,T1)

(

1

2

)(n−3)/2

1

Γ
(

n−3
2

)

(

(n − 3)q

σ2
Z

)(n−3
2 −1)

e
− (n−3)q

2σ2
Z

e
− z2

1
2σ2

Z

√

2πσ2
Z

e
− z2

2
2σ2

Z

√

2πσ2
Z

e
− z2

3
2σ2

Z

√

2πσ2
Z

(

1

2

)n/2
1

Γ
(

n
2

)

(

nr

σ2
X

)(n
2 −1)

e
− nr

2σ2
X

2Γ
(

n
2

)

√
πΓ
(

n−1
2

) cosn−2 (α) dqdz1dz2dz3drdα. (15)



Using the multidimensional version of Laplace’s approximation,15 one can conclude that

lim
n→∞

− 1

n
ln(Pfn) = min

(q,r,α)∈[max(0,T1(r,α)),∞)×[0,∞)×[−π/2,π/2]

1

2

[

q

σ2
Z

− ln

(

q

σ2
Z

)

− 1

]

+
1

2

[

r

σ2
X

− ln

(

r

σ2
X

)

− 1

]

− ln [cos (α)] , (16)

where the notation T1(r, α) tries to make evident the dependence of T1 with those variables.

3. FALSE POSITIVE ERROR EXPONENT AND OPTIMAL WATERMARKING
SIGNAL COMPUTATION

In order to devise the optimum embedding strategy we need to maximize the error exponent reported in equation
(16) as a function of v1, v2 and v3. Let us start by considering the dependence of the last formula with α; on one
hand, it is straightforward to see that − ln [cos (α)] is minimized when α = 0. On the other hand, T1 also depends
on α; given that the embedder is interested in maximizing T1, since in that way it is making smaller the interval
where the objective function can be minimized with respect to q, and changing the sign of any component of
the watermark does not affect the embedding distortion, it is straightforward to see that the sign of v1 and v2

will be such that v1 sin(α) ≥ 0, and v2 cos(α) ≤ 0. Therefore T1(r, α) is symmetrical with respect to α, and its
minimum is reached for α = 0. Summarizing, the minimum of (16) is obtained for α = 0. This implies that (16)
can be rewritten as

lim
n→∞

− 1

n
ln(Pfn) = min

(q,r)∈[max(0,T1(r)),∞)×[0,∞)

1

2

[

q

σ2
Z

− ln

(

q

σ2
Z

)

− 1

]

+
1

2

[

r

σ2
X

− ln

(

r

σ2
X

)

− 1

]

. (17)

Given that the objective function is convex with respect to (r, q), and the global minimum is at (σ2
X , σ2

Z), the
result of (17) will be 0 if (σ2

Z , σ2
X) ∈ [max(0, T1(r)),∞)× [0,∞), and, in any other case, the minimum will be in

the boundary of that region, i.e., the points of the form (T1(r), r), with r ≥ 0.

So far we have not paid attention to the choice of the optimal watermarking signal (w∗
1 , w∗

2 , w∗
3 , 0, · · · , 0).

The first question to be answered concerning this problem is the role that the watermarking signal plays in the
optimization described by (17). In this case, it is easy to see that the only influence of w∗ (or equivalently v∗)
on that formula is through T1. In other words, the embedder will choose the watermarking signal in order to
maximize T1, since in that way it will reduce the region where q can take values; of course this will imply an
increase on the obtained error exponent. Given that the considered value of α is 0, as it was explained before,
T1 can be now written like

T1 = v2
1

(

1

cos2(β)
− 1

)

−
[√

r + v2

]2 − v2
3 , (18)

that the embedder is trying to maximize constrained to

v2
1 + v2

2 + v2
3 ≤ De. (19)

It is obvious that any component of the watermarking signal along v3 will decrease T1, and will also reduce the
power available for spending in the other dimensions; therefore, v∗

3 = 0. On the other hand, T1 is monotonically
increasing with v2

1 , so its maximum will be achieved when v2
1 + v2

2 = De, allowing us to express T1 as†

T1 = v2
1

(

1

cos2(β)
− 1

)

−
[√

r −
√

De − v2
1

]2

. (20)

†Note that two solutions are possible for v2, namely v2 = ±
p

De − v2

1
. Here we took the negative one, since, as we

noted before, v2 and cos(α) must have opposite signs and given that −π/2 ≤ α ≤ π/2 cos(α) is always positive.



α

β
x

wmin
opt

wmin
seymin

opt

ymin
seyrob

opt

yrob
se

u

Figure 1. Geometrical interpretation of the problem, and comparison between the sign-embedder solution and the optimal
one. wmin

opt and wmin
se denote the minimum norm watermarking signals that produce signals in the detection region, for

both the optimal embedder and the sign embedder, respectively. The corresponding watermarked signals are ymin
opt and

ymin
se . Furthermore, one can see the watermarked signals for the optimal embedder and the sign embedder when part of

the embedding distortion can be used to gain some robustness to noise (denoted by yrob
opt and yrob

se ).

Computing the derivative of T1 with respect to v1, one obtains

∂T1

∂v1
= 2v1

(

1

cos2(β)
−

√
r

√

De − v2
1

)

, (21)

which is equal to 0 in the following cases






v1 = 0

v1 = −
√

De − r cos4(β)

v1 =
√

De − r cos4(β)

. (22)

Considering the second derivative, it is easy to see that for v∗
1 = ±

√

De − r cos4(β) one obtains local (in this
case in fact they are global) maxima of T1, yielding a value of v∗

2 = −√
r cos2(β), and a corresponding value of

T1 = De tan2(β) − r sin2(β). This gives us a first threshold for obtaining positive error exponents: if T1 ≤ 0,
then the optimization in (17) is performed on the region [0,∞)× [0,∞), so any pair (σ2

Z , σ2
X), even with σ2

Z = 0,
will be in the allowed region, yielding an error exponent equal to 0. The condition for this not to happen is
r ≤ De

cos2(β) .

When α = 0, which, as previously discussed, is the case that asymptotically sums up most of probability, we
can express the two components of the watermarked signal y,

y1 = ±
√

n
√

De − r cos4(β), (23)

y2 =
√

nr[1 − cos2(β)]. (24)

Interestingly, the watermarked signal lies in the plane defined by the watermark u and the host signal x (a
similar conclusion was reached by Merhav and Sabbag12in the attack-free case). The geometrical interpretation



of the embedding strategy is particularly interesting: the embedder spends part of the embedding distortion
scaling down the host signal (for reducing its interference), and then introduces as much energy as possible in
the direction of the watermark. In fact this is the reason why only the first component of the watermarked signal
depends on the allowed embedding distortion De. For the sake of illustration we compare the optimal embedding
and the sign-embedder. For the latter the watermarked signal is given by yse = x + sign(xt · u)

√
Deu, so the

watermarking signal can be written as wse = sign(xt · u)
√

Deu. Both strategies can be compared in Fig. 1,
where it is easy to see that the proposed strategy is that of minimizing the embedding distortion necessary for
obtaining a watermarked signal. Be aware that the proposed embedding technique could not be described by
the work due to Furon,13 as in that case the watermarking signal direction is just a function of the host signal,
and it is scaled for obtaining the desired distortion.

Once the optimum embedder has been found it is possible to compute the false negative error exponent of
the optimum embedder and compare it with the previous results available in the literature. Specifically the
expression we obtained is as follows:

Efn =
1

2

[

q∗

σ2
Z

− ln

(

q∗

σ2
Z

)

− 1

]

+
1

2

[

r∗

σ2
X

− ln

(

r∗

σ2
X

)

− 1

]

. (25)

with

r∗ =

(

Deσ
2
Z + 2σ2

Zσ2
X cos2(β) − Deσ

2
X sin2(β)

−
√

D2
eσ4

Z + 4σ4
Zσ4

X cos4(β) − 2D2
eσ2

Zσ2
X sin(β)2 + D2

eσ4
X sin4(β)

)

(

2(σ2
Z cos2(β) − σ2

X cos2(β) sin2(β))

)−1

, (26)

q∗ =

[

(

2Deσ
2
Z +

√

16σ4
Zσ4

X cos(β)4 + D2
e [2σ2

Z − σ2
X(1 − cos(2β))]

2
)

tan2(β)

− 2σ2
X sin2(β)

(

2σ2
Z + De tan2(β)

)

]

[

4
(

σ2
Z − σ2

X sin2(β)
)]−1

. (27)

In Figs. 2, 3 and 4 the behavior of the best achievable error exponent of the false negative error probability as a
function of the different parameters involved in its computation is depicted. As it was intuitively expected, the
false negative error exponent decreases when the false positive error exponent λ, the attacking signal variance
σ2

Z or the host signal variance σ2
X increase, while it increases for increasing values of De.

4. NOISELESS CASE

As a particular case of the studied framework we can derive the false negative error exponent for the noiseless
case (σ2

Z = 0). Computing the limit when σ2
Z goes to 0 in (26), (27) and (25) is easy to see that in the noiseless

case

lim
σ2

Z
→0

r∗ =
De

cos2(β)
=

De

1 − e−2λ
, (28)

lim
σ2

Z
→0

q∗

σ2
Z

= 1 (29)

lim
σ2

Z
→0

Efn =

{

0, , if De

1−e−2λ ≤ σ2
X

1
2

[

De

σ2
X

(1−e−2λ)
− ln

(

De

σ2
X

(1−e−2λ)

)

− 1
]

, elsewhere
. (30)



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

λ

E
fn

σ
Z
2 = 0

σ
Z
2 = 0.5

σ
Z
2 = 1.0

σ
Z
2 = 1.5

Figure 2. Error exponent of probability of false alarm, as a function of λ, for several powers of AWGN. σ2

X = 1 and
De = 2.

In view of (30) it is interesting to note that as long as De > σ2
X , Efn will be larger than 0 for any value of

λ; in fact, on those conditions, the asymptotic value of Efn when λ goes to infinity is

1

2

[

De

σ2
X

− ln

(

De

σ2
X

)

− 1

]

, (31)

coinciding with the result of [2. Corollary 1].

On the other hand, when De ≤ σ2
X another interesting point which reflects the goodness of the proposed

strategy is the computation of the range of values of λ where Efn > 0 can be achieved. In this case, the condition
to be verified is

De

1 − e−2λ
> σ2

X , (32)

implying that

λ < −1

2
ln

(

1 − De

σ2
X

)

= λ1, for De ≤ σ2
X , (33)

whereas for the sign embedder studied by Merhav and Sabbag12 the values of λ which provide Efn > 0 are those
such that

De

σ2
X

>
1 − e−2λ

e−2λ
, (34)

or, equivalently,

λ < −1

2
ln

(

σ2
X

De + σ2
X

)

= λ2, for all De. (35)
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Figure 3. Error exponent of probability of false alarm, as a function of σZ , for several embedding distortions. σ2

X = 1
and λ = 0.1.

Given that λ1 > λ2, larger values of error exponents of probability of false negative can be achieved for Efn > 0
in the current case. Finally, in Fig. 5 we can compare the bounds to the false negative error exponent for the
noiseless case proposed by Merhav and Sabbag,12 with its optimal value derived in the current work.

5. CONCLUSIONS

In this paper we extend the results presented by Merhav and Sabbag12 on the computation of the optimum
one-bit watermarking system, and the corresponding false negative and false positive error exponents, when the
resources available at the detector are limited and the host signal is Gaussian. We consider the case where the
watermarked signal is added an AWGN attacking signal, and compute in that case both the optimal embedding
strategy and the resulting false negative error exponents, constrained to verify a false positive error exponent. The
noiseless scenario can be seen as a particular case of this framework, so the obtained results can be particularized
for it; doing so, we compute for the first time the optimum false negative error exponent for the noiseless problem
previously studied in the literature, and compare it with the lower bounds proposed by Merhav and Sabbag.12
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