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Ph.D. programme in Signal Theory and Communications

Ph.D. Thesis
Submitted for International Doctor Mention

DETECTION OF IMAGE RESAMPLING
AND VIDEO ENCODING FOOTPRINTS

FOR FORENSIC APPLICATIONS

Author: David Vázquez-Pad́ın
Advisor: Fernando Pérez-González
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Abstract

Multimedia contents play an important role in our society. They serve as
a means of communication and can be used not only as an entertainment, but
also to inform or even to disseminate knowledge. The increasing relevance of
multimedia contents, such as digital images, audio, or video sequences, has been
tied to the development of editing software tools enabling their adjustment and
enhancement, but ultimately allowing an unskilled person to easily manipulate
them. As a consequence, their credibility as a source of information has been
questioned and an important concern has arisen regarding their authenticity.

With the aim of recovering trust on multimedia objects, this thesis presents
new techniques to detect and localize forgeries, but likewise to infer information
about the processing history undergone by a multimedia content. The design
of the proposed approaches is based on the theoretical analysis of characteris-
tic traces or footprints that emerge from the application of certain processing
to multimedia contents. In this thesis the derived research work encompassing
multimedia forensics is divided in two parts.

The first part tackles the study of the resampling operation applied when a
geometric transformation is performed to adapt a forged content to a genuine
scene. The modeling of the resampling operation is addressed from different per-
spectives, establishing connections between this problem and other similar ones
arising in distinct fields, and finally taking advantage of concepts from cyclosta-
tionarity theory, set-membership theory, or linear algebra, among others. We
design different strategies for resampling factor estimation to characterize the
particular transformation applied, providing estimates of the scaling factor or
the rotation angle. The case of resampling detection is also considered to unveil
the presence of resampling traces.

The second part of the thesis is focused on the forensic analysis of video com-
pressed sequences. We start exposing the presence of a new footprint stemming
from the double compression of video streams. By exploiting this feature, the
detection of double encoding and the estimation of part of the processing history
of a double compressed video are further investigated. Then, being capable of
extracting information from the first compression, we move to the localization of
intra-frame forgeries by applying a subsequent double quantization analysis.
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ocasións a posibilidade de colaborar en novos proxectos. Tamén quero darlle as
gracias a Dani por recibirme sempre dun xeito tan afable, preocupándose cons-
tantemente por min e animándome en momentos de fraqueza. Mención especial a
Gonzalo por compartir comigo boa parte do doutoramento no TSC-5 e tamén no
piso xunto con César, gracias a ambos. Finalmente, quero agradecer ao resto de
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Notation

The following notational conventions will be used along the chapters of this
thesis, unless otherwise stated: calligraphic letters are only used for denoting sets,
e.g., X . Common number sets, such as real numbers set or integer numbers set,
are represented with double line notation, i.e., R and Z, respectively.

Lowercase or uppercase letters refer to scalar variables, e.g., x or X. Boldface
letters are used for representing vectors and matrices. A column vector x consists
of Nx elements xi, where i ∈ {0, . . . , Nx − 1}, thus having x = (x0, . . . , xNx−1)

T .
Notice that (·)T stands for transposition and, similarly, when complex numbers
are used (·)H stands for transposition and conjugation. An N1 × N2 matrix X
has N1N2 elements Xi,j (which occasionally can be denoted by X(i, j)), where
each index (i, j) represents an element at i-th row and j-th column with i ∈
{0, . . . , N1 − 1} and j ∈ {0, . . . , N2 − 1}.

A time-dependent 1-D signal is denoted by x(n), with n representing indis-
tinctly a continuous index n ∈ R or a discrete-index n ∈ Z. Likewise, a 2-D field
is denoted by x(m) , x(m1,m2) with m , (m1,m2) (notice that this represen-
tation does not follow the above convention to represent vectors, but we only use
this particular notation for denoting 2-D vectors). A time-dependent 2-D field
representing, for instance, a collection of frames in a video sequence, is denoted
as follows: x(n), where n stands for the time index.

When dealing with stochastic processes, the mean of a process x(n) is rep-
resented by µx(n) , E{x(n)} and the covariance by cxx(n; τ) , E{[x(n) −
µx(n))(x(n + τ) − µx(n + τ)]}. We denote the cyclic correlation of a zero-mean
process by Cxx(α; τ) and the Fourier Series coefficients having period Q are de-

noted by Cxx

(

2π
Q
k; τ
)

, or directly by Cxx(k; τ), with k ∈ {0, . . . , Q − 1}. The

Fourier Series coefficients of a process x(n) are denoted by X(k).

Random vectors are represented with italic bold capital letters (e.g., X), their
outcomes with lowercase letters (e.g., x). A vector of length N starting from the
n-th component, is denoted by xn = (xn, . . . , xn+N−1)

T . For a compact notation,
we use mod(a, b) to denote the modulo operation: a mod b. Floor and ceiling
functions are represented by ⌊·⌋ and ⌈·⌉, respectively. On the other hand, ⌊·⌉
represents the rounding function of a number to the nearest integer.

xi
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Chapter 1

Introduction

Multimedia contents—such as digital images, audio, or video—have become
the most extensively used vehicle for communication during last years. The mas-
sive proliferation of these digital contents over the Internet, across the media, or
through social networks has converted them into a valuable asset. As an example,
with the current increase of Internet usage from mobile devices, any captured mo-
ment from an unexpected event may get the power of instantly distribute breaking
information by simply sharing it in a social network.

Meanwhile, the rapid growth of editing tools that were originally devised to
enhance the quality of those captured moments, enable now an unskilled person
to easily manipulate them and, eventually, to create realistic synthetic contents.
This state of affairs has boosted an important concern about the authenticity of
multimedia objects. Moreover, due to the relative simplicity of tampering with
digital images, audio, and videos, the work of the forensic investigator as a spe-
cialist in digital imagery becomes particularly relevant when a multimedia object
is used as a proof of facts in a legal proceeding. In such case, it is imperative
to know the origin of the multimedia object and also to trace back the process-
ing history of its content, in order to justify whether the digital object can be
admitted as a legal evidence or not.

As a means to rebuild trust in multimedia objects, a lot of techniques have
arisen in the past few years to prove the authenticity or verify the integrity of
multimedia contents, coping also with plausible manipulations. These techniques
are commonly labeled as active or passive depending on the generation process
and the role of the forensic analyst. On the one hand, active approaches require
a known signal (e.g., a digital watermark) that is imperceptibly embedded in the
digital content to detect forgeries later on. On the other hand, passive approaches
work in the absence of any known signal and rely on the analysis of traces left by
the capturing device during the acquisition process or any other operation applied
after its creation, such as compression and/or edition. Given the need of special-

1



2 1.1. Motivation

purpose hardware/software in the former case versus the universal applicability
of the derived methods in the latter, much effort has been lately put into passive
multimedia forensics. Currently, the analysis of these traces, also known as digital
footprints, has been broadly investigated for images [1] and increasing attention
is given to audio [2] and video [3].

This thesis is focused on the analysis of particular digital footprints left in
multimedia contents after their processing. Our main goal is to detect and localize
forgeries, but likewise to infer information about the processing history undergone
by a multimedia content in a blind fashion. In the first part of the thesis, we
theoretically model the resampling traces left by the application of geometric
transformations to images and audio signals, while, in the second part, we reveal
and further exploit a footprint that arises from the double compression of video
sequences.

1.1. Motivation

Nowadays, it is rather simple to alter the information represented by a multi-
media content without leaving obvious signs of manipulation. As a consequence,
a forensic analyst has to deal regularly with situations where a multimedia object
cannot be deemed as an undeniable proof of occurrence of a fact. For instance,
in July 2010, while the British Petroleum (BP) company was struggling against
the Gulf Coast oil spill, a doctored version of their command center shown in
Figure 1.1(a) was published on their website by filling the blank screens with
other parts of the original photo yielding the final result in Figure 1.1(b). Even if
there were probably no bad intentions in retouching the genuine image, it seems
that the original content of the command center could wrongly shape the public
opinion of the company.

Regardless of the final intention, this kind of manipulations hampers the trust-
worthiness of digital images, and as it can be checked in [4], this is only one of
many cases throughout History. Therefore, it is evident that there is an urgent
need to develop methods and automatic tools for assuring the authenticity of
multimedia contents. Furthermore, since active forensics cannot handle the anal-
ysis of arbitrary contents of unknown provenance, the need for passive forensic
techniques becomes apparent.

In the context of passive forensic techniques, there does not exist a common
framework to analyze multimedia contents and detect forgeries, i.e., there is not
a universal tool that can explicitly determine all the modifications or transfor-
mations applied to a digital content. Instead, there is a collection of tools that
exploit some of the inherent characteristics of a particular digital object (i.e.,
images, audio, or videos), and in doing so, try to detect the alterations such
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(a) Original image (b) Tampered image

Figure 1.1: Real example of a tampered image (on the right) shown in the BP
website by copying and moving parts of the original image (on the left). Courtesy
of The Washington Post, July 2010.

content has been subject to. Available techniques achieve promising results but,
occasionally, the lack of a theoretical model behind suggests that there is still
room for improvement. Meanwhile, a lot of effort has been put into the analysis
of digital images, paying less attention to video sequences, thus motivating the
search for new footprints in this domain.

In this thesis we use principles of signal processing to theoretically describe
digital footprints with the aim of furnishing information about the authenticity,
integrity or processing history of multimedia contents. We mainly focus our
analysis on images and videos, though several experiments are performed with
audio signals to keep some of the proposed techniques computationally tractable.
In the first part of the thesis, we deepen the understanding of the resampling
traces left in a digital image (or in an audio signal, thereof) after the application
of a geometric transformation. Since similar problems arise in other fields, such as
Digital Communications or Automatic Control, we establish links with each field,
taking advantage of concepts from cyclostationarity theory and set-membership
theory, among others. In the second part of the thesis, we explore a new footprint
emerging from the double compression of video sequences which allows us to
infer parameters from the first compression, but also the detection of double
compression and the localization of forgeries in video sequences.

1.2. Forensic Analysis of Resampled Signals

When a credible forgery is carried out, most of the time it is necessary to
adapt added pieces to the original content. Such adaptation may require the use
of geometric transformations that involve the use of a resampling operation which
inherently leaves characteristic traces that are not typically present in a genuine
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Original image

Forged image

Patch from a different source

Resampling

Content adaptation

(a) Image

Original snippet

Forged snippet

Fragment from a different source
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Figure 1.2: Illustrative example of how to create a forgery. In both cases, a
portion from a different source is first extracted and then geometrically adapted
prior to being pasted in the original content.

content. Forensic analysis of resampled signals is consequently of particular inter-
est, since the detection of traces stemming from the resampling operation can be
used as a means to unveil forgeries or to infer the processing history of a content
under analysis.

1.2.1. Introduction

A digital image forgery can be accomplished throughout many different ways,
but it usually involves copying a region either from the image itself or from a
different one and pasting it in the original scene to add a new feature or to conceal
an existing one. The adjustment of new contents to a particular scene is frequently
carried out by applying geometrical transformations (e.g., scaling, rotation, or
skewing), as it can be checked in the illustrative example of Figure 1.2(a). In
a similar way, when two audio signals with different sampling rates are mixed,
then at least the sampling rate of one of them must be adjusted in order to avoid
audible distortions, as exemplified in Figure 1.2(b).

The spatial transformation of a genuine image, or a region therein, maps the
intensity values at each pixel location of the original grid to a new resampled grid.
This operation must be followed by the interpolation of the pixel intensity values
in the intermediate locations between source pixels, which is performed through
a weighted linear combination of adjacent pixels. In the case of audio signals, the
same procedure is followed but across a single dimension.
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These linear dependencies among neighboring samples are therefore the char-
acteristic traces left behind by the interpolation process. Interestingly, these local
dependencies rarely show up in genuine contents and they vary periodically along
the resampled region, thus enabling their detection and the possible identifica-
tion of the applied transformation by inferring the repetition period. This results
in two different ways of tackling the forensic analysis of resampled signals: by
means of resampling detection and through the estimation of the applied resam-
pling factor. The former studies the presence or absence of resampling traces
in the observed data, so that the designed detector solves the following binary
hypothesis problem:

H0 : the observed data has not been resampled,

H1 : the observed data has been resampled.

On the other hand, when performing resampling factor estimation, the specific
evolution of these resampling traces throughout the observed data is examined
and an estimate of the resampling factor used in the applied spatial transforma-
tion is provided.

Although some similarities between resampling detection and estimation can
be outlined, we emphasize the main difference between both approaches: re-
sampling detection leads to a binary classification problem were the outcome is
either “right” or “wrong”, while resampling estimation generally does not pro-
vide an exact outcome, but an approximated value to the true resampling factor.
This difference affects the manner in which the performance of each approach is
evaluated. Moreover, in the last case, the particular estimation enables the iden-
tification of the applied geometric transformation, thus yielding a more accurate
forensic analysis.

Finally, by performing either resampling detection or estimation, a possible
form to detect forgeries lies in the analysis of inconsistencies in the resampling
traces of small portions with respect to the whole content under analysis. As an
example, Figure 1.3(a) shows the result of applying in a block-by-block fashion the
resampling detector proposed in [5] to the forged image depicted in Figure 1.2(a).
For the sake of comparison, the ground truth mask of the manipulated area is
illustrated in Figure 1.3(b).

In the following, we start formulating the resampling operation for digital
images in mathematical terms, then the related works on the forensic analysis
of resampled signals are described, and finally, our contributions to this problem
are summarized.
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(a) Detected forgeries (b) Ground truth

Figure 1.3: Illustrative example of forgery detection from the composite image in
Figure 1.2(a). On the left, the result of applying the resampling detector in [5]
to each block of size 128× 128 is depicted. On the right, the ground truth mask
of the tampering is shown. Green color is used for representing non-resampled
regions, while red color stands for resampled areas.

1.2.2. Resampling Process Description

Let us define a digital image with a single color channel as a P × Q matrix
F with elements Fp,q and indices p ∈ {0, . . . , P − 1} and q ∈ {0, . . . , Q − 1}.
The values of each element Fp,q are discrete quantities whose range is determined
according to the image bit depth. In practice, most digital images use 8 bits of
intensity resolution per color channel, however we notice that in general Fp,q ∈
{0, . . . , 2b − 1}, where b represents the bit depth.

The resampling operation is assumed to be linear, so each pixel value in the
resampled image G, i.e., Gi,j, is computed by linearly combining a finite set of
neighboring samples coming from the original image. The process of resampling
involves two main steps: the definition of the resampling grid with the new pixel
locations and the computation of the intensity values in those new locations.

Regarding the first step, the mapping between the source coordinates with
indices (p, q) and the resampled ones (i, j) can be expressed through an affine
transformation as follows

(

i
j

)

= A

(

p
q

)

+ b, (1.1)

where A is a matrix that embodies the linear transformation (e.g., scaling, rota-
tion, etc.) and b represents the translation vector. As an example, a rotation by
an angle θ counterclockwise can be written in the following matrix form

A =

(

cos θ − sin θ
sin θ cos θ

)

. (1.2)
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Table 1.1: Impulse response and width of several interpolation kernels.

Kernel type Impulse response Width

Linear h(t) =

{

1− |t|, if |t| ≤ kw
2

0, otherwise
kw = 2

Catmull-Rom h(t) =











3/2|t|3 − 5/2|t|2 + 1, if |t| ≤ kw
4

−1/2|t|3 + 5/2|t|2 − 4|t|+ 2, if kw
4 < |t| ≤ kw

2

0, otherwise

kw = 4

B-spline h(t) =











1/2|t|3 − |t|2 + 2/3, if |t| ≤ kw
4

−1/6|t|3 + |t|2 − 2|t|+ 4/3, if kw
4 < |t| ≤ kw

2

0, otherwise

kw = 4

Lanczos h(t) =

{

sinc(t)sinc(t/3), if |t| < kw
2

0, otherwise
kw = 6

In addition, a homogeneous translation through b , (δ, δ)T is generally applied,
such that the sampling points of the resampled image are centered with respect
to the grid of the original image. For the sake of brevity, in the following we will
consider that the resampling operation uniformly scales each dimension of the
original image by a resampling factor ξ yielding

A =

(

ξ 0
0 ξ

)

, (1.3)

where ξ is defined as the ratio between the upsampling factor L ∈ N
+ and the

downsampling factor M ∈ N
+, i.e., ξ , L

M
with L and M relatively prime.

The second step in the resampling process can be performed using different
interpolation kernels to compute the intensity values in the new resampled grid.
As previously stated, we only take into account linear interpolation strategies
and, specifically, we restrict ourselves to the following types of two-dimensional
separable kernels:1 bilinear, cubic and Lanczos (i.e., truncated sinc). From the
family of cubic filters described in [6] and parameterized by the pair of values
(B,C), we select two well-known filters: the Catmull-Rom spline with parameters
(B,C) = (0, 0.5), and the cubic B-spline with (B,C) = (1, 0). As Lanczos kernel,
we decide to take a three-lobed Lanczos-windowed kernel following the definition
in [7]. We take into consideration these interpolation kernels because they are
the most commonly available in software editing tools. Note that we discard
the analysis of more complex interpolation algorithms, such as adaptive or non-
linear, given that their use is typically constrained to perform demosaicing and are
rarely employed to resize images. Table 1.1 gathers the one-dimensional impulse
response h(t) with t ∈ R together with the width of each considered kernel.

1Two-dimensional separable kernels are those that can be applied as a product of two one-
dimensional functions, evaluating each function across a single dimension.
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By combining the two detailed steps in a single expression, each pixel value
Gi,j of the resampled image can be obtained as follows

Gi,j =
P−1
∑

k=0

Q−1
∑

l=0

h

(

i
M

L
+ δ − k

)

h

(

j
M

L
+ δ − l

)

Fk,l, (1.4)

where δ denotes the introduced shift between the two sampling grids2 and h(·)
represents any of the one-dimensional interpolation kernels described in Table 1.1.
Given that the original image is defined at coordinates p ∈ {0, . . . , P − 1}
and q ∈ {0, . . . , Q − 1}, the resulting resampled image will take values on
i ∈ {0, . . . , (L/M)P − 1} and j ∈ {0, . . . , (L/M)Q− 1}.3

Notice that after computing all the pixels of the resampled image, its intensity
values should fit the original resolution or bit depth of the input image. Therefore,
as a last step, the resampled values must be quantized to the original precision,
having

Ri,j = Q∆ (Gi,j) ,

where Ri,j denotes each element of the quantized resampled image R and Q∆ (·)
represents a uniform scalar quantizer with step size ∆.

So far, the detailed resampling operation can be applied for any resampling
factor ξ > 0; however, if the same process is followed for resampling factors less
than one, i.e., ξ < 1, then visual distortions might appear due to aliasing. To
circumvent this distortion problem, an anti-aliasing filter must be applied prior
to the resampling process to suppress the higher frequencies that may produce
aliasing. Given that the anti-aliasing filter is a low-pass filter as the interpolation
kernel, the typical way to implement a resampling operation avoiding aliasing is
by combining the impulse response of both filters, yielding a wider version of the
original kernel, i.e.,

ha(t) , L
M

h
(

L
M
t
)

.

Therefore, when ξ < 1, the resampled pixels are computed as in (1.4), but using
the anti-aliasing version of the kernel ha(t) instead of the original h(t). Note that
the original length of the kernel also widens by ξ−1 = M

L
in such a way that the

final width of ha(t) becomes kwa
, kw

M
L
.

1.2.3. Prior Work

The problem of resampling detection as a means to unveil forgeries has been
largely investigated in recent years. Even though the resampling process can be

2In MATLAB’s function imresize and also in the tool convert from ImageMagick’s soft-
ware, the shift corresponds to δ , 1

2

(

1 + M

L

)

.
3For the sake of simplicity and without loss of generality, we assume that P and Q are both

multiples of M .



Chapter 1. Introduction 9

Interpolation
Kernel

Resampling Operator

Scalar
Quantizer

Figure 1.4: Block flow diagram of the resampling process.

modeled by a relatively simple processing chain as illustrated in Figure 1.4, many
different directions have been explored to infer the presence of resampling traces
from the observation of the resulting output of the processing chain.

Popescu and Farid’s seminal work [8], was the first to uncover the existence
of periodic correlations in G induced by the resampling process. By relying on a
linear predictor that models the relation between each sample and its neighbors,
they proposed a method to detect and quantify these periodic correlations. In
particular, given any vector z from the quantized resampled image R in Fig-
ure 1.4, containing a set of 2N + 1 adjacent samples, they use the Expecta-
tion/Maximization (EM) algorithm to estimate the predictor coefficients α (with
α0 = 0) that satisfy

zi −
N
∑

k=−N

αkzi+k = 0.

Once each sample of the image under analysis has been processed through the
proposed EM algorithm, a probability map (p-map) is generated comprising the
probability of each sample being correlated to its neighbors. In the presence of
interpolation, this p-map exhibits periodic patterns that can be captured in the
frequency domain. After the generation of synthetic maps for a set of possible
spatial transformations, the detector’s decision is based on the similarity between
the p-map of the image under analysis and each element of this set.

Despite the good results achieved by Popescu and Farid, one of the main
difficulties of their approach was related to the correct initialization of some
parameters for reaching the EM convergence. However, a few years later Kirchner
suggested a simpler solution in [9], by focusing the analysis on the variance of the
prediction residue. Following the same model above, he realized that the variance
of the prediction error e, whose i-th sample can be computed as

ei = zi −
N
∑

k=−N

αkzi+k,

also exhibits periodic artifacts. At the same time, he recognized that the forma-
tion of periodic artifacts does not depend on the actual prediction weights, thus
proposing a simplified detector bypassing the EM estimation throughout the use
of a prefilter with fixed symmetric coefficients (i.e., αk = α−k). Once computed
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the new p-map, Kirchner discards the detection of resampling by means of the ex-
haustive search in [8]. Instead, the detection process is reduced to the calculation
of the cumulative periodogram of the p-map under analysis, which will show a
sharp transition in case of resampling. The final decision of the detector is based
on the maximum absolute value of the gradient of the cumulative periodogram.

Almost in parallel with the seminal work by Popescu and Farid, Gallagher
noticed in [10] that another type of prefilter yields detectable periodic artifacts
in the variance of the filtered signal. In particular, he proved that the variance of
the second order derivative of an interpolated signal (with i.i.d. samples coming
from a Gaussian distribution) is periodic with a period equal to the resampling
factor. Therefore, as a first step, the proposed method computes the second
order derivative of each row from the resampled image R. Then, the l1-norm
of each column from the resulting image is computed, generating the so-called
pseudo-variance signal in [10]. As a last step, the Discrete Fourier Transform
(DFT) of this variance signal is computed, ignoring the lowest frequencies of the
spectrum. The detector finds resampling traces if it follows that a local peak in
the magnitude of the DFT is T times greater than a local average.

Later on, Mahdian and Saic [11] extended this idea showing that under a
stationary signal model, the variance of the n-th order derivative of a resampled
signal is periodic with the resampling factor. Supporting this fact, Dalgaard et al.
carefully analyzed in [12] the role of differentiation as a way of boosting resam-
pling traces, showing that differentiators used as prefilters are nearly optimal.
In line with this, Mahdian and Saic proposed a method maintaining the second
order derivative filter from [10], but applying afterward a Radon transform to the
magnitude of the filtered image. By doing this, the detection of more complex
affine transformations becomes possible (a total of 180 different angles is taken
into account). In this case, the search for periodicity is performed by computing
the DFT of the autocovariance function of each Radon transform (previously fil-
tered by a first order derivative filter). Finally, the proposed detector is driven
by the same criterion than in [10].

All the techniques described so far work with a residue signal obtained either
by a global predictor [8], a fixed linear filter [9], or a derivative filter [10, 11].
However, it was later noted by Kirchner in [13] that the specific structure of
resampled images can be explicitly modeled by a series of linear predictors, whose
estimated predictor coefficients describe the characteristic periodic correlations
between neighboring pixels. The following model is assumed: each row/column
from R can be written as the linear combination of their vertical/horizontal
neighbors, i.e.,

r(i) =
(

r(i−K), . . . , r(i−1), r(i+1), . . . , r(i+K)
)

β(i) + ǫ(i),

where r(i) denotes a column vector containing the i-th row/column of the quan-
tized resampled image R, β(i) stands for the predictor coefficients, and ǫ(i) rep-



Chapter 1. Introduction 11

resents an error term. After using a Weighted Least Squares (WLS) procedure
to estimate the coefficients β̂(i), Kirchner suggests that the differences

di = β̂
(i)
−1 − β̂

(i)
1

are promising to detect traces of resampling. As a matter of fact, making use of a
robust spectral method to reveal the periodicity in the differences di, the proposed
detector shows very good performance especially for downscaled images.

Note that all the detailed schemes are designed to expose the presence of
resampling traces, thus focusing solely on the problem of resampling detection.
Although the foregoing works in [8, 9, 10, 11] provide some insights about how to
estimate the resampling factor of an image, they do not evaluate the performance
of the derived estimates. Following a more comprehensive analysis of the resam-
pling estimation problem, interesting approaches have arisen in this area. For
instance, different methods have been proposed for dealing with the estimation
of the scaling factor ξ from (1.3) avoiding ambiguities [14, 15]. Other research
works have been oriented towards the estimation of the rotation angle θ from
(1.2) applied to an image, as in [16, 17]. Recently, a more general solution has
been achieved in [18], where the estimation of the complete linear transformation
A from (1.1) is performed.

In the literature, more techniques are available to expose forgeries by detecting
inconsistencies in such characteristic resampling traces. We have deepened the
description of the above methods mainly because they are considered as state-of-
the-art techniques in resampling detection, but also because comparative results
against some of them will be provided throughout this thesis. Nevertheless, in-
terested readers may find appealing the following approaches: in [19], an example
of how to use a resampling detector to unveil tampered regions is provided; in
[20], the case of resampling detection in re-compressed JPEG images is investi-
gated and further revisited in [21]; in [22], a first attempt to characterize linear
dependencies through the Singular Value Decomposition (SVD) of a resampled
image is proposed, resorting to a Support Vector Machine (SVM) classifier to
detect resampling; finally, in [23], resampled images are detected by measuring
the normalized energy density of different window sizes and feeding these values
to an SVM classifier.

In this first part of the thesis we start by proposing new approaches that are
also based on the frequency analysis of a residue signal, but establishing links with
the cyclostationarity theory. The study of new prefilters and their design under
the cyclostationarity framework has also been considered. However, given that
the examination of the periodic correlations in the frequency domain presents
some drawbacks such as the need for a large number of samples (to elude the
windowing effect which impairs the estimator’s performance), we later address
the resampling estimation problem from a different perspective. In particular, we
pay more attention to how the quantization applied as a last step in the diagram
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of Figure 1.4 could help inferring parameters from the applied resampling opera-
tion. In this direction, we tackle the problem of the estimation of the resampling
factor following the maximum likelihood criterion, from where we discover that
resampling estimation can also be addressed in line with the set-membership the-
ory. Ultimately, with the aim of characterizing the linear dependencies induced
by the resampling operation, we exploit the capability of the SVD to perform
resampling detection via subspace decomposition.

1.2.4. Contributions

The main contributions regarding the forensic analysis of resampled signals
in this first part of the thesis can be summarized as below:

RC1. Derivation of a theoretical framework for the estimation of parameters
from the applied spatial transformation to an image, establishing links be-
tween the resampling factor estimation problem and cyclostationarity the-
ory. Within this framework, a method for estimating the actual parameters
of spatially transformed images (i.e., scaling factor and rotation angle) has
been derived. In addition, the design of prefilters to improve the estimation
accuracy of the resampling factor has been analytically investigated.

RC2. Analysis of the resampling factor estimation following the maximum like-
lihood criterion. Even though the considered scenario is constrained to a
piecewise linear interpolation, which unavoidably limits the scope of appli-
cation of the derived estimator, important insights are provided on how to
benefit from the scalar quantization applied after the resampling operation.
The most distinctive contribution of the derived approach is that only a
small number of samples of the resampled signal are needed to correctly
estimate the employed resampling factor.

RC3. Identification of resampled signals in accordance with set-membership esti-
mation theory. Using as starting point the foundations laid by the previous
contribution, we adhere to set-membership theory to design a technique
that is able to estimate the resampling factor of a one-dimensional signal.
Interestingly, with this approach we can provide estimates whose singular
characteristic is to be consistent with all information arising from the ob-
served data and the a priori knowledge about the resampling process. This
tool is powerful and it is often required by forensic examiners because they
have to guarantee that the forensic techniques being used (in a legal pro-
ceeding, for example) are reliable, in such a way that innocent people will
not be unfairly charged.

RC4. Analysis of resampling detection as a subspace decomposition problem.
Delving into the linear dependencies induced by the interpolation process,
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we show that upsampled images can be decomposed in two components:
one of them is determined by the resampling process (in particular, by the
interpolation kernel) thus belonging to a so-called signal subspace, while
the other component arises from the scalar quantization applied after re-
sampling, thus pertaining to a so-called noise subspace. From this analysis,
we propose the use of the SVD for decomposing both subspaces and ac-
cordingly detect the upsampling operation.

RC5. Design and evaluation of a practical solution for exposing original an dupli-
cated regions in a copy-move manipulation. We propose the combination of
two existing methods: the first one, based on Scale Invariant Feature Trans-
form (SIFT), is capable of finding duplicated regions; while the second one,
based on a resampling estimator, allows one to identify which region is the
source and which is the forged one. On account of the more comprehensive
analysis that can be provided from a tampered image, this tool is valuable
for a forensic analyst.

1.3. Forensic Analysis of Video Sequences

Recent advances in video compression have made possible the adoption of digi-
tal video technologies in many different fields, such as digital television broadcast-
ing, videotelephony or Internet video streaming, among others. As happened first
with digital images, today we can easily find powerful and accessible video edit-
ing software that facilitates the modification of video sequences. Consequently,
in the last years, the creation of forensic tools that analyze the authenticity and
integrity of digital videos has become an important field of research.

1.3.1. Introduction

Forensic analysis of video sequences, which is commonly referred to as video
forensics, is an emerging discipline that strives to find information about the pro-
cessing history undergone by a digital video. Since video processing is computa-
tionally more demanding than image processing, the research community started
working on images first, having in mind the possible extension of the derived
approaches to video streams. For instance, any working technique with JPEG
compressed images could be straightforwardly adapted to the Motion JPEG (M-
JPEG) video compression format.

This is one of the reasons why video forensics is still an emerging field, how-
ever more obstacles have prevented forensic investigators from addressing video
forgeries. In the first place, creating realistic forgeries with videos is more la-
borious than tampering with images; meanwhile, video streams can be encoded
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Figure 1.5: Processing chain for video manipulation.

through a large variety of encoding parameters and different compression formats,
whereas digital images are usually available either in uncompressed or JPEG for-
mat. Finally, video sequences often go through stronger compressions compared
to digital images, making their forensic analysis more difficult. This contrasts
with the fact that nowadays digital videos are probably more used than images
for security tasks (e.g., in video-surveillance systems), so their trustability must
be strengthened.

Generally, existing video editing tools do not work directly on the compressed
domain, but in the reconstructed spatio-temporal domain. Therefore, the process
of editing a video sequence is composed of at least three main steps, as it is
illustrated in Figure 1.5. At the beginning, the input video sequence is decoded,
then the actual video editing task takes place, and as a last step, the edited video
is re-encoded (possibly with a distinct codec or different encoding parameters).

As a consequence of such hardly avoidable but characteristic processing chain,
one of the most studied tasks in video forensics is the detection of double encoding
and/or transcoding. On the other hand, leveraging on the initial work on image
forensics, several techniques are based on the study of the effects introduced by
double quantization in DCT coefficients. Although not always applicable, these
techniques are also of interest since intra coded frames (which might lead to
double quantization traces in several video coding standards) are periodically
generated in video streams to allow random access.

In the following, we start by covering the basics on video coding to introduce
afterward the related works on video forensics. Finally, the main contributions
of this thesis on the forensic analysis of video sequences are outlined.
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Figure 1.6: Block-based hybrid video coding scheme.

1.3.2. Video Coding Description

Over the past few decades, different video compression standards have
emerged, being MPEG-2 [24], MPEG-4 Visual Part 2 [25] (we will refer to this
one as MPEG-4) and H.264 [26] the three most broadly used. The oldest one,
MPEG-2, is still widely used for video content storage in DVD and for broadcast
television. MPEG-4, instead, has been mostly adopted in video surveillance sys-
tems and for video content sharing over the Internet. The most recent, H.264,
is nowadays considered as the state-of-the-art in video compression and it is
gradually replacing all its predecessors in almost all the mentioned applications,
because it gives better performance than any of the preceding standards [27].
Very recently, the new standard H.265 [28] (successor of H.264) has started to be
deployed, albeit its use in real systems is still scarce so we exclude its study from
the forensic analysis of compressed video sequences.

Although each standard defines its own coding characteristics, their design
is built over a common block-based hybrid video coding scheme which consists
of motion compensated prediction and DCT-based transform quantization of the
prediction error (cf. Figure 1.6), thus sharing several syntax elements. According
to the block-based structure, each picture from a captured video sequence is
divided into macroblocks of size 16 × 16 samples, which are encoded with the
most suitable coding mode from each particular standard.

Different types of pictures are defined depending on the prediction process
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carried out during the encoding. The three standards share the definition of
intra-coded and inter- (or predictive-) coded pictures. In the former type, each
macroblock is encoded without referring to other pictures within the video signal.
We will identify this type of pictures as I-frames.4 In the latter type of picture, the
macroblocks can be additionally predicted from already coded and reconstructed
frames (i.e., reference frames), which leads to two possible types of frames: the
usually named P-frames and B-frames. The macroblocks in P-frames can only
be predicted from previous reference frames, while those on B-frames can be
estimated from past and/or future reference frames.

The different types of frames can be grouped into sequences, creating a Group
Of Pictures (GOP). Formally, a GOP is an encoding of a sequence of frames that
contains all the information that can be completely decoded within that GOP
[29]. Therefore, in general, a GOP is composed of only one I-frame that indicates
the beginning of the group and some combinations of P- and B-frames. We do not
tackle B-frames in this thesis due to their associated complexity, so we constrain
the compression to be performed according to the baseline profile for H.264 and
to the equivalent simple profile for MPEG-2 and MPEG-4.

Every standard proposes its own intra/inter coding modes for each type of
frame with the final goal of increasing coding efficiency. However, they all follow
the same basic design: each macroblock is either coded in an intra- or an inter-
coding mode, as it can be checked in Figure 1.6. Intra coding modes only exploit
spatial redundancy from the captured scene, resorting to a DCT-based transform
of the macroblock itself (or the residual signal obtained from an intra prediction,
as in H.264). On the other hand, inter coding modes take advantage of the
temporal redundancy among neighboring frames through motion compensated
prediction and DCT-based transform of the achieved prediction error. Ultimately,
the resulting transform coefficients in either case are quantized and then entropy-
coded together with side information (e.g., particular coding modes, motion data,
etc.).

1.3.3. Prior Work

Following the trail of image forensics, a growing body of literature seeking
characteristic footprints left by video processing tools is now rising. Forensic
researchers have been developing effective video forensic strategies intended for
reconstructing the processing history of video signals under analysis and also for
validating their origin. A thorough overview and taxonomy of published video
forensic techniques can be found in [3].

4Only progressive-scan videos and full-frame encodings are considered in this thesis, thus,
for the sake of clarity, the term frame is used to represent a picture or a slice independently of
the standard.
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As previously discussed, it is broadly accepted that double encoding is a
necessary step when creating a digital video forgery, since most of the time a
first encoding will occur during the acquisition process and a second one when
storing the manipulated content. Pushed by such motivation, several approaches
targeting this problem have been proposed, borrowing the acquired knowledge
on double compression from image forensics. Accordingly, numerous works are
based on the effects introduced by double quantization in the DCT coefficients
of intra-coded frames.

Along these lines, the authors in [30] (that further extended the idea in [31]),
unveil the artifacts left by the second compression on the distribution of the quan-
tized DCT coefficients stemming from I-frames of a double MPEG-2 compressed
video. In particular, they reveal that the histograms of two specific DCT coeffi-
cients follow a monotonically decreasing trend when the video is encoded once,
while a convex shape is exhibited in presence of double encoding. A threshold-
based detector is first derived to detect the convex pattern in [30], whereas a
vector of features obtained from the histogram values is fed to an SVM classi-
fier in [31]. A distinctive aspect of this approach is that it is able to work with
Constant Bit Rate (CBR) encoded video streams which are more challenging
than those encoded with a fixed quantization scale factor, i.e., Variable Bit Rate
(VBR) encoded videos. Both detectors show promising results, however their
performance drops when smaller bitrates are used in the second compression.

A similar method has been proposed in [32] to detect double compression
with a different video coding standard, i.e., in H.264 video streams. Also in
this case, authors take advantage of the double quantization effect and study the
histogram of quantized DCT coefficients in the I-frames of the double encoded
video. Nevertheless, the proposed detector which also relies on an SVM classifier
only works when the second encoding is at a higher quality than the previous one.
Recently, a different approach has been proposed in [33] to detect double MPEG-
4 encoding. Instead of considering the histogram of DCT coefficients, authors
model adjacent coefficients as a Markovian process: they evaluate the difference
between adjacent coefficients obtaining a transition probability matrix. A feature
is then extracted from such a matrix and used to train an SVM classifier. The
method is tested on videos encoded twice in VBR mode, achieving very interesting
results when the second encoding is performed at a lower quality than the first
one.

Taking as reference an image forensics work by Fu et al. in [34], where the
effect of double compression on JPEG images is analyzed through the Benford’s
law, different approaches have extended such model to the detection of double
compression in video sequences [35, 36, 37]. Specifically, in [35], a straightforward
extension of Fu et al.’s work is adapted to deal with MPEG videos, while in [36],
the first-digit distribution of DCT coefficients from I-frames is gathered to build a
feature vector to be classified within an SVM framework, indicating whether the
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second encoding has been carried out at a higher or lower bitrate with respect to
the first one. Finally, in [37], a set of SVM classifiers is trained with the first-digit
distribution of a subset of DCT coefficients, being able to detect multiple (up to
3) compressions of the same H.264 video stream.

Setting aside the populated family of methods relying on the DCT domain,
Luo et al. proposed in [38] a different approach that measures the strength of
block artifacts for each frame in MPEG-2 compressed videos. Following an itera-
tive procedure (i.e., re-encoded versions of the video under analysis are generated
removing each time one frame from the beginning of the sequence), an average
measure of the strength of block artifacts is calculated for each frame. For single
compressed videos, this averaged measure preserves a periodic behavior, whereas
for double compressed videos an irregular behavior shows up enabling its detec-
tion. Nonetheless, authors do not provide in [38] a way to automatically detect
such irregular event.

Up to this point, we have only described techniques that make possible the
detection of double compression maintaining the same encoder in both compres-
sions. However, a conversion from one codec to another (i.e., a transcoding oper-
ation) might be carried out during the elaboration of the video forgery. Starting
from a video that is assumed to be double encoded, Bestagini et al. put forward a
way to identify the video coding standard used during the first compression [39].
Their idea is to exploit the idempotency property of common coding schemes:
assuming that the original implementation of the encoders is available and that
VBR mode has been used during the first encoding, the video under analysis is
re-encoded with every possible encoder and every possible quantization parame-
ter, then the similarity between the resulting sequences and the analyzed video
is measured. The similarity will show a peak when any of the tested encoding
settings match the one used in the first compression. To avoid the dependency
with the genuine codec, this idea has been further extended in [40] by employing
eigen-algorithms. However, this method is still limited to VBR video sequences.

Besides double compression detection, other works have focused on the study
of tampering, such as removal or insertion of frames. Wang and Farid were the
first to propose an effective method for detecting removal of frames in [41]. They
discovered that when a set of frames is deleted, a de-synchronization between
the GOPs in the first and second encoding takes place, which induces a periodic
behavior on the prediction error of P-frames along time. Therefore, by examining
the presence of such periodicity in the frequency domain, the removal of frames
can be unmasked. Following a different approach, another method is presented
in [42], where the different characteristics of quantization matrices employed for
intra- and inter-coded pictures is taken into account to find out GOP structure
inconsistencies. The main assumption lies in the fact that, when an I-frame is
re-compressed as a P- or B-frame, its high-frequency DCT coefficients will be
negligible, whereas the frames encoded twice as inter will not show such effect.
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By measuring the energy of high-frequency DCT coefficients for each frame, a
threshold-based detector is defined in order to detect a change in the GOP struc-
ture and thus unveil tampering.

With the aim of gaining more knowledge about the processing undergone by a
video signal, a further step is explored trying to localize the actual forgery both in
the spatial and in the time domain. Intra-frame forgery localization is probably
the most challenging problem and that is why existing techniques only work under
strict assumptions [3]. The first approach in this direction is the one proposed by
Wang and Farid in [43], where a double quantization analysis is applied separately
for each macroblock of the video under study. The underlying idea is to look for
the macroblocks that show traces of double quantization against those that do
not, thus pointing out a possible patch from another previously encoded sequence.
The analysis is limited to the frames that have been encoded twice as intra. A
recent work by Bestagini et al. in [44], is able to reveal and localize two types of
forgeries. One type consists in replacing a part of the video sequence with fixed
images repeated in time, and a second type also replaces a part of the video, but
with a portion of the same video from a different time interval. The localization of
the former type of forgery is addressed by evaluating successive differences in the
pixel domain across time, thus unveiling the tampered region where zero motion is
obtained. The latter type of forgery is localized by adapting the method in [45].
Authors have shown that their approach works remarkably well with realistic
forged video contents coming from the Surrey University Library for Forensic
Analysis (SULFA) database [46].

We have restricted ourselves to the description of the foregoing methods since
they are closely related to the work carried out in the second part of this thesis.
However, readers can still widen their perspective on video forensics by referring to
the following works: the localization of frame removal and insertion in compressed
videos has been extended to the three main codecs, i.e., MPEG-2, MPEG-4,
and H.264, in [47]; the first anti-forensic technique capable of hiding evidence of
frame deletion or addition in MPEG video sequences has been derived in [48] and
further extended in [49]; an appealing approach linking video tampering detection
with resampling detection to expose video splicing with different frame rates has
been proposed in [50]; given the facility to cover digital footprints through video
recapture (i.e., recapture is used as an anti-forensic technique), its detection has
gained attention and has been tackled in several works [51, 52, 53]; finally, a
systematic analysis of popular video file formats from a forensic point of view has
been recently addressed in [54].

In the second part of this thesis, we mainly focus on the detection of double
encoding and the localization of intra-frame forgeries in video sequences. We
first disclose a new characteristic footprint, caused by double compression of a
video signal, exploiting it to detect double encoding and also to provide valuable
information from the first compression such as the size of the employed GOP.
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Then, combining this with a double quantization analysis, intra-frame forgeries
are also exposed.

1.3.4. Contributions

The main contributions concerning the forensic analysis of video sequences in
this second part of the thesis are summarized below:

VC1. Discovery of a new digital footprint that is left behind when a video se-
quence is encoded twice. Such footprint reflects an unexpected change in
the macroblock prediction types of re-encoded P-frames. By performing an
analysis of the periodicity of this footprint across time, a threshold-based
detector is designed to reveal the presence of double encoded videos. Sur-
prisingly, the characteristic footprint is detectable on CBR videos and can
endure relatively strong second compressions.

VC2. Estimation of part of the processing history of a video sequence under anal-
ysis. Specifically, a blind estimation of the length of the GOP in the first
compression is derived by processing the periodicity of the extracted foot-
print over time. Given that most of the cameras work with a fixed and
distinct GOP size, the estimation of the GOP in the first compression is
valuable for a forensic analyst since, for instance, it might help to link a
forged video with a specific type of camera.

VC3. Design and evaluation of a novel and practical solution for localizing forg-
eries in MPEG-2 video sequences. This solution uses the above GOP size
estimation as a means to expose originally coded I-frames and combines it
with a double quantization analysis on the resulting double coded I-frames
to provide a probability map of tampering for each frame under evaluation.

1.4. Structure of the Thesis

The content of this thesis is structured in 9 chapters, divided into two parts.
Part I includes Chapters 2 to 6 and describes the contributions on forensic analysis
of resampled signals. Part II includes Chapters 7 and 8 and is composed of
the contributions on forensic analysis of video sequences. Finally, Chapter 9
elaborates the conclusions drawn from the ideas introduced in this thesis and
provides possible future lines of work.
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1.5. Publications

In the first part of this thesis, Chapters 2 to 6 comprehend the research work
which led to the following publications:

R1 David Vázquez-Pad́ın, Carlos Mosquera, and Fernando Pérez-González.
Two-Dimensional Statistical Test for the Presence of Almost Cyclostation-
arity on Images. In IEEE International Conference on Image Processing
(ICIP’2010), Hong Kong, China, September 2010.

R2 David Vázquez-Pad́ın and Fernando Pérez-González. Exposing Origi-
nal and Duplicated Regions Using SIFT Features and Resampling Traces.
In 10th International Workshop on Digital Forensics and Watermarking
(IWDW’2011), Atlantic City, NY, USA, October 2011.

R3 David Vázquez-Pad́ın and Fernando Pérez-González. Prefilter Design for
Forensic Resampling Estimation. In IEEE International Workshop on In-
formation Forensics and Security (WIFS’2011), Foz do Iguaçu, Brazil, De-
cember 2011.

R4 David Vázquez-Pad́ın and Pedro Comesaña. ML Estimation of the Resam-
pling Factor. In IEEE International Workshop on Information Forensics
and Security (WIFS’2012), Tenerife, Spain, December 2012.

R5 David Vázquez-Pad́ın, Pedro Comesaña, and Fernando Pérez-González.
Set-Membership Identification of Resampled Signals. In IEEE International
Workshop on Information Forensics and Security (WIFS’2013), Guangzhou,
China, November 2013.

R6 David Vázquez-Pad́ın, Pedro Comesaña, and Fernando Pérez-González. An
SVD Approach to Forensic Image Resampling Detection. In European Sig-
nal Processing Conference (EUSIPCO’2015), Nice, France, September 2015.

In the second part of this thesis, Chapters 7 and 8 comprise the research work
which led to the following publications:

V1 David Vázquez-Pad́ın, Marco Fontani, Tiziano Bianchi, Pedro Comesaña,
Alessandro Piva and Mauro Barni. Detection of Video Double Encoding with
GOP Size Estimation. In IEEE International Workshop on Information
Forensics and Security (WIFS’2012), Tenerife, Spain, December 2012.

V2 Daniele Labartino, Tiziano Bianchi, Alessia De Rosa, Marco Fontani, David
Vázquez-Pad́ın, Alessandro Piva, and Mauro Barni. Localization of Forg-
eries in MPEG-2 Video through GOP size and DQ Analysis. In IEEE
International Workshop on Multimedia Signal Processing (MMSP’2013),
Pula (Sardinia), Italy, October 2013. Top 10% Award.
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Table 1.2: Summary of chapters, contributions, and publications.

Parts Chapters Contributions Publications
I Chapter 2 RC1, RC5 R1, R2
I Chapter 3 RC1 R3
I Chapter 4 RC2 R4
I Chapter 5 RC3 R5
I Chapter 6 RC4 R6
II Chapter 7 VC1, VC2 V1
II Chapter 8 VC3 V2

In addition to these publications, the following patent application has been
derived as a result of other parallel works in active video forensics:

P1 Title: METHOD AND SYSTEM FOR EMBEDDING INFORMATION
AND AUTHENTICATING A H.264 VIDEO USING A DIGITALWATER-
MARK
International Application No.: PCT/EP2013/068067
Filling date: 02/09/2013
Inventors : L. Pérez-Freire (ES), G. Domı́nguez-Conde (ES), D. Vázquez-
Pad́ın (ES), L. Z. Dzianach (PL)
Applicant : Centum Research & Technology S.L.U.

Finally, the relation between the different chapters, contributions and pub-
lished papers is summarized in Table 1.2.
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Forensic Analysis of Resampled
Signals
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Chapter 2

Study of the Presence of Almost
Cyclostationarity on Images

In this chapter, we first study the presence of almost cyclostationary fields
in images for the detection and estimation of digital forgeries. The almost pe-
riodically correlated fields in the two-dimensional space are introduced by the
necessary resampling operation associated to the applied spatial transformation.
In this theoretical context, we extend to the two-dimensional space a statistical
time-domain test for unveiling the presence of cyclostationarity. The proposed
method allows us to estimate the scaling factor and the rotation angle of resized
and rotated images, respectively. Examples of the output of the derived method
are shown and comparative results are presented to evaluate the performance of
the two-dimensional extension.

In the last part of the chapter, we address a common type of digital image
forgery, known as copy-move image splicing, consisting in the duplication of a
region from the image itself to conceal or duplicate some portion of the captured
scene. Combining the aforementioned resampling-based method with an existing
detector of copy-move manipulations, we provide a practical solution to point
out and differentiate which is the original region and which is the tampered one
by analyzing the resampling factor of each area. Comparative results are also
presented in this case to evaluate the performance of the combination of both
approaches.

2.1. Introduction

Throughout the first part of the previous chapter we have seen that a lot of
powerful and intuitive software editing tools are nowadays available, facilitating
the manipulation and alteration of digital images. With the aim of identifying
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traces of possible forgeries, we have also highlighted several passive techniques
working in the absence of any known signal. From this, we have noticed that
one of the main problems addressed in this field is the detection of geometric
transformations—such as scaling, rotation, or skewing—since they are usually
employed when an image forgery is carried out.

The detection of these spatial transformations has been studied following dif-
ferent approaches as pointed out in Section 1.2.3, but in this chapter we will
mainly focus on the work done by Mahdian and Saic in [11]. Extending the idea
proposed by Gallagher in [10], they suggest to filter the image under analysis
with a second-order derivative filter, apply a Radon transform at specific angles
and then study the covariance of the resulting signal in the frequency domain.
By doing so, they provide a blind and very fast method capable of detecting
traces of spatial transformations. However, the proposed method presents some
weaknesses in the estimation of the scaling factor and the rotation angle, due to
the projection onto a single dimension of the Radon transform.

Motivated by these shortcomings and the need of a theoretical framework to
explain why interpolated images present periodically correlated fields, we propose
to use the cyclostationarity theory for resampling factor estimation. The derived
method is a two-dimensional extension of a statistical time-domain test proposed
by Dandawaté and Giannakis in [55], allowing us to estimate the resampling
factor of a spatially transformed image, specifically the scaling factor and the
rotation angle.

In the next section, we first synthesize the model for the spatial transformation
of images (which has been thoroughly described in Section 1.2.2), and then we
introduce the cyclostationarity theory needed for the estimation of the resampling
factor. In Section 2.3, the two-dimensional extension of the time-domain test for
revealing the presence of cyclostationarity is carried out. Section 2.4 presents
the results obtained by our method, drawing a comparison with those obtained
by Mahdian and Saic’s approach [11]. Reaching the final part of the chapter, in
Section 2.5, the novel and practical solution enabling the distinction of original
and duplicated regions is described. Finally, Section 2.6 provides the conclusions.

2.2. Preliminaries and Problem Statement

Throughout this chapter we will consider an original image as the output pro-
vided by an acquisition system after the operations of sampling and quantization.
The resulting digital image F is a matrix of integer values defined on a discrete
grid of size P ×Q, where each element Fp,q represents a gray level. The conven-
tion used for the source coordinates with indices (p, q) is that p ∈ {0, . . . , P − 1}
represents the vertical axis and q ∈ {0, . . . , Q− 1} the horizontal one.
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2.2.1. Spatial Transformations

The spatial transformation of an original image F maps the intensity value at
each pixel location (p, q) to another location (i, j) in the new resampled image G,
whose elements are denoted by Gi,j. The most commonly used transformation is
the affine one that combines several linear operations like translation, rotation,
scaling, skewing, etc. The mapping can be expressed as:

(

i
j

)

= A

(

p
q

)

+ b,

where A is the matrix that defines the linear transformation and b represents the
translation vector. In general, the pixels in the resulting image will not map to ex-
act integer coordinates on the source image, but rather to intermediate locations
between source pixels. Therefore, when any of the mentioned spatial transfor-
mations is performed, it is necessary to apply a pixel interpolation algorithm.
The interpolation of a spatial transformed image by a generic resampling factor
ξ , (ξ1, ξ2) , (L1/M1, L2/M2) can be modeled by the following expression:

Gi,j =
P−1
∑

k=0

Q−1
∑

l=0

h

(

i
M1

L1

− k

)

h

(

j
M2

L2

− l

)

Fk,l, (2.1)

where h(·) represents the one-dimensional impulse response of any interpolation
kernel, such as those gathered in Table 1.1.1 Many different interpolation filters
are available with different characteristics, but as shown in Table 1.1, the most
common are: linear, cubic, and truncated-sinc kernels.

Finally, to fit the original resolution, the resampled values must be quantized
to the original precision, having Ri,j = Q∆ (Gi,j), where Ri,j denotes each element
of the quantized resampled image R, and Q∆ (·) stands for a uniform scalar
quantizer with step size ∆.

2.2.2. Cyclostationary Approach

Once we have mathematically described the resampling process, we can ob-
serve from (2.1) that an interpolated image can be seen as a random field (i.e.,
the original image) that is periodically filtered with the same kernel. As a conse-
quence, the resampled image will exhibit periodically correlated fields (cf. [56])
with a period equal to the resampling factor ξ = (L1/M1, L2/M2). Equivalently,
the output image is cyclostationary with period ξ.

1For the sake of simplicity, but without loss of generality, we refrain from explicitly adding
the shift δ between the two sampling grids as in (1.4).
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In the one-dimensional case, Sathe and Vaidyanathan showed in [57] that the
output of a multirate system that performs sampling rate conversion by a factor
ξ , L/M , produces a cyclostationary signal with period L/GCD(L,M) provided
that the input signal is wide-sense stationary (the output becomes wide-sense
stationary only when the interpolation filter is ideal). They only take into account
pure cyclostationary processes, i.e., with an integer cyclic period; nevertheless,
for the estimation of the resampling factor it is more convenient to consider that
the output can be an almost cyclostationary process.

This idea regarding multirate systems can be extended to the spatial domain
with two dimensions, but before we have to extend the concept of almost cy-
clostationarity to the two-dimensional space. As it is mentioned in [58], those
time series that have an “almost integer” period accept generalized (or limiting)
Fourier expansions, so following the definition in [56] of periodically correlated
fields with an integer period, we introduce the concept of almost cyclostationary
random fields.

Definition 1 Let x(m) , x(m1,m2) be a real random field with mean µx(m) ,
E{x(m)} and covariance cxx(m; τ ) , E{[x(m)−µx(m)][x(m+τ )−µx(m+τ )]},
where m , (m1,m2) ∈ Z

2 and τ , (τ1, τ2) ∈ Z
2. The random field x(m1,m2) is

strongly almost periodically correlated (equivalently, almost cyclostationary) with
period T , (T1, T2), if and only if its mean and covariance functions satisfy

µx(m1,m2) = µx(m1 + kT1,m2 + lT2),

cxx(m1,m2; τ ) = cxx(m1 + kT1,m2 + lT2; τ ),

for all integers m1,m2, τ1, τ2, k, l and rational numbers T1, T2.

Such random fields accept generalized Fourier expansions and assuming that
x(m1,m2) has zero mean, the generalized Fourier series pair for every τ is:

cxx(m1,m2; τ ) =
∑

(α1,α2)∈Axx

Cxx(α1, α2; τ )e
j(α1m1+α2m2),

Cxx(α1, α2; τ ) = lim
M1,M2→∞

1

M1M2

M1−1
∑

m1=0

M2−1
∑

m2=0

cxx(m1,m2; τ )e
−j(α1m1+α2m2), (2.2)

where (α1, α2) represents each frequency pair in the cyclic domain. The set of
cyclic frequencies Axx , {α , (α1, α2) : Cxx(α; τ ) 6= 0,−π < α1, α2 ≤ π} must
be countable and we assume that the limit exists in the mean-square sense. To
express those random fields in terms of Fourier Transforms, we define the cyclic
spectrum.

Definition 2 The cyclic spectrum for random fields x(m1,m2), is defined as:

Sxx(α;ω1, ω2) ,
∞
∑

τ1=−∞

∞
∑

τ2=−∞

Cxx(α; τ1, τ2)e
−j(ω1τ1+ω2τ2),
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where ω , (ω1, ω2) represents each frequency pair in the frequency domain.

In order to show the presence of almost cyclostationary fields in a resampled
image by a rational factor ξ, we consider the single case when the original image
is an infinite-length white-noise random field with zero mean and variance equal
to one. In this situation the cyclic correlation becomes

cxx(m1,m2; τ ) =
∞
∑

i=−∞

∞
∑

j=−∞

h

(

m1
M1

L1

− i

)

h

(

m2
M2

L2

− j

)

× h

(

(m1 + τ1)
M1

L1

− i

)

h

(

(m2 + τ2)
M2

L2

− j

)

,

and it is easy to see that

cxx(m1,m2; τ ) = cxx

(

m1 + k
L1

M1

,m2 + l
L2

M2

; τ

)

,

with k, l ∈ Z. Hence, unless the kernel used is ideal, the output is almost cyclo-
stationary with period T = (L1/M1, L2/M2). The same reasoning can be applied
to real images, albeit with an unknown distribution which makes more difficult
the estimation of the cyclic period. For this reason, we choose to extend the
time-domain test proposed by Dandawaté and Giannakis in [55] that allows the
detection of almost periodicities without considering a specific distribution on the
data.

2.3. Extension of the Time-Domain Test

The calculation of the scaling factor ξ or the rotation angle θ of a spatially
transformed image can be achieved through the estimation of the cyclic frequen-
cies α, as we will see at the end of this section. Assuming that an image block of
size N×N can be modeled through a real random field z(m1,m2) with zero mean,
the detection of the set of cyclic frequency pairs in (2.2) can be made through
the estimation of the cyclic correlation:

Ĉzz(α; τ ) = Ĉzz (α1, α2; τ1, τ2)

=
1

N2

N−1
∑

m1=0

N−1
∑

m2=0

z(m1,m2)z(m1 + τ1,m2 + τ2)e
−j(α1m1+α2m2). (2.3)

This estimate Ĉzz(α; τ ) is asymptotically unbiased according to Definition 1.
Thus, if we represent ezz (α; τ ) as the estimation error and Czz (α; τ ) as the
ideal covariance, the estimation provides:

Ĉzz (α; τ ) = Czz (α; τ ) + ezz (α; τ ) ,



30 2.3. Extension of the Time-Domain Test

where ezz (α; τ ) vanishes asymptotically as N → ∞. To make a decision about
the presence or absence of a given cyclic frequency in the image block, we build
up a vector from Ĉzz (α; τ ) evaluated in a set of K lags {τk}Kk=1 = {τ1, . . . , τK :
τk ∈ Z

2}:

ĉzz ,
1√
2

(

Ĉzz (α; τ1) , . . . , Ĉzz (α; τK) , Ĉ
∗
zz (α; τ1) , . . . , Ĉ

∗
zz (α; τK)

)T

,

and we consider the following hypothesis testing problem:

H0 : α /∈ Azz, ∀{τk}Kk=1 ⇒ ĉzz = ezz,

H1 : α ∈ Azz, for some {τk}Kk=1 ⇒ ĉzz = czz + ezz, (2.4)

where Azz , {α = (α1, α2) : Czz(α; τ ) 6= 0,−π < α1, α2 ≤ π}. Note that czz
is the corresponding true value of the cyclic correlation vector and ezz is the es-
timation error vector. From (2.4), if we know the distribution of the estimation
error ezz, we can seek a threshold to detect the cyclic frequency pairs (α1, α2)
given that czz is deterministic. Dandawaté and Giannakis use the asymptotic
properties of the cyclic correlation estimator to infer the asymptotic distribution
of the estimation error. In our case, considering that the extension to the spatial
domain of the mixing conditions (A1 in [55]) is fulfilled, then the cyclic corre-
lation estimator in (2.3) is asymptotically normal and thus the error estimation
converges in distribution to a multivariate normal, i.e.,

lim
N→∞

Nezz
D
= N (0,Σzz),

where N (0,Σzz) represents a multivariate normal distribution with zero-mean
vector and asymptotic covariance matrix Σzz, which is defined as follows:

Σzz , lim
N→∞

N2cov{ĉzz, ĉHzz} =
1

2

[

S
(∗)
τk,τl(0;−α) Sτk,τl(2α;α)

(Sτk,τl(2α;α))∗ (S
(∗)
τk,τl(0;−α))∗

]

.

In the above expression, Sτk,τl(α,ω) is a K × K matrix whose (k, l)-th entries
are given by the cyclic cross-spectrum of zτk(m) , z(m)z(m+ τk) and zτl(m) ,
z(m)z(m + τl) for the different K lags and, similarly, matrix S

(∗)
τk,τl(α,ω) is

obtained from the cyclic cross-spectrum of zτk(m) and z∗
τl
(m) at the different

lags. Hence, for N large enough, the vector ĉzz under H0 and H1 differs only
in the mean. In order to solve this detection problem, we use (in the same way
as in [55]) the norm of a weighted version of the cyclic correlation estimation

vector (γ = N ĉHzzΣ̂
−1/2
zz ), so the statistic and then the likelihood ratio test with

a threshold Γ correspond to:

Tzz = ‖γ‖22 = N2ĉHzzΣ̂
−1
zz ĉzz

H1

≷
H0

Γ,
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where ‖·‖2 stands for the Euclidean norm and Σ̂zz is an estimate of the asymptotic
covariance matrix. From Theorem 2 in [55], the statistic Tzz has the following
asymptotic distribution under H0

lim
N→∞

Tzz
D
= χ2

2K ,

where χ2
2K represents a chi-square distribution with 2K degrees of freedom. Un-

der H1 and for N large enough, the asymptotic distribution is approximately
Gaussian

Tzz ∼ N (N2ĉHzzΣ̂
−1
zz ĉzz, 4N

2ĉHzzΣ̂
−1
zz ĉzz).

Once we know the asymptotic distribution of the statistic Tzz under the two
hypotheses, we can set the threshold Γ for a fixed probability of false alarm PF =
Pr(Tzz ≥ Γ|H0) = Pr(χ2

2K ≥ Γ) and then estimate the set of cyclic frequencies
Azz. Below, the fundamental steps for the implementation of our method are
presented.

As a first step, the image block under analysis Z of size N×N is selected from
the quantized resampled image R. Then, the mean from Z is removed yielding
a zero-mean random field z(m1,m2) with m1,m2 ∈ {0, . . . , N − 1}. Finally, the
following algorithm for each frequency pair α = (α1, α2) defined in the Discrete
Fourier Transform (DFT) grid is applied:

1. From the data z(m1,m2) and using (2.3), we compute the vector ĉzz for a
fixed set of K lags {τk}Kk=1.

2. We estimate the asymptotic covariance matrix Σzz using the cyclic spec-
trum estimator. From the two options available for cyclic spectral esti-
mation [58], we use the smoothed periodogram with a frequency domain
window W (ω1, ω2) of size P × P (with P odd). So, defining

Iτ (ω1, ω2) ,
N−1
∑

m1=0

N−1
∑

m2=0

z(m1,m2)z(m1 + τ1,m2 + τ2)e
−j(ω1m1+ω2m2),

we calculate the elements of the matrix Σ̂zz as

Ŝ(∗)
τk,τl

(0;−α) =
1

(NP )2

(P−1)/2
∑

r=−(P−1)/2

(P−1)/2
∑

s=−(P−1)/2

W (r, s)

× Iτk

(

α1 +
2πr

N
, α2 +

2πs

N

)

I∗
τl

(

α1 +
2πr

N
, α2 +

2πs

N

)

,

and for Ŝτk,τl(2α;α) we take the same expression used for Ŝ
(∗)
τk,τl(0;−α),



32 2.3. Extension of the Time-Domain Test

but adopting Iτl(ω) instead of I∗
τl
(ω), i.e.,

Ŝτk,τl(2α;α) =
1

(NP )2

(P−1)/2
∑

r=−(P−1)/2

(P−1)/2
∑

s=−(P−1)/2

W (r, s)

× Iτk

(

α1 +
2πr

N
, α2 +

2πs

N

)

Iτl

(

α1 +
2πr

N
, α2 +

2πs

N

)

.

3. Once Σ̂zz is obtained, we calculate the test statistic Tzz = N2ĉHzzΣ̂
−1
zz ĉzz.

4. For a given probability of false alarm PF , we set Γ.

5. We declare the frequency pair α = (α1, α2) as cyclic if Tzz ≥ Γ.

After the application of the method, we obtain the resampling factor ξ = (ξ1, ξ2)
from the detected cyclic frequencies (α1, α2), due to the relation between these
and the cyclic periods (T1, T2), i.e., αi = 2π/Ti = 2π/ξi with i ∈ {1, 2}. However,
because of aliasing and for any ξi > 1, we have the same cyclic frequencies for the
scaling factors ξi and

ξi
ξi−1

. So despite this unavoidable ambiguity, the estimated

value of the resampling factor ξ̂ can be computed as follows:

ξ̂i =











2π

2π − |αi|
, −π ≤ αi ≤ π (1 < ξ̂i ≤ 2)

2π

|αi|
, −π ≤ αi ≤ π (ξ̂i ≥ 2)

, (2.5)

for i ∈ {1, 2}. On the other hand, if we consider that θ is the angle of rotation of
the image in a counterclockwise direction around its center point, its estimation
from the detected cyclic frequencies α = (α1, α2) can be reached through the
following relation:

φ = arctan

(

α2

α1

)

mod
π

2
,

where mod represents the modulo operation, and finally, the estimated angle is
obtained by

θ̂ =











−2φ, if 0 ≤ φ ≤ π
12

− arccos(κ), if π
12

< φ ≤ 5π
12

π
2
− 2φ, if 5π

12
< φ ≤ π

2

, (2.6)

where κ , cos2(φ)(
√

2 tan(φ) − tan(φ) + tan2(φ)). From the above definition of
the estimate, it is clear that our method will not be able to distinguish angles
separated by 90◦, i.e., the same estimation will be obtained for any θ + nπ

2
with

n ∈ Z. Note, however, that this ambiguity is also common to other resampling-
based methods [8, 11]. Moreover, because of the DFT symmetry, the cyclic
frequencies for the angles θ = −π

6
and θ = −π

3
are the same, thus yielding an

ambiguity when estimating these precise angles.
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(a) ξ = (1.7, 1.7)
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Figure 2.1: Graphical results obtained with the proposed method for two different
spatial transformations.

2.4. Experimental Results

With the aim of showing how is the output of our method, we present in
Figure 2.1 the results obtained for two different spatial transformations. Fig-
ures 2.1(a) and 2.1(d) depict the analyzed block of size 128×128 pixels in each spa-
tially transformed image. The statistic Tzz is plotted in Figures 2.1(b) and 2.1(e),
where the peaks indicating the presence of possible cyclic frequencies can clearly
be distinguished. In both cases, the spectral window used is a two-dimensional
Kaiser window of parameter β = 1 with size P ×P . After applying the threshold
Γ, we represent in Figures 2.1(c) and 2.1(f) the detected cyclic frequencies that
make possible the identification of the applied transformation.

For the evaluation of our method, we use 40 TIFF format images from the
Miscellaneous volume of the USC-SIPI image database (discarding the 4 test
pattern images) and we perform two different experiments. In order to evaluate
the performance of our method, we compare our results with those obtained using
the technique proposed by Mahdian and Saic in [11]. Since our main objective
is to detect forgeries in a relatively small region of the image, we use an image
block Z of size 128× 128 pixels for both approaches (i.e., N = 128). The sizes of
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Figure 2.2: Comparative results obtained with both methods for different scaling
factors and rotation angles.

the tested images are of 256× 256, 512× 512 or 1024× 1024 pixels, so whenever
possible we apply both methods to four blocks and take the average of the results
obtained for each image.

In the first experiment, we study the estimation accuracy when all the im-
ages from the database are uniformly scaled by a factor ξ, i.e., using the same
factor for each dimension, such that ξ = (ξ, ξ). The set of tested scaling fac-
tors is defined in the interval [1.05, 2.25] discretized with step size 0.05 (i.e.,
ξ ∈ {1.05, 1.1, . . . , 2.2, 2.25}), and the used interpolation kernel is Lanczos (cf.
Table 1.1). We decide that the estimation is correct when the estimated scaling
factor ξ̂i, obtained through (2.5), satisfies |ξ̂i − ξ| < 0.05 for any i ∈ {1, 2}.

In Figure 2.2(a) we plot the average percentage of successful resampling factor
estimates for both methods. We also represent the estimation accuracy of our
method applying first a Laplacian operator to the whole image. As we can see,
the performance of our method is worse if we do not use the Laplacian prefilter,
mainly for scaling factors close to 1. The application of a high-pass filter like the
Laplacian operator eliminates low-frequency components (belonging to the image
content) that are near the spectral peaks (corresponding to the cyclic frequencies
associated to these scaling factors), thus improving the estimation results. It
can also be observed that the method of Mahdian and Saic cannot detect the
resampling factor ξ = 2, which is not an issue for ours.
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In the second experiment, we analyze the performance of our method when
all the images from the database are rotated by a discrete set of angles in the
range −π

2
< θ < 0 sampled with a step size of π

72
, and fixing the lowest value of

the interval at −89π
180

and the highest at − π
180

. In this case, we use the Catmull-
Rom interpolation kernel (cf. Table 1.1) and we determine that the estimation
of the angle is correct for our method when the estimated angle following (2.6)
satisfies |θ̂− θ| < π

72
. For the method of Mahdian and Saic we use other criterion

because we can only assess the angle from the position of the corresponding
spectral peak, denoted by ωθ, so in this case we decide that the angle is correct
if |ω̂θ − ωθ| < 0.022. The threshold used in both cases is equivalent because
it corresponds to the minimum distance between the theoretical values for the
defined set of angles.

Figure 2.2(b) shows the comparative results for the two approaches. The best
results are obtained when our method is combined with the use of the Laplacian
prefilter. We have to notice that the output of the method of Mahdian and
Saic presents the spectral peaks at the same positions for any angle θ + nπ

4
with

n ∈ Z, so ωθ = ω(θ mod −π
4
) for −π

2
≤ θ ≤ −π

4
. Hence, their method shows more

ambiguities than ours, which just fails at discerning θ = −π
6
and θ = −π

3
within

the interval −π
2
< θ < 0. Despite of this, the shown results are presented without

taking these errors into account.

As a conclusion, the proposed method performs better than the one described
by Mahdian and Saic in [11] for estimating the parameters of spatially trans-
formed images. As a counterpart, our method is more time consuming, but the
processing in the two-dimensional space provides more information. For instance,
we avoid some ambiguities caused by indistinguishable periodic patterns in the
one-dimensional case. Note that all the experiments, including the resampling
operations, were carried out in MATLAB.

2.5. Practical Solution: Exposing Original and

Duplicated Regions

As previously pointed out, a characteristic type of digital image forgery is
the duplication of a region in the same image to hide or duplicate some portion
of the captured scene. The detection of region duplication forgeries has been
recently addressed using methods based on SIFT features that provide points of
the regions involved in the tampering and also the parameters of the geometric
transformation between both regions. However, examining this output, there is
no sufficient information about which of the two regions is the original and which
is the duplicate. A reliable image forensic analysis must supply this information.
Therefore, in this section, we outline how to use the above resampling-based
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(a) Original image (b) Tampered image

Figure 2.3: Real example of a tampered image (on the right) shown in the BP
website by copying and moving parts of the original image (on the left). Courtesy
of The Washington Post, July 2010.

method for accurately distinguishing between the original and the tampered re-
gion by analyzing the resampling factor of each area.

2.5.1. Introduction

At the beginning of Chapter 1 we have discussed a motivating and represen-
tative case of how easy the alteration of a digital image can be. Specifically, we
have seen that during the BP oil crisis, the image shown in Figure 2.3(a) was
doctored on the BP website by filling the blank screens with other parts of the
same picture yielding the forged image in Figure 2.3(b). The resulting image is
a perfect example of a realistic copy-move manipulation.

Currently, in the context of passive forensic techniques there are several meth-
ods that are capable of detecting duplicated regions (cf. Section 5.1.1 in [1]),
providing a set of matched regions, but being unable to determine which belong
to the genuine scene and which are clones. We will tackle this problem by esti-
mating the resampling factor in the matched regions. In particular, the proposed
practical solution combines these two different and complementary forensic tools
to reach a more accurate forensic analysis of tampered images. The main idea is
to mitigate the drawbacks of each technique by using the characteristics of the
other.

As a consequence, in the next section we start discussing in more detail the
advantages and disadvantages of the selected types of techniques. In Section 2.5.3,
the applied model is described focusing on the combination of both techniques
as a means of improving performance. Finally, experimental results carried out
with this image forensic scheme are summarized in Section 2.5.4.
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(a) Region duplication detection (b) Resampling analysis

Figure 2.4: Examples of drawbacks of each technique. On the left, the detected
regions are highlighted and tagged with 1 and 2. On the right, the tampered
region is highlighted and each analyzed block is denoted by a white border box.

2.5.2. Advantages and Disadvantages of each Technique

The complementary behavior of both techniques can be established from the
analysis of advantages and drawbacks of each, as it is summarized below.

Advantages/drawbacks of region duplication detectors: First works in
this area were based on an exhaustive search and analysis of correlation
properties of the image [59]. However, more efficient approaches have been
recently proposed, such as those in [60] and [61]. These two works address
copy-move detection by searching for similar SIFT descriptors extracted
from the image under analysis (more details on these descriptors will be
given in Section 2.5.3.1).

Figure 2.4(a) illustrates the typical output from any of these copy-move
detectors, where the matched regions are highlighted and tagged with num-
bers 1 and 2. Even though these methods are capable of estimating the
geometric relation between these two regions, they cannot distinguish the
original region (i.e., 1) from the cloned patch (i.e., 2). Moreover, an impor-
tant limitation from the SIFT-based methods comes also from the difficulty
to extract reliable descriptors from less textured regions of the image, thus
hindering detection performance.

Taking into account the advantages of the region duplication detectors,
these methods are able to detect copy-move forgeries even when no geo-
metric transformations are applied to the pasted regions. Furthermore, the
recently proposed methods based on SIFT (i.e., [60] and [61]), allow for a
very fast analysis of an entire image, in terms of computation time.

Advantages/drawbacks of resampling detectors: The detection of resam-
pling traces and the estimation of the applied resampling factor have been
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Figure 2.5: Block diagram of the proposed image forensic analysis tool.

studied in several works, as covered in Section 1.2.3. These methods are able
to accurately estimate the scaling factor and the rotation angle of spatially
transformed images, basing their analysis on periodic linear correlations
introduced by the applied spatial transformation.

Although these methods provide good results in controlled scenarios, when
they are evaluated in more realistic situations, their performance gets worse
[62, 63]. For instance, as shown in Figure 2.4(b), it is very likely that the
tampered region will not be aligned with the analysis grid, thus failing
in the localization of the forgery. Notice that a non-overlapping block-
based analysis is generally carried out to minimize the computation burden.
Moreover, an important handicap of these methods is the impossibility to
detect basic copy-move forgeries (without content adaptation), since the
resampling factor of the whole image remains constant.

After highlighting the advantages and disadvantages of both approaches, it can
be expected that the combination of them will provide better performance and
also a more complete and accurate forensic analysis of tampered images.

2.5.3. Model Description

In order to overcome the problem related to the distinction of the original
regions from the tampered ones using a region duplication detector, but also to
avoid the aforementioned misdetections of the resampling detectors, the proposed
approach uses a combination of both techniques.

In Figure 2.5 we represent in block diagram form the steps involved in the
proposed forensic analysis of an image. As a first step, we use a region duplication
detector to extract the original and the cloned regions. When the method is not
able to find any duplicate, it is necessary to analyze the entire image following a
block-based procedure and looking for inconsistencies in the resampling factor of
each block. However, if the region duplication detector is capable of finding the
duplicated regions, then the resampling-based method is just applied to estimate
the resampling factor of each area. Finally, according to the results obtained in
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the previous stages, the system determines and differentiates the original regions
from the tampered ones.

Next, we describe the specific methods that are fit together to build a practical
implementation of the proposed forensic analysis tool.

2.5.3.1. A SIFT-based method for region duplication detection

Nowadays, we can find several approaches based on the matching of image
features and keypoints (e.g., [60] and [61]) which provide very good results for
the detection of duplicated regions. In this case, we rely on the method proposed
by Amerini et al. in [60].

Following the steps described in [60] we analyze a digital image with a single
color channel F of size P ×Q with elements Fp,q and indices p ∈ {0, . . . , P − 1}
and q ∈ {0, . . . , Q − 1}. We apply the algorithm proposed by Lowe in [64] to
produce a set X of N keypoints:

X = {xi ∈ Z
2 : i = 0, . . . , N − 1},

with their respective SIFT descriptors:

D = {di ∈ R
128 : i = 0, . . . , N − 1},

where each descriptor is a 128-dimensional vector. Since the descriptors of a
duplicated region will look like those of the original area, we want to identify the
nearest neighbor of each descriptor to find a possible match of similar keypoints.
To that end, for each descriptor di, the Euclidean distance between each pair of
descriptors is computed and gathered in a set Si, obtaining

Si = {‖di − dj‖2 : j = 0, . . . , N − 1, j 6= i},

whose elements will be sorted in ascending order, for convenience. The matching
between a keypoint xi and any other keypoint xj (with j 6= i) is satisfied when

the ratio between the distance of the closest neighbor in Si, i.e., s
(i)
0 , and that of

the second-closest one, i.e., s
(i)
1 , is less than a threshold Υ:

s
(i)
0

s
(i)
1

< Υ.

As an example, employing a threshold Υ = 0.6 and applying this procedure to
the BP tampered image shown in Figure 2.3(b), we get the result depicted in
Figure 2.6(a).

Once the subset of matched keypoints, i.e., Xm, from X is obtained, it is
necessary to cluster these data so as to enable the distinction between the different
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(a) Matched keypoints

Matching between         and 

Matching between         and 

(b) Clustered and detected regions

Figure 2.6: Followed steps for the detection of cloned areas. On the left side, solid
lines represent the matching between keypoints, while on the right side, different
markers are used to identify the clustered data and solid/dashed lines link the
related regions.

matched regions. For clustering on the spatial location of the matched points, an
agglomerative hierarchical clustering is used as proposed in [60]. Assuming that
we have at least two matched areas, the result of this process provides T ≥ 2
different sets of matched points Mt with t = 1, . . . , T , so Xm = M1 ∪ · · · ∪MT ,
and this serves to define the different duplicated regions. Continuing with the
BP doctored image, we illustrate in Figure 2.6(b) the four sets of points that
determine the two different tampered regions linked by solid and dashed lines,
respectively. Note that some outliers have been removed after the clustering
process.

From the points in a certain region xq ∈ Mq and the corresponding matched
points xr ∈ Mr, we can estimate the geometric transformation applied between
the two matched areas:

(

xT
q

1

)

= Hqr

(

xT
r

1

)

,

where Hqr represents an affine homography. By using the RAndom SAmple
Consensus (RANSAC) algorithm, a maximum likelihood estimation of the affine
homography Hqr can be carried out.

Now, suppose that from the SIFT-based method we have obtained T = 2
matching regions (denoted by the sets of pointsM1 andM2) and also an estimate
of the relation between both Ĥ12. Then, using this information, we still cannot
demonstrate whether the points in M1 correspond to the original area and those
on M2 to the duplicated one, or vice-versa. However, the method explained
below will help to answer this question.
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2.5.3.2. A resampling-based method to reveal tampered regions

An appropriate way to determine whether a matched region is the source or
the duplicate is to use a resampling estimator that gives a measure of the existing
linear correlations among the pixels of such region. If the SIFT-based method is
not capable of finding a duplicated region, then we can use any of the proposed
methods in Section 1.2.3 to make an exhaustive analysis, processing all the blocks
of the image and looking for inconsistencies in the resampling traces.

However, we are more interested in the case where the SIFT-based method
does provide the detected cloned regions. So, assuming two matching regions,
described by the sets of points M1 and M2, we will use the resampling-based
method described in Section 2.3, for the identification of the original region and
the duplicate. As previously indicated, this method takes a block Z of an image
and applies a statistical test for the evaluation of the presence of almost cyclosta-
tionarity. The main steps of this test are summarized at the end of Section 2.3.

Given that the resulting regions from the SIFT-based method are generally
non-square and the resampling-based method only works with square blocks, we
have to adapt the detected regions to a square support. A simple way to do that
is to take a square block Z that gathers all the pixels included within the contour
of a set of points, i.e., M1 or M2, and pad with zeros the remaining elements
of matrix Z. The zero-padding approach is probably a suboptimal solution, but
doing this with each set of points we can estimate the resampling factor for each
region. One of the objectives of this work is also to study the performance of the
resampling-based method in such scenario.

As we have stated before, a resampling detector cannot differentiate the origi-
nal source from its duplicated versions if a copy-move forgery is performed without
content adjustment. That is exactly what happens with the tampered regions,
labeled as M2 and M4 in Figure 2.6(b). In fact, applying the statistical test to
the matched regionsM3 andM4, we obtain the same resampling factor (ξ̂ ≈ 5/3)
in both cases, as we can see in Figure 2.7. Thus, in this particular scenario, the
resampling-based method only identifies the scaling factor applied to the whole
image without distinguishing the source region from the clone (since the resam-
pling factor is the same).

However, we will make the hypothesis that most of the time the pasted regions
must be geometrically adapted to the scene. Therefore, to determine which parts
of the image are copies and which parts are their sources, we have to analyze
the neighborhood of each region. By taking square blocks that only include
neighboring pixels of each region, i.e., M1 or M2, and removing the pixels that
belong to the area under analysis, the resampling factor of the neighborhood can
be estimated. Finally, for classifying each region, we know that an original region
will have the same resampling factor in the neighborhood and inside the region,
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(a) Original region
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Figure 2.7: Application of the two-dimensional statistical test to one of the pair
of matched regions in the BP image: M3 (top row) and M4 (bottom row).

while the tampered regions will reach different values in each part.

2.5.4. Experimental Results

For the evaluation of this enhanced copy-move detector with resampling esti-
mation, we use 100 images from a personal image database composed by several
realistic scenarios with different indoor and outdoor scenes. All the images in
this collection have been captured in a raw format by a Nikon D60 digital cam-
era and have been converted into uncompressed TIFF images in the RGB color
space. The original resolution of each image was 3872 × 2592, but for the sake
of reducing the computational complexity, all the images were cropped to the
center block of 1024 × 1024 pixels. The resampling factor of each color channel
is equal to 2, due to the Color Filter Array (CFA) interpolation performed inside
the camera. This fact will be taken into consideration along the application of
the resampling-based method and for simplicity we will only process the green
component of the RGB color space.

To test the performance of the proposed scheme (Figure 2.5), as a first step we
evaluate the SIFT-based method and the resampling-based method separately,
combining them later to see how the results of the forensic analysis improve. In
order to get more realistic forgeries in our experiments, six different patterns like
the ones depicted in Figure 2.8 are used for shaping the duplicated areas. These
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(a) Square (b) Rotated square (c) Triangle

(d) Circle (e) Ellipse (f) Rotated ellipse

Figure 2.8: Different masks used to test the performance of the proposed forensic
tool.

masks are initially exploited to copy a region located at a random position of
each image and, subsequently, the copied region is uniformly scaled by one of the
scaling factors ξ in the set {1, 1.1, 1.2, . . . , 2}. Finally, the scaled duplicate of the
original region is pasted into a distinct random location within the same image.
In order to make a fair comparison, we use the same random location for testing
all the considered masks. However, for each new image or scaling factor under
test, a different random position is generated. Since the tampered regions tend
to be relatively small, we have conducted the experiments in such a way that the
resampled region fits always in a 128× 128 block.

For the SIFT-based method we fix the threshold Υ at 0.6 and we remove
false positive matching keypoints whenever their distance is smaller than 10 (i.e.,
‖xi − xj‖2 < 10 for any j 6= i). Once the hierarchical clustering has been
completed, the outliers of each region are removed. A keypoint is deemed as
an outlier when the distance between the keypoint and the mean point of its
cluster is higher than 3 times the variance of the points in the associated cluster.
The implementation of the SIFT algorithm used in the following experiments has
been taken from [65] and for the RANSAC homography estimation the functions
available from [66] have been used.

The configuration of the resampling-based method is almost the same as the
one used in Section 2.4 or in [67] (i.e., we use a spectral window to smooth
the periodogram of size 11 × 11 and a set of K = 9 lags), but we do not use
the threshold Γ to detect the cyclic frequencies. For the sake of simplicity, we
only estimate the applied transformation (i.e., the scaling factor) from the cyclic
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(a) SIFT-based method
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(b) SIFT-based method

Figure 2.9: Matching accuracy and post-detection estimation accuracy (in terms
of percentage), obtained with the SIFT-based method for different masks and
scaling factors.

frequency with largest magnitude, excluding the frequency at zero (DC).

Detection results using the SIFT-based method

Taking into account the described set of tampered images, we ascertain a
correct matching of a forged area whenever the SIFT-based method is able to
find at least four common points between the original and the possibly duplicated
region. Figure 2.9(a) depicts the matching accuracy of this method in terms of
percentage, showing the different results for each used mask and for the different
values of the scaling factor ξ.

Next to this graph, Figure 2.9(b) shows the (post-detection) estimation accu-
racy of the affine transformation applied between the previously matched regions,
using the RANSAC method. Note that we are plotting the post-detection estima-
tion accuracy, i.e., the estimation accuracy of the scaling factor applied between
the correctly matched regions in the previous step (thus, it is clear that the rep-
resented percentage of accurate estimation is not relative to the 100 images of the
database). In this case, we cannot know which region is the original, so we get
two possible estimations: Ĥ12 ≈ H12 or Ĥ12 ≈ H−1

12 . On the other hand, denoting
each (i, j)-th element of matrix Ĥ12 by Ĥ12(i, j) (with i, j ∈ {0, 1}), it is clear
that the elements Ĥ12(0, 0) and Ĥ12(1, 1) represent the estimation of the scaling
factor applied to each axis of the affine transformation. Thus, finally, a correct
estimation is declared when either |Ĥ12(0, 0)− ξ| < 0.05 or |Ĥ12(1, 1)− ξ| < 0.05.

As it can be observed from the two graphs of Figure 2.9, with the SIFT-based
method it is easier to match and estimate copy-move forgeries without content
adaptation than duplicated regions that have been geometrically transformed.
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However, from the estimation point of view, it is more difficult to estimate the
homography for scaling factors near one like ξ = 1.1 or ξ = 1.2, than for higher
values. The matching accuracy is not very high, due to the lack of reliable
keypoints in several images of the dataset (the number of keypoints per image
was in the range [250, 17500]), but, as it was mentioned earlier, this is an intrinsic
limitation of any SIFT-based method. With respect to the used masks, the
intuitive idea that small areas are more challenging for detection and estimation
purposes, comes up in both plots.

Detection results using the resampling-based method

Before considering the combination of the two methods, we evaluate the
resampling-based one when it is applied to the whole image, following a block-
by-block procedure to find inconsistencies in the resampling factor ξ. As it was
previously noticed, due to the CFA interpolation applied by the camera, we know
that the real resampling factor, which will be denoted by ξreal, of each non-scaled
block is actually ξreal = 2 × 1 (instead of being equal to 1), and so the corre-
sponding value of a scaled version by ξ will be ξreal = 2 × ξ. Therefore, every
time we get an estimated resampling factor with a different value from 2 we tag
the block under analysis as a digitally forged region. In this case, because the
tampered regions have a similar size, we use a block Z of size 128× 128 pixels for
the analysis.

The classification of every single block is performed by analyzing the test
statistic Tzz. As we have said at the beginning of Section 2.5.4, the resampling
factor is estimated from the cyclic frequency (α1, α2) with largest magnitude
(excluding DC), and using the following relation:

ξ̂real = max
i∈{1,2}

ξ̂i = max
i∈{1,2}

2π

|αi|
,

where we have exploited the fact that in this case, ξreal ≥ 2, since 1 ≤ ξ ≤ 2. We
confirm that the detection of the tampered region is correct if any inconsistency
in the resampling factor is discovered (i.e., whether ξ̂real 6= 2) and the resulting
estimation ξ̂real satisfies |ξ̂real − 2ξ| < 0.05, or since in some cases the interference
created by the CFA pattern may not be so strong, we will also check if |ξ̂real/(ξ̂real−
1)− ξ| < 0.05 is satisfied.

Applying this approach to the tampered images of the database, we obtain the
results shown in Figure 2.10(a). As we have stated before, this method cannot
detect copy-move forgeries without content adjustment, since there are no incon-
sistencies in the resampling factor along the whole image. That is the reason why
the estimation accuracy is equal to zero at ξ = 1. Given the ambiguity created
by the estimation, caused by the CFA pattern, we are not able to distinguish
between a scaling factor ξ = 1 or ξ = 2, and that is why the estimation accuracy
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(a) Processing block by block
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(b) Using exact matching (genie-aided)

Figure 2.10: Estimation accuracy (in terms of percentage), obtained through the
application of the resampling-based method in two different scenarios for several
masks and scaling factors.

is also zero for ξ = 2. The rate of accurate estimation of the tampered region is
not very high for any of the used masks (in the best case we barely reach a 35%),
so this method presents very bad performance when identifying forgeries through
this block-by-block procedure.

Nevertheless, to demonstrate the generally good performance of the resam-
pling estimator, we analyze the estimation accuracy in an ideal case where we
use the information supplied by a genie that tells us exactly the location of the
original region and that of the tampered region (the application of a “genie-
aided” detection is commonly used in communications to determine performance
bounds). Thus, knowing exactly the location of both regions in the pixel domain
and using the same criteria for the estimation of ξreal, as in the previous scenario,
we show in Figure 2.10(b) the results of the correct identification of which region
is the original and which is the duplicate. As it was said before, the correct dis-
tinction of the two regions when a spatial transformation has not been applied is
not possible with the resampling-based method. However, the detection perfor-
mance is very high (around a 90% for all the masks) if we compare it with that
obtained when the image is processed block by block.

So, according to the results obtained in this ideal case, the problem does not
lie in the resampling estimator itself, but in the correct matching of the tampered
area, and that is the reason why a SIFT-based method is needed.

Detection results combining both methods

Along Section 2.5 we have been discussing that the combination of both meth-
ods provides a deeper and enhanced forensic analysis of the tampered regions



Chapter 2. Study of the Presence of Almost Cyclostationarity on Images 47

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

10

20

30

40

50

60

70

80

90

100
Square

Rotated square

Triangle

Circle

Ellipse

Rotated ellipse

(scaling factor)

E
st

im
a

tio
n

 a
cc

u
ra

cy
 [

%
]

(a) SIFT-based method
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(b) Proposed forensic tool

Figure 2.11: Comparative results of the estimation accuracy for the SIFT-based
method and the proposed forensic tool.

(since we are able to identify which region is the source and which is the dupli-
cated one) and it also brings a way to compensate the drawbacks of each method
with the advantages of the other.

Certainly, given that the SIFT-based method is not capable of finding all
the duplicated regions, mostly due to the unavoidable lack of reliable keypoints,
combining both approaches we would get worse results than those depicted in
Figure 2.10(b) (i.e., the ideal “genie-aided” case where we perfectly match all the
regions). Nonetheless, with the use of the SIFT-based method, the detection of
the tampered regions is more accurate than processing the image block by block,
so we will get better results than those included in Figure 2.10(a). Finally, since
the estimation of the resampling factor is not so dependent on outliers as it is the
case for the estimate of the homography, we will also get better results than those
comprised in Figure 2.11(a), where we represent the estimation accuracy of the
SIFT-based method when it is able to jointly match the two regions and correctly
estimate their geometric relation. Explicitly, the estimation accuracy plotted
in Figure 2.11(a), corresponds to the product of the accuracy rates achieved
in the matching step (Figure 2.9(a)) and in the post-detection estimation step
(Figure 2.9(b)).

In Figure 2.11(b) we can see the reached estimation accuracy of the combined
forensic tool for different masks and scaling factors. If we compare this plot with
the corresponding estimation accuracy obtained with the SIFT-based method
alone (depicted in Figure 2.11(a)), we can observe that with the scheme described
in Figure 2.5, the performance is improved for almost all the scaling factors and
masks considered. It is important to note that the resampling estimator takes
as input the exact matching of the detected regions by the SIFT-based method,
so the provided results can be viewed as an upper bound on the performance in
terms of estimation accuracy that can be attained with this approach.
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Note also that, even with the combination of both methods, we are still not
able to distinguish the original region from the tampered one when a copy-move
forgery without content adaptation is carried out. Besides, in this particular case,
occasioned by the CFA interpolation of the camera, we are neither able to identify
regions duplicated with a factor ξ = 2. Hence, the estimation accuracy should be
strictly zero for the scaling factors ξ = 1 and ξ = 2 in Figure 2.11(b). However,
since with the SIFT-based method we are able to match the involved regions in
the tampering and also their relation, then we add the estimation accuracy of
this method in both cases, and that is the reason why we have the same values
of estimation accuracy for the scaling factors ξ = 1 and ξ = 2 in both graphs of
Figure 2.11.

By comparing the estimation accuracy of the resampling-based method (pro-
cessing block by block) with that obtained with the concatenation of both meth-
ods, we achieve an important improvement in the exact classification of each
region for all the scaling factors and distinct masks. In addition, as it was ex-
pected, the best results are achieved with those masks that cover the largest area
of the block under analysis.

According to the results shown in this section, we can conclude that the
proposed practical solution provides a more accurate forensic analysis since we can
identify in an image where and which are the original regions and the tampered
ones when a region duplication forgery is performed. Moreover, the performance
in terms of estimation accuracy is increased with respect to the sole use of either
the SIFT-based or resampling-based methods.

2.6. Conclusions

In the first part of this chapter, we have proposed a method to estimate
the scaling factor and the rotation angle of spatially transformed images that
performs better than that in [11]. Within a cyclostationarity framework, the
resampling estimation problem is addressed by extending existing concepts to the
two-dimensional case for dealing with images. Although the resulting approach is
more time consuming than that in [11] (mainly due to the processing in the two-
dimensional space), the proposed estimate circumvent several ambiguities caused
by indistinguishable periodic patterns in the one-dimensional case.

In the second part of the chapter, we have introduced a new scheme for image
forensic analysis by combining two complementary methods. The former, based
on SIFT, is capable of finding duplicated regions and the latter, based on a
resampling estimator such as the one above proposed, enables the identification
of which region is the source and which is the tampered one. The proposed scheme
provides better estimation results than considering each method separately.



Chapter 3

Prefilter Design for Forensic
Resampling Estimation

Starting from a theoretical analysis of the resampling estimation problem for
image tampering detection, this chapter presents a study, based on the previously
introduced cyclostationarity theory, about the use of prefilters to improve the
estimation accuracy of the resampling factor. Focusing on the methods that
perform the estimation by analyzing the spectrum of the covariance of a resampled
region, we propose an analytical framework that allows the definition of a cost
function which measures the degree of detectability of the spectral peaks. Based
on this measure, the design of the optimum prefilters for a particular resampling
factor can be solved numerically. Experimental results validate the developed
analysis and illustrate the enhancement of the performance in a real scenario.

3.1. Introduction

Even though today anyone can simply manipulate the information represented
by a picture without leaving perceptual traces, we have remarked in Chapter 1
that the subsequent change introduced in the intrinsic properties of the image
may enable the detection of such alterations. For instance, the application of a
geometric transformation to a portion of an image (which is often required to
adapt a new content to the captured scene) modifies the original sampling grid
of this region, producing resampling traces that can be detected, as explained
in Section 1.2. Moreover, the characteristic evolution of these traces along the
content also makes possible the estimation of the transformation locally applied
as described in Chapter 2.

Although different approaches are contemplated to detect these resampling
traces and estimate the applied transformation (cf. Section 1.2.3), the vast ma-

49
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jority of the proposed methods work, at some point, in the frequency domain to
finally detect or estimate the periodicities that are left behind by the resampling
process. Specifically, in [10, 11, 67, 68], the spectrum of the covariance of the
resampled blocks is computed to detect the frequency peaks that allow the esti-
mation of the applied spatial transformation. Derivative filters are used in these
resampling-based methods as a way to substantially enhance the spectral lines
and thus to improve the estimation performance.

Since the use of certain derivative prefilters increases the estimation accuracy
of the applied resampling factor (as featured in Section 2.4 with the Laplacian
operator), the question of whether there exist other prefilters yielding better
results becomes very relevant. Dalgaard et al. took the first step in that direction
by analytically showing that for asymptotically large values of the resampling
factor, the use of derivative filters enhances the detection of the resampling traces
[12]. Nevertheless, in order to avoid visible distortions in the forged image due to
the spatial transformation, the resampling factor is usually close to 1 and rarely
larger than 2, so the hypothesis of an asymptotically large value of this factor
does not hold in a realistic scenario. Although resampling factors smaller than 1
are also commonly used, we do not tackle their analysis in this chapter. Bearing
this in mind, our main goal is to present an analytical framework that supports
the definition of a cost function which gives a measure of the detectability of
resampling traces for resampling factors within the interval (1, 2). Using this
criterion, we study different prefilters and compute numerically their performance
in the mentioned range of resampling factors, so as to reach the optimum prefilter
for each factor. Using a database of real images, we also provide empirical results
to endorse our analysis.

The chapter is organized as follows. The next section introduces the bases
of the exposed problem following a one-dimensional (1-D) characterization of the
resampling process. The description of the model used for natural images and the
Fourier analysis for the detection of resampling traces is presented in Section 3.3.
The design of the prefilters is then addressed in Section 3.4 and the evaluation
of the resulting prefilters with real images is carried out in Section 3.5. Finally,
Section 3.6 concludes the chapter.

3.2. Preliminaries and Problem Statement

In the first part of Chapter 2, we have seen that the application of geometric
transformations on images introduces periodically correlated fields in the two-
dimensional (2-D) space that make possible the detection of the applied resam-
pling process (cf. Section 2.2.2). However, in light of the associated complexity
that implies the analysis of periodic correlations in the 2-D case, in this chapter,
we tackle the frequency analysis using a simplified model in the 1-D space. On
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the other hand, contrary to the asymptotic analysis carried out in [12], we are
more interested in the design of prefilters in the range 1 < ξ < 2 since, as we have
stated above, in a real scenario the tampered regions are only slightly rotated or
minimally scaled to mitigate the insertion of visual distortions.

Along the description of the 2-D resampling process in Section 1.2.2, it has
been assumed that the specified kernels are of separable nature (which are the
most commonly available), such that the interpolation filter is separately applied
along each single dimension of the image. In other words, a 1-D resampling
process is first performed over each row of the image and then the same procedure
is followed along each column, or vice versa. Therefore, without loss of generality,
we adhere to the 1-D resampling model for the sake of simplicity, and as just
noted, its extension to the 2-D case is rather straightforward. In the following,
we introduce the simplified model of the resampling process to afford later a more
tractable design of prefilters.

The general case of sampling rate conversion of a 1-D input signal x(n) by a
factor ξ , L

M
(with L and M integer values and relatively primes), is carried out

by first performing interpolation by the factor L and then decimating the output
of the interpolator by the factor M . The resulting resampled signal y(n), using
any interpolation filter h(t), can be expressed as:

y(n) =
∑

k

x(k)h
(

nM
L
− k
)

, (3.1)

where M
L

= ξ−1 represents the interval between samples in the resampled signal
and no shift has been applied between the two sampling grids. The interpolation
filter used to preserve the desired spectral characteristics of the input signal x(n)
can be any of those gathered in Table 1.1, i.e., linear, cubic or a truncated sinc;
but, in this case, with the aim of having a simplified model, we choose the linear
filter

h(t) =

{

1− |t|, if |t| ≤ 1

0, otherwise
.

Taking as reference the illustration shown in Figure 3.1, the expression of the
resampled signal in (3.1) considering the above linear filter can be formulated as
follows:

y(n) =

{

x
(⌊

nM
L

⌋)

h
(

nM
L
−
⌊

nM
L

⌋)

+ x
(⌈

nM
L

⌉)

h
(
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L
−
⌈

nM
L

⌉)

, if nM
L
6∈ Z

x
(

nM
L

)

, if nM
L
∈ Z

= x
(⌊

nM
L

⌋) (

1−mod
(

nM
L
, 1
))

+ x
(⌈

nM
L

⌉)

mod
(

nM
L
, 1
)

. (3.2)

Assuming that the input signal x(n) is zero-mean, the covariance of the resampled
signal corresponds to the correlation cyy(n; τ) = E{y(n)y(n + τ)}. Taking into
account the simplified version of y(n) in (3.2) and using v(n) , mod

(

nM
L
, 1
)

, we
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(a) nM
L
∈ Z (b) nM

L
/∈ Z

Figure 3.1: Illustrative example of the two cases that show up when performing
a piecewise linear interpolation.

get

cyy(n; τ) = E
{

x
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nM
L

⌋)

x
(⌊

(n+ τ)M
L

⌋)}

(1− v(n)) (1− v(n+ τ))

+ E
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v(n)v(n+ τ), (3.3)

that represents the general expression of the correlation of a zero-mean signal
interpolated by a linear filter.

In order to determine whether the resampled signal y(n) is (wide-sense) cyclo-
stationary, we have to check if the above expression (3.3) varies periodically. As
indicated in the previous chapter, Sathe and Vaidyanathan showed in [57] that
the resampled signal is cyclostationary with period L/GCD(L,M) when the input
signal x(n) is wide-sense stationary and the interpolation filter is not ideal. Note
that, in this case, L and M are coprime so GCD(L,M) = 1, and consequently
this is equivalent to saying that the resampled signal y(n) is a cyclostationary
process of period L whenever x(n) is wide-sense stationary and the interpolator
is not ideal (which is actually the case with a linear kernel).

Moreover, we can generalize this property by proving that the resampled signal
is (wide-sense) almost cyclostationary if the above expression satisfies cyy(n; τ) =
cyy
(

n+ k L
M
; τ
)

for some k ∈ Z. To demonstrate that, we have to show that v(n)
is periodic and also that the four terms within expectations E{·} in (3.3) are
periodic. Accordingly, starting with the signal v(n), it is easy to see that:

v
(

n+ k L
M

)

= mod
((

n+ k L
M

)

M
L
, 1
)

= mod
(

nM
L
+ k, 1

)

= mod(nM
L
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= v(n).

Regarding the expectation term E
{

x
(⌊

nM
L

⌋)

x
(⌊

(n+ τ)M
L

⌋)}

, by taking into
account that x(n) is wide-sense stationary, we know that this expression depends
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only on the difference between
⌊
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where we have used the relation:

⌊

nM
L

⌋

= nM
L
−mod(nM

L
, 1). (3.4)

The same applies for the other three expectation terms in (3.3), where additionally
we have to use that

⌈

nM
L

⌉

= nM
L
+mod(−nM

L
, 1). (3.5)

Therefore, since cyy(n; τ) is cyclic with an almost-integer period L
M
, we can con-

clude that if the input signal x(n) is wide-sense stationary then the resampled
signal y(n) will be almost cyclostationary.

Several works [10, 11, 67] have noticed this periodicity considering a random
i.i.d. signal as input, but in this case we are generalizing this fact for any wide-
sense stationary input signal and a linear interpolator. Our main goal is to
analytically characterize the correlation of the resampled signal in the frequency
domain, since the estimation of the resampling factor is performed in such domain
through the detection of the cyclic frequencies.

Inasmuch as the study of the cyclic correlation is tackled in the Fourier do-
main, it is apparent that a Gaussian white-noise signal will not lead to an accurate
model for a natural image, so we need a model that better captures the local cor-
relation of natural images. For this reason, we propose to use a 1-D autoregressive
(AR) process of the first order which provides a good fit to the power spectral
density of real images (cf. Section 2.10 in [69]). Next section describes the used
model and the Fourier analysis carried out that will lead us to the design of the
optimum prefilter for resampling estimation.

3.3. Model Description and Fourier Analysis

Since a white noise process is not very representative of a non-compressed
natural image, we use a more convenient approximation that corresponds to a
first-order AR process with a correlation coefficient ρ that satisfies |ρ| < 1. The
value of ρ enables the adjustment of the model as necessary. For instance, values
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Linear Filter

AR(1) model

Figure 3.2: Block diagram representation of the complete image resampling
model.

of ρ near 1 (e.g., ρ = 0.95) can be employed to model the power spectral density
of natural images, while for values of ρ near zero behave like a white noise pro-
cess, and near −1 (e.g., ρ = −0.95) could represent synthetic images with high
frequency content [70].

As illustrated in Figure 3.2, the resampling process takes now as input signal
x(n) a sequence generated by a first-order AR model with parameter ρ, such that

x(n) = w(n) + ρx(n− 1),

where w(n) is a white noise process with zero mean and unit variance. It is easy
to check that the input signal is a zero-mean process, whose correlation is given
by

cxx(n; τ) = E{x(n)x(n+ τ)} =
ρ|τ |

1− ρ2
. (3.6)

The resulting correlation of the resampled signal y(n), can be directly obtained
by combining (3.3) and (3.6), yielding

cyy(n; τ) =
1

1− ρ2

[

ρ|⌊nM
L ⌋−⌊(n+τ)M

L ⌋| (1− v(n)) (1− v(n+ τ))

+ ρ|⌊nM
L ⌋−⌈(n+τ)M

L ⌉| (1− v(n)) v(n+ τ)

+ ρ|⌈nM
L ⌉−⌊(n+τ)M

L ⌋|v(n) (1− v(n+ τ))

+ρ|⌈nM
L ⌉−⌈(n+τ)M

L ⌉|v(n)v(n+ τ)
]

. (3.7)

Given that x(n) is wide-sense stationary, we know from the previous analysis
that the resampled signal y(n) is almost cyclostationary with period L

M
, while

if we only assume the existence of pure cyclostationary processes, then y(n) is
cyclostationary with period L.

Figure 3.3(a) shows an example of the normalized version of cyy(n; τ)|τ=0 for
ξ = 11

10
and different values of ρ. Two periods of size L = 11 are represented and,

as we can see, the periodicity becomes apparent for ρ = −0.95 and also for ρ ≈ 0,
whereas for ρ = 0.95 the correlation of the resampled signal seems to be constant.
From this example, it can be inferred that the estimation in the frequency domain
of the resampling factor for an AR process with ρ = 0.95 (i.e., natural images)
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Figure 3.3: Normalized version of the correlation and cyclic correlation of the
resampled signal y(n) for ξ = 11

10
, τ = 0 and different values of ρ.

will be more challenging than for ρ = 0 or ρ = −0.95 (i.e., synthetic images).
In order to study the complexity of finding the resampling traces, we have to
analyze the correlation in the frequency domain.

In view of the fact that the correlation cyy(n; τ) is periodic over n with period
L, such signal can be written in terms of a Fourier Series expansion whose spectral
coefficients are Cyy(k; τ) with k ∈ {0, . . . , L − 1}. The development of a closed-
form expression is not straightforward, but we can derive the spectral coefficients
of (3.7), by determining the Discrete-Time Fourier Series (DTFS) of the signal
v(n) and then writing each term ρ|·| as a function of v(n). Therefore, starting
from the signal v(n), we know that its DTFS corresponds to:

V (k) = DTFS (v(n)) =







(L−1)
2L

, if k = 0

− 1
2L

+ j 1

2L tan
(

π M̃−1

L
k
) , if 1 ≤ k ≤ (L− 1) ,

where M̃−1 is the modular multiplicative inverse of M modulo L. From the
previous relations (3.4) and (3.5), it is possible to formulate each of the terms ρ|·|

as a function of v(n). As an example, using (3.4) and assuming that τ ≥ 0, we
can rewrite the first term as:

ρ|⌊nM
L ⌋−⌊(n+τ)M

L ⌋| = ρ⌊(n+τ)M
L ⌋−⌊nM

L ⌋

= ρ((n+τ)M
L
−v(n+τ)−(nM

L
−v(n)))

= ρ(τ
M
L
−v(n+τ)+v(n))

= ρ(⌊τ M
L ⌋+v(τ)−v(n+τ)+v(n))

= ρ⌊τ M
L ⌋ρ(v(n)+v(τ)−v(n+τ)).

From the last equality, it can be checked that (v(n) + v(τ)− v(n+ τ)) results in
a binary signal which can only take discrete values 0 or 1, thus obtaining the final
relation:

ρ|⌊nM
L ⌋−⌊(n+τ)M

L ⌋| = ρ⌊τ M
L ⌋ ((1− (1− ρ) (v(n) + v(τ)− v(n+ τ))) .
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A similar analysis for the remaining terms ρ|.| allows us to write cyy(n; τ) as a
function of ρ, v(n) and some constants. Consequently, by using several properties
of the DTFS, we can obtain the theoretical expression of the Fourier coefficients
Cyy(k; τ). For the sake of brevity, we only give the expression of the spectral
coefficients for the particular case τ = 0:

Cyy(k; 0) = DTFS (cyy(n; 0))

=
1

1− ρ2

[

B(k)− 2V (k) + 2
L−1
∑

l=0

V (l)V (k − l)

+2

(

G(k)⊛

(

V (k)−
L−1
∑

l=0

V (l)V (k − l)

))]

, (3.8)

where ⊛ stands for the circular convolution operation of period L, B(k) corre-
sponds to the DTFS of a constant signal equal to 1, and G(k) is

G(k) =

{

1+(L−1)ρ
L

, if k = 0
1−ρ
L
, if 1 ≤ k ≤ (L− 1)

.

In Figure 3.3(b), we represent the normalized magnitude of the cyclic corre-
lation Cyy (ω; τ) |τ=0 with ω , 2π

L
k and k ∈ {0, . . . , L − 1}, through the Fourier

coefficients Cyy (k; τ) |τ=0 in (3.8), for the different values of ρ pointed out be-
fore and keeping the resampling factor at ξ = 11

10
. From the drawn results, we

can conclude that the magnitude of the spectral coefficients (excluding the DC
component at k = 0) is very small for ρ = 0.95. This is due to the fact that
the correlation cyy(n; 0), as it is shown in Figure 3.3(a), is almost constant and
therefore the periodicity is hidden. Given that the estimation of the resampling
factor depends on the magnitude of those frequencies, it is evident that those
peaks must be enhanced for a correct operation.

3.4. Prefilter Design

As it has been brought out in [10, 11, 12, 67, 68], the use of a prefilter improves
the resampling detection or estimation performance. In this section, we define a
measure that makes possible the design of prefilters which improves the estimate
of the resampling rate.

The prefiltering of a resampled signal y(n), with a FIR filter of order P , gives
a new signal z(n) with the form

z(n) =
P
∑

l=0

ply(n− l),



Chapter 3. Prefilter Design for Forensic Resampling Estimation 57

where pl denotes the real-valued coefficients of the prefilter p. The output corre-
lation of this filtered version of the resampled signal y(n) becomes

czz(n; τ) =
P
∑

l=0

P
∑

m=0

plpmE {y(n− l)y(n+ τ −m)}

=
P
∑

l=0

P
∑

m=0

plpmcyy(n− l; τ + l −m),

that is, a linear combination of shifted versions of the correlation described in
(3.7), evaluated at different values of τ . In the Fourier domain, the general
expression of the spectral coefficients Czz(k; τ) can be directly expressed as

Czz(k; τ) =
P
∑

l=0

P
∑

m=0

plpmCyy(k; τ + l −m)e−j 2πk
L

l ,

where Cyy(k; τ) corresponds to the Fourier series coefficients of (3.7), that have
been analytically characterized in the previous section.

As we have seen before, the resampled signal y(n) is almost cyclostationary
with period L

M
and since the prefilter used is a linear time-invariant system, this

also holds for the prefiltered signal z(n). From this periodicity and consider-
ing the fact that spectral coefficients are symmetric for real-valued signals (i.e.,
|Czz(i; τ)| = |Czz(L − i; τ)|), the corresponding cyclic frequencies α , 2πM

L
and

the replica α′ , 2πL−M
L

= −2πM
L

will have a larger magnitude than the rest of
frequencies (excluding the DC component). For example, given the cyclic correla-
tion with period ξ = 11

10
shown in Figure 3.3(b), we can check that the AC spectral

coefficients with largest magnitude are Cyy(1; 0) and Cyy(10; 0) that match with
the corresponding cyclic frequencies α′ = 2π 1

11
and α = 2π 10

11
, respectively.

Therefore, given that the estimation of the resampling rate can be carried out
from the AC spectral coefficients with largest magnitude, because they identify
the cyclic frequencies, we use the following criterion to define the target function
Θ for a fixed resampling factor ξ = L

M
and a given value of ρ as:

Θ(p) ,
1
2
(|Czz(M ; 0)|2 + |Czz(L−M ; 0)|2)

1
L−2

L−1
∑

k=0
k 6=M,L−M

|Czz(k; 0)|2
,

where p stands for a vector containing all the coefficients of the FIR prefilter. Note
that the above target function can be viewed as an SNR, where the magnitude
of the cyclic frequencies α = 2πM

L
and α′ = 2πL−M

L
represent the signal part

and the remaining spectral coefficients are considered as noise. In fact, Θ can be
interpreted as a measure of the detectability of the resampling traces.
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Figure 3.4: Objective function Θ for resampling factors in the interval 1 < ξ < 2
and for different values of ρ. No prefilter is applied, equivalently, the prefilter is
a Kronecker delta.

Our final aim is to maximize this objective function Θ for given values of ρ
and resampling factor ξ = L

M
, so as to obtain an estimate of the optimum prefilter

p̂, i.e.,

p̂ = arg max
p∈RP+1

Θ(p).

The lack of a closed-form solution to the maximization of Θ makes it difficult to
find the fixed optimum prefilter for a range of values of ξ and ρ. Nevertheless, since
all the cyclic correlations Czz(k; 0), ∀k ∈ {0, . . . , L− 1} can be straightforwardly
evaluated from their analytical expressions, we can numerically find the optimal
prefilter maximizing Θ.

In Figure 3.4 we evaluate the target function for three different values of ρ
and resampling factors in the range 1 < ξ < 2, when no prefilter is applied. As it
was expected, we can observe that the worst performance is reached when the AR
process approximates that of natural images, i.e., when the correlation coefficient
is ρ = 0.95.

Focusing on the case ρ = 0.95, we start considering a prefilter of order 1 and
we analyze the target function Θ for a particular resampling factor, e.g., ξ = 11

10
.

Figure 3.5 shows the values of Θ for the coefficients p0 and p1 in the range [−5, 5].
From the representation, it is easy to perceive that the filters that satisfy the
condition p0 = −p1 reach the maximum value of Θ. So, in this particular case,
the first-order derivative with p0 = 1 and p1 = −1 is optimal.
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Figure 3.5: Evolution of the objective function Θ using a first-order prefilter
(P = 1), and varying the coefficients p0 and p1 in the range [−5, 5]. This example
has been particularized for ξ = 11
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and ρ = 0.95.
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Figure 3.6: Evolution of the objective function Θ using a second-order prefilter
(P = 2), fixing p0 = 1 and varying the coefficients p1 and p2 in the range [−5, 5].
This example has been particularized for ξ = 11

10
and ρ = 0.95.

The same analysis is carried out for a FIR filter of order 2, but in order to get
representable results, we fix the first coefficient p0 = 1, without loss of generality.
Figure. 3.6 represents the variation of the objective function Θ with respect to
the prefilter coefficients p1 and p2 in the range [−5, 5]. The largest value of Θ
is achieved at p1 = −2 and p2 = 1. Then, in this case, the optimum prefilter
corresponds to the second-order derivative filter.

Thus, these results support the idea of using derivative filters to enhance
the spectral peaks. In Figure 3.7, we show the values of Θ considering different
orders for the derivatives. As we can see, there is a huge gap between the results
obtained without any prefilter and the cases where the derivative filters are used.
From these plots we can infer that derivative filters improve the detectability of
the cyclic frequencies for all the resampling rates in the range 1 < ξ < 2.

Interestingly, the third-order derivative presents lower values of Θ than the
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Figure 3.7: Objective function Θ, considering different prefilters, for resampling
factors in the interval 1 < ξ < 2 and for ρ = 0.95.

Table 3.1: Optimum prefilters of order 3 for some values of ξ.

Range of Coefficients of the prefilter
ξ p̂0 p̂1 p̂2 p̂3

1.05 - 1.10 1 -2.4 2.4 -1
1.30 - 1.35 1 -2.75 2.75 -1
1.40 - 1.45 1 -2.8 2.8 -1
1.60 - 1.65 1 -5 7.5 -3.5
1.85 - 1.95 1 -2 1.1429 -0.1429

second-order filter when ξ > 1.6. An important question is whether better results
can be obtained with other kinds of filters. The answer is positive, in fact, as we
increase the order of the filter, the optimum prefilter becomes more dependent on
the examined resampling rate and other types of prefilters show up. Performing
an exhaustive search for the first and second order prefilters, the optimizers of
Θ turned out to be respectively the first and second order derivative filters. On
the other hand, for third-order prefilters, the optimal filters turned out to be
dependent on the resampling factor. Table 3.1, shows some of the prefilters
achieved for the different values of ξ.
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3.5. Experimental Results

While the obtained prefilters in the previous section can be optimal for a 1-D
AR process with ρ = 0.95, we wish to evaluate how the prefilters so designed per-
form with real images. To this end, we carried out an experiment with natural
images where we study the estimation accuracy for different scaling factors sep-
arated by a distance of 0.05, i.e., ξ ∈ {1.05, . . . , 1.95}. For the evaluation of the
prefilters, we use 150 images from a personal image database composed of several
realistic scenarios with different indoor and outdoor scenes. All the images in
this collection have been captured in a raw format by a Nikon D60 digital camera
and have been converted into uncompressed grayscale TIFF images. Each im-
age has been downsampled by a factor of two in order to avoid the interpolation
carried out by the camera, due to the color filter array, obtaining images of size
1936× 1296.

To reproduce the conditions of the considered model, we first resize each image
by the corresponding factor ξ with a (separable) bilinear interpolation kernel (cf.
first cell in Table 1.1) and then we take a large image block of size 1024 × 1024
pixels. Next, we subtract the mean value of this portion of the image in order
to get a zero-mean block, we subsequently apply the corresponding prefilter and,
finally, we compute the 2-D Fourier transform of the correlation of the block for
τ = 0 (i.e., the cyclic correlation). Notice that to exclude the DC component,
we just subtract the mean value of the correlation before the computation of
the Fourier transform. Considering this 2-D spectrum, the resampling rate is
obtained from that frequency pair (ω1, ω2) with the largest magnitude. Note that
ω1 represents the horizontal frequency axis and ω2 the vertical one. Since the
range of resampling factors that we employ is 1 < ξ < 2, the estimated value is
computed as follows:

ξ̂ =
2π

2π −maxi∈{1,2} |ωi|
,

where we use maxi∈{1,2} |ωi| to avoid the case when one of both components is
equal to zero (i.e., the cyclic frequency is located over one of the axes). In this
occasion, we deem the estimation as correct when the detected cyclic frecuency
(ω1, ω2) is in the range defined by the resolution in the frequency domain, i.e.,

∣

∣

∣

∣

max
i∈{1,2}

|ωi| − α

∣

∣

∣

∣

≤ 2π

1024
,

where α , 2π − 2π
ξ
= 2πL−M

L
is the theoretical value of the cyclic frequency.

Figure 3.8 shows the obtained estimation accuracy for the different values of
ξ. From this plot, we can observe that the proposed analysis and target function
yield satisfactory results, as better performance is achieved with those prefilters
that reach a larger value of Θ. For instance, comparing the values obtained for
the second and third order prefilters we see that the performance of the former
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Figure 3.8: Estimation accuracy of the resampling factor for image blocks of size
1024× 1024 pixels, using different prefilters.

improves when ξ > 1.6 as it was shown in Figure 3.7. We can also confirm
the worse performance of the third-order derivative filter with respect to the
numerically computed third-order optimum prefilter, so we can conclude that
derivative filters are no longer the best solution once we increase the order of the
prefilter above 2.

Focusing on the estimation performance, the obtained results cannot be con-
sidered very optimistic, since the prefilter that reach the best results is far from
the perfect estimation. This is due to our model only capturing the deterministic
value of the cyclic correlation without considering any other effects. In this case,
windowing (by taking a block of size 1024×1024) introduces further components
at all frequencies, but especially those near DC (i.e., the frequencies included in
the main lobe of the window). The magnitude of the latter is heavily influenced
by the DC component, so in many cases the cyclic frequency is incorrectly de-
tected, due to the fact that the largest components are located within the DC
main lobe. By leaving those components (i.e., ωi ≤ 2π/1024) out during the
detection process, we obtain the results shown in Figure 3.9. This way, the esti-
mation accuracy is highly improved for all the analyzed prefilters, achieving with
our proposed design an estimation accuracy close to 90%1.

1This comes at the price of missing resampling factors 1 < ξ ≤ 1.001.
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Figure 3.9: Estimation accuracy of the resampling rate, excluding near-zero fre-
quencies, for image blocks of size 1024× 1024, using different prefilters.

3.6. Conclusions

In this chapter, the design of prefilters to improve the estimation accuracy
of the resampling factor of spatially transformed images has been analytically
investigated. Although the proposed analytical framework only models the de-
terministic value of the cyclic correlation, experimental results validate the use
of the defined objective function for the design of prefilters.
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Chapter 4

ML Estimation of the
Resampling Factor

This chapter addresses the problem of resampling factor estimation for tam-
pering detection following the maximum likelihood criterion. Pursuing the line
of research established in the previous chapter, the design of prefilters has been
further investigated modeling the influence of the rounding operation applied af-
ter resampling. From the study of its effect on resampling detection/estimation
we have realized that instead of modeling this operation as a noisy component,
we could benefit from the structure it imposes upon the resampled data. As a
result, by relying on the rounding operation applied after resampling, an approx-
imation of the likelihood function of the quantized resampled signal is obtained.
Then, from the underlying statistical model, the maximum likelihood estimate
is derived for one-dimensional signals and a piecewise linear interpolation. The
performance of the obtained estimator is evaluated, showing that it outperforms
state-of-the-art methods.

4.1. Introduction

From the review of the literature carried out in Section 1.2.3, we have seen
that seminal works addressing forensic resampling detection were focused on the
analysis of the particular linear dependencies introduced among neighboring pix-
els by the resampling process when applying a spatial transformation (e.g., scaling
or rotation). On the other hand, from the last two chapters, we are aware that
the resampling operation can be modeled as a time-varying filtering that induces
periodic correlations, so links have been established between this problem and
the cyclostationarity theory in [67, 68, 71], providing a theoretical framework for
the estimation of the parameters of the transformation.

65
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At some point, all the mentioned approaches perform an analysis in the fre-
quency domain for the detection or estimation of this periodic behavior, by look-
ing at spectral peaks corresponding to underlying periodicities. Nevertheless, the
frequency analysis presents some drawbacks: 1) a considerably large number of
samples is needed to obtain reliable results; 2) the presence of periodic patterns
in the content of the image usually misleads the detector and the estimator; and
3) the windowing effect impairs the performance of the mentioned methods when
slight spatial transformations are employed (i.e., with a resampling factor close
to 1).

With these shortcomings in mind, in this chapter we approach the estima-
tion of the resampling factor following the Maximum Likelihood (ML) criterion.
The approximation of the likelihood function of the resampled signal relies on
the rounding operation applied after resampling. Therefore, by correctly model-
ing the relationship between the distribution of the quantization noise and the
quantized resampled signal, an optimum estimator of the resampling factor is
provided. The proposed approach will only consider one-dimensional signals, but
the idea can easily be extended to the two-dimensional case, to be applied to
images. The three discussed drawbacks of the previous methods will be sorted
out with the proposed estimator.

The rest of the chapter is organized as follows: in Section 4.2, the problem
we want to solve is formally introduced, while the description of the method
for estimating the resampling factor, based on the ML criterion, is addressed in
Section 4.3. Experimental results with synthetic and real signals are reported in
Section 4.4 for evaluating the performance of the estimator. Finally, the chapter
is closed with some conclusions in Section 4.5.

4.2. Preliminaries and Problem Formulation

The alteration of an image should not introduce visible distortions, hence a
forger will be restricted to apply only slight transformations. This implies that
the resampling estimator should achieve good performance for resampling factors
near 1. This chapter only deals with the case where the resampling factor is
larger than 1. Of course, resampling factors smaller than 1 are commonly used;
however, the analysis is formally quite different, so we leave the study of such
case for a future work.

The problem of resampling estimation is addressed for 1-D signals because the
derivation of the Maximum Likelihood Estimate (MLE) of the resampling factor
is more tractable and affordable than considering directly the 2-D case. However,
we will see in Section 4.3 that the obtained method following the ML criterion
can be easily extended to the 2-D case. The same holds for the interpolation
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filter taken into account. The use of a piecewise linear interpolation scheme is a
clear limitation of our work, which should be considered in this regard as a first
attempt to introduce MLE principles in the resampling estimation problem. We
notice that the methodology here introduced can be extended to include more
general filters.

A formal description of all the steps involved in the change of the sampling
rate of a 1-D signal x(n) by a resampling factor ξ, has already been covered in
the previous chapter, specifically in Section 3.2. Therefore, we avoid rewriting
the whole procedure again. Instead, we focus on the modeling of the rounding
operation applied after the resampling process.

Regarding the set of values that the original signal can take, we will assume
that all the samples from x(n) have already been quantized by a uniform scalar
quantizer with step size ∆, in order to fit into a finite precision representation.
Even though the interpolated values of y(n) (cf. Eq. (3.2)) will be generally
represented with more bits, a requantization to the original precision is often
done prior to saving the resulting signal. This quantized version of the resampled
signal, denoted by z(n), will be expressed as

z(n) = Q∆ (y(n))

=

{

Q∆

(

x
(⌊

nM
L

⌋) (

1−mod
(

nM
L
, 1
))

+ x
(⌈

nM
L

⌉)

mod
(

nM
L
, 1
))

, if nM
L

/∈ Z

x
(

nM
L

)

, if nM
L
∈ Z

,

(4.1)

where Q∆(·) represents a uniform scalar quantization with step size ∆ (i.e., the
same one used for the original signal).

From the second condition in (4.1), it is evident that some of the original
samples are “visible” in its quantized resampled version. On the other hand, the
remaining values of the resampled signal are the combination of “visible” and
“non-visible” samples from the original signal that are later quantized. This fact
will help to define the likelihood function of the quantized resampled signal.

4.3. ML Approach to Resampling Estimation

For the definition of the MLE of ξ, the original signal will be represented
by the vector x with Nx samples and the corresponding quantized resampled
signal by the vector z with Nz samples. For convenience, we will assume that
the length of the original signal is Nx = N + 1 with N a multiple of M , and so,
the corresponding length of the resampled signal will be Nz = ξN + 1. We will
find it convenient to model x and z as outcomes of random vectors X and Z,
respectively.
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Based on the above analysis, the estimation of the resampling factor following
the ML criterion relies on finding the conversion rate ξ that makes the observed
values of the quantized resampled vector z most likely. Nevertheless, given a
vector of observations, their components zi could be misaligned with the peri-
odic structure of the resampled signal in (4.1). Hence, a parameter φ must be
considered to shift the components of the vector, in order to align the periodic
structure of zi with z(n). The possible values of φ lie in the range 0 ≤ φ ≤ L− 1.
Therefore, the MLE of ξ becomes

ξ̂ = argmax
ξ>1

max
0≤φ≤L−1

fZ|Ξ,Φ(z|ξ, φ).

Note that we are not considering a set of possible parameters for the interpolation
filter because in the case of a piecewise linear interpolation, once we fix the
resampling factor, then the filter is automatically determined (cf. Eq. (4.1)). On
the other hand, given that the shift φ is not a determining factor for the derivation
of the target function, for the sake of simplicity, we will assume that the vector
of observations is correctly aligned and, thus, the MLE can be written as

ξ̂ = argmax
ξ>1

fZ|Ξ(z|ξ).

For the calculation of that joint probability density function (pdf) we will exploit
the fact that some samples of the interpolated signal exactly match the original,
as shown in (4.1), and also the linear relation established between the remaining
samples.

4.3.1. Derivation of fZ|Ξ(z|ξ)

Along the derivation of the joint pdf fZ|Ξ(z|ξ), for the sake of notational
simplicity, we will refer to this one as fZ(z), considering implicitly that we are
assuming a particular resampling factor ξ. From the dependence between the
quantized resampled signal and the original one, the joint pdf can be written in
a general way as

fZ(z) =

∫

RN+1

fZ|X(z|x)fX(x)dx.

We assume that no a priori knowledge on the distribution of the input signal is
available. This is equivalent to considering that fX(x) is uniform and, conse-
quently, the joint pdf can be approximated by the following relation

fZ(z) ≈
∫

RN+1

fZ|X(z|x)dx.

Equation (4.1), indicates that every L samples of the observed vector z, we have
a visible sample from the original signal. This implies that the random variable
Zi, given Xk, is deterministic whenever i ∈ LZ and k ∈ MZ. For this reason,
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Figure 4.1: Illustrative example, showing the last two possible cases for zi. Pdfs
obtained are shown graphically. Note that ∆ = 1.

the previous joint pdf can be obtained by processing (Nz − 1)/L = N/M distinct
and disjoint blocks, i.e.,

fZ(z) ≈
N/M−1
∏

j=0

∫

RM

fZLj |XMj
(zLj|xMj)dxMj, (4.2)

where ZLj and XMj (and also their corresponding outcomes) are vectors of size
L and M starting at indices Lj and Mj, respectively.

The calculation of the contribution of each block of L samples from the vector
of observations zLj in (4.2), will depend on its relation with the corresponding M
samples of the vector of the original signal, i.e., xMj. This relation is determined
by the assumed resampling factor ξ.

Therefore, considering an arbitrary sample zi that will be linearly related with
at most two original samples xk and xk+1, with k ,

⌊

iM
L

⌋

(cf. Eq. (4.1)), three
cases are possible:
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zi is a visible sample, thus deterministic. Consequently,

fZi|Xk
(zi|xk) = δ(zi − xk),

where δ(·) represents the Dirac delta.

zi is the only sample between two original ones as it is shown in Fig-
ure 4.1(a). In this case, if the variance of the original signal is large enough
compared to the variance of the quantization noise, then the quantization
error can be considered uniform (we will call this the “fine-quantization
assumption”), and the obtained pdf is

fZi|Xk,Xk+1
(zi|xk, xk+1) = Π

(

aixk + bixk+1 − zi
∆

)

,

where Π(t) denotes a rectangular pulse that is 1 if t ∈
[

−1
2
, 1
2

]

and 0 other-

wise. In this case, for the sake of clarity, we have used ai , (1−mod(iM
L
, 1))

and bi , mod(iM
L
, 1), obtained from (4.1). A graphical representation, de-

picted in Figure 4.1(b), shows how the rectangular pdf is derived from zi.

zi is one of several resampled values between two original samples, as it is
shown in Figure 4.1(c). As before, the following pdf is valid if the fine-
quantization assumption holds, hence

fZi|Xk,Xk+1
(zi|xk, xk+1) =

∏

m

Π

(

amxk + bmxk+1 − zm
∆

)

,

where m will increase from i to the number of resampled values located
between the two original samples. Figure 4.1(d) shows the resulting pdf for
the considered example.

Each time we obtain the pdf for a particular zi (or a group of them), the cor-
responding integral in (4.2) must be evaluated with respect to the corresponding
original sample xk. Intuitively, we can observe that the calculation of (4.2) will fi-
nally be the convolution of several rectangular functions, leading to a feasible and
easy implementation. Note that those uniform distributions are obtained only if
the fine-quantization assumption holds. Given the importance of this assumption,
its effect on the performance of the MLE will be analyzed in Section 4.4.

4.3.2. Method Description

For a better understanding on how the obtained MLE can be easily imple-
mented, we will exemplify the calculation of the target function fZ|Ξ(z|ξ) when
a particular resampling factor is tested, which we will denote by ξt. In this il-
lustrative example we will consider a vector of observations z (already aligned),
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corresponding to a signal that has been resampled by a factor ξ = 5
3
. In Fig-

ure 4.2(a), an example of this vector of observations is shown, along with the
corresponding vector of original samples x. In the mentioned figure, solid lines
are used for representing the resampled values (consequently, also the original
samples that are visible), while dashed lines are used for representing the non-
visible samples of the original signal.

Since the calculation of the target function fZ|Ξ(z|ξ) can be split by processing
blocks of L samples of the observed vector, in this example, we will show how
to process a single block. For the calculation of the remaining blocks, the same
process should be repeated. Assuming that the resampling factor under test is
ξt =

5
3
, these are the followed steps:

1. The first sample z0 is a visible one, then we know that z0 = x0 and, thus,
fZ0|X0,Ξ(z0|x0, ξt) = δ(z0 − x0).

2. The second sample z1 is located between two original samples, i.e., the
visible x0 and the non-visible x1. Hence, we have fZ1|X0,X1,Ξ(z0|x0, x1, ξt) =
Π
(

a1x0+b1x1−z1
∆

)

.

Figure 4.2(b) shows with a red line the linear relation between the inter-
polated value and the original ones y1 = a1x0 + b1x1, with the value of x0

fixed, i.e., according to the previous step x0 = z0. From the value of z1
we obtain the feasible interval of x1 (represented with dashed black lines).
Finally, the resulting pdf after the convolution of the rectangular function
with the delta obtained in Step 1 is plotted in green.

3. The third and fourth samples, z2 and z3, are located between the
two original samples x1 and x2. In this case, we have seen that
fZ2|X1,X2,Ξ(z2|x1, x2, ξt) = Π

(

a2x1+b2x2−z2
∆

)

Π
(

a2x1+b2x2−z3
∆

)

.

Figure 4.2(c) shows in this case the corresponding two linear relations for
y2 = a2x1+b2x2 and y3 = a3x1+b3x2. Be aware that in this case x1 can take
any value in the range obtained in Step 2, and that is the reason why the
dashed red lines are plotted. From the product of the two rectangular pdfs,
we obtain the feasible interval for x2 (whose pdf is represented in cyan).

At this point, it is important to note that when the resampling factor un-
der test does not match the true one, the previous product of rectangular
pdfs could lead to an empty feasible set for x2. If this happened, then we
would automatically infer the infeasibility of the tested resampling factor,
so the estimation algorithm would move to the next resampling factor in
the candidate set.

If the factor cannot be discarded, then we must compute the convolution
of the uniform pdf here obtained with the one resulting from Step 2. The
result is plotted in green in Figure 4.2(d).
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Figure 4.2: Graphical representation of the method description. Note that ∆ = 1.
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4. The fifth sample z4 is processed in the same way as in Step 2, but considering
that now the linear relation y4 = a4x2+b4x3 must be evaluated with the set
of possible values of x2. Proceeding this way, we obtain the feasible interval
for x3 and the corresponding pdf. Both are shown in Figure 4.2(e).

5. At this point, we have finished processing the L samples in the block and we
have the resulting pdf as a function of x3. Since the next sample is visible,
i.e., z5 = x3, to determine the contribution of these L samples to the target
function fZ|Ξ(z|ξt), we evaluate the resulting pdf taking into account the
actual value of z5. As before, if the value of z5 falls outside the possible
range of x3, then the resampling factor under test is discarded.

Following this procedure, the maximization of the target function fZ|Ξ(z|ξ) is
performed over the set of candidate resampling factors ξ > 1 that have not been
discarded, achieving the MLE ξ̂. After this qualitative explanation, it is clear
that the 2-D extension of this method is straightforward.

4.4. Experimental Results

The experimental validation of the obtained MLE is divided in two parts. In
the first one, the performance of the estimator is evaluated by using synthetic
signals and its behavior in terms of the fine-quantization assumption is analyzed.
In the second part, natural 1-D signals from the audio database in [72] (which
contains different music styles) are used to test the estimator in a more realistic
scenario. To confirm that the described method is able to sort out the draw-
backs pointed out in Section 4.1, comparative results with a 1-D version of the
resampling detector proposed by Popescu and Farid in [8] are also provided.

4.4.1. Performance Analysis with Synthetic Signals

In this case, we consider as synthetic signal a first-order autoregressive pro-
cess, parameterized by a single correlation coefficient ρ. As indicated in the
previous chapter, an AR(1) model is commonly used for characterizing the corre-
lation between samples of natural signals, where the value of ρ adjusts the model.
Typically, close to 1 values are considered for modeling natural signals, as it is
done with images (cf. Section 3.3); hence, ρ = 0.95 will be used in the following
simulations. The AR(1) process has the following form

u(n) = w(n) + ρu(n− 1),

where w(n) is a white noise process with zero mean and variance σ2
W . Note that in

this case, the process w(n) is actually the innovation from one sample to another
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Figure 4.3: Correct resampling factor estimation percentage for different resam-
pling factors as a function of σ2

W . ρ = 0.95, and 500 Monte Carlo realizations are
considered.

of the AR(1) process, so results will be drawn as a function of σ2
W to evaluate the

validity of the fine-quantization assumption.

To reproduce the conditions of the considered model, the original signal x(n)
is obtained by quantizing the generated AR(1) process, i.e., x(n) = Q∆ (u(n))
with ∆ = 1. Regarding the set of considered resampling factors, for the sake of
simplicity, we use a finite discrete set, obtained by sampling the interval (1, 5].
Note that we have sampled with a smaller step the range between (1, 2] because
we want to analyze the perforemance of the estimator for several values close to
1. Notice that we use the same set for the true resampling factor ξ and the values
tested by the ML estimator, ξt. We consider that the estimation of the resampling
factor is correct if ξ̂ = ξ, i.e., if the estimated value is indeed the one used for
resampling the original signal, up to the precision used when griding ξ and ξt.
For all the experiments, the length of the vector of observations is Nz = 400.

Figure. 4.3 shows the percentage of correct estimation for some of the resam-
pling factors in the set as a function of σ2

W . From this plot, we can observe that
the performance of the estimator strongly depends on the mentioned variance of
the innovation, as well as on the true resampling factor used. For instance, by
resampling the AR process with ξ = 5, a very small value for the variance of
innovation (σ2

W = 0.5), is required to correctly estimate the resampling factor
for all the experiments; nevertheless, for ξ = 2, almost a value of σ2

W = 50 will
be necessary for getting the same estimation performance. In general, and in
accordance with the assumptions backing the analysis introduced in the previous
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Figure 4.4: Number of discarded samples for different values of σ2
W , as a function

of ξt. The true resampling factor is ξ = 3
2
. 500 Monte Carlo realizations were

performed.

section, the higher σ2
W , the better the estimation will be.

Although ML-based estimators are frequently thought to be computationally
demanding, if the fine-quantization assumption holds, then the estimation pro-
posed in the previous section is very cheap and only a few samples are required
for correctly estimating the actual resampling factor. Remember that when a re-
sampling factor under test does not match the true one, then it can be discarded
when an empty set is obtained for a non-visible sample or when a visible sample
falls outside the obtained interval (cf. Steps 3 and 5 in Section 4.3.2).

This is illustrated in Figure 4.4, where the number of samples required for
discarding the candidate resampling factor is shown for different values of σ2

W ,
when ξ = 3

2
. As it can be checked in that figure, whenever ξt = ξ, the tested

resampling factor will not be discarded, even when the full vector of observations
has been processed, as it should be expected. It is also important to point out
that the larger the value of σ2

W , i.e., the more accurate the fine-quantization
assumption is, the smaller number of samples is required for discarding a wrong
resampling factor under test ξt.

4.4.2. Performance Analysis with Real Audio Signals

For the evaluation of the estimator in a real scenario, we consider the “Music
Genres” audio database [72], composed of 1000 uncompressed audio files with 10
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Figure 4.5: Comparison of the correct estimation percentage of the proposed
MLE versus the method in [8]. Solid lines represent the obtained results with the
MLE, while dashed lines are used for Popescu and Farid’s method.

different music styles (some of them are blues, country, jazz, pop, or rock). The
performance of the proposed estimator will be checked by fixing the number of
available samples, and looking for inconsistencies in the resampled signal with
respect to the tested resampling factor. For comparison, the same tests will be
performed with a state-of-the-art resampling detector that can be easily adapted
to the 1-D case, i.e., the one proposed by Popescu and Farid in [8].1

The set of resampling factors that we will consider in this case will be in
the interval (1, 2] (sampled with a step size of 0.05). Since we are interested in
comparing the performance with different sizes for the vector of observations, we
perform the experiments with the following set of values Nz ∈ {64, 128, 256, 512}.

The results obtained with both methods are shown in Figure 4.5. As we
can observe, the method proposed by Popescu and Farid is highly dependent
on the number of available samples, whereas our proposed MLE is essentially
independent of this parameter. In the same way, the performance achieved by
their method is poor when the applied resampling factor is close to 1, which
is neither an issue for our estimator. These two limitations of Popescu and
Farid’s method come from the frequency analysis performed (once the p-map
has been computed) for the detection of the resampling factor, as we pointed out
in Section 4.1. From these results, it is clear that the MLE method becomes very
useful for estimating the resampling factor when a small number of samples are

1The neighborhood of the predictor is set to N = 3, yielding a window of length 7.
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available, thus leading to a very practical forensic tool.

Although the performance of the MLE is very good, if we apply the same
analysis to a noisy vector of observations then the method of Popescu and Farid
is expected to be more robust than the proposed MLE. The reason is that in
their model for the EM algorithm, they assume Gaussian noise, and in our case,
we are only assuming the presence of uniformly distributed noise, due to the
quantization. We note, however, that it is possible to extend our model to the
case of Gaussian noise. Such extension is left for future research.

4.5. Conclusions

The problem of resampling factor estimation following the ML criterion has
been investigated in this chapter for the 1-D case. The derived MLE from this
analysis has been tested with audio signals showing very good performance. The
most distinctive characteristic of the proposed approach is that only a few num-
ber of samples of the resampled signal is needed to correctly estimate the used
resampling factor.
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Chapter 5

Set-Membership Identification of
Resampled Signals

A new direction regarding the problem of resampling factor estimation is ex-
plored in this chapter. Over the last years, most of the proposed techniques for
tampering detection through the analysis of resampling traces put emphasis on
characterizing the periodic linear dependencies induced in the resampled signal
by the application of a spatial transformation. However, less effort has been de-
voted to the analysis of the constraints imposed by the resampling process on
the resulting signal. Taking as reference the work described in the previous chap-
ter and pursuing this new line of research, we tackle the problem of resampling
factor estimation in terms of set-membership estimation theory. The proposed
technique constructs a model of the problem according to available a priori knowl-
edge and in consonance with a finite number of observations that comes from the
resampled signal under study. With this information, the derived technique is
able to provide an estimate of the resampling factor applied to the original signal
and, if required, an estimate of such signal together with an estimate of the inter-
polation filter. The performance in terms of accuracy and MSE of this approach
is evaluated and comparative results with state-of-the-art methods are reported.

5.1. Introduction

The detailed techniques in Section 1.2.3 dealing with resampling detection
work remarkably well when uncompressed signals are used, but the correspond-
ing detectors can be easily deluded when a post-processing or simply a lossy-
compression is applied to their content, as it is described in [73]. Furthermore,
all these approaches are based on the study of the periodic correlation that is
inherently induced in the resulting signals after applying a resampling operation.
The main drawbacks of the frequency analysis for resampling factor estimation

79
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have just been covered in Section 4.1 from the previous chapter. Despite the
unavoidable ambiguity in the identification of the resampling factor due to fre-
quency aliasing, the main issues are: 1) a considerably large number of samples
are necessary to circumvent the windowing effect in the frequency domain; 2) the
presence of periodic patterns in the content usually leads to a wrong detection or
estimation. By relying on the rounding operation applied after resampling, the
estimator derived in the previous chapter is able to sort out these problems, as
it can be checked in Section 4.4. However, its applicability is quite limited since
only a fixed linear interpolation filter is considered through the definition of the
estimator.

To overcome these deficiencies and pursuing the idea behind the work in Chap-
ter 4, which gave important insights about how to perform resampling factor es-
timation, a new approach for the identification of resampled signals is described
next. The procedure derived in the earlier Section 4.3, where a vector of observa-
tions coming from a linearly resampled signal is tested against a set of plausible
resampling factors to find the correct one, is able to quickly discard the tested
resampling factors that lead to an empty feasible set for the original signal. This
formulation of the problem can be linked to the set-membership estimation theory
(a.k.a., set-theoretic estimation), which is well known in the field of automatic
control and also in certain signal processing areas [74, 75].

Set-membership estimation is commanded by the concept of feasibility and
provides solutions whose singular characteristic is to be consistent with all in-
formation arising from the observed data and the a priori knowledge about the
problem to solve. As it was stated above, frequency-based methods cannot always
provide reliable solutions. Indeed, such solutions could infringe known constraints
about the problem. However, when the problem is approached in set-membership
terms, the provided solution will be consistent with all the known constraints,
according to the observed data. This is very important from the point of view of
a forensic analyst that must always provide objective judgments on the identifi-
cation of forgeries, basing his decisions on evidences, i.e., on the observed data,
and on the prior knowledge about the problem under analysis. To this extent,
by relying on the set-membership theory and generalizing the work carried out in
Chapter 4 to any interpolation filter, we propose a new methodology for resam-
pling factor estimation.

The structure of this chapter is as follows: Section 5.2 describes the formu-
lation of the problem in mathematical terms and following the set-membership
framework; Section 5.3 introduces a practical implementation to solve the derived
problem; Section 5.4 shows the experimental results obtained under different set-
tings; and finally, Section 5.5 points out drawn conclusions.
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5.2. Problem Formulation

Before introducing the set-membership formulation, the description of all the
steps involved in the sampling rate conversion of a 1-D signal will be presented.
Note that, though a bit different, the following description is still equivalent to
the one carried out in Chapters 3 and 4, and it is of course compatible with the
2-D model detailed in Section 1.2.2. Once more, we will only focus the analysis
on 1-D signals to keep the definition of the problem more tractable, but it is easy
to check that the 2-D extension can be straightforwardly obtained.

To avoid confusion between the parameters that are actually used to gen-
erate the observed data and those that are evaluated as candidates under test,
the following notational convention will be used: only the variables involved in
the generation of the observed signal will be denoted with the grapheme ,̃ for
instance, ξ̃ stands for the resampling factor used for generating the observed
resampled signal.

Let x̃ be a column vector that contains Ñx samples from the original signal
before being resampled. The applied resampling factor is defined as ξ̃ , L̃

M̃
,

i.e., the ratio between the upsampling factor L̃ ∈ N
+ and downsampling factor

M̃ ∈ N
+. Regarding the interpolation filter, denoted by the column vector h̃, we

consider a freely designed low-pass FIR filter of order Ñh−1 with cutoff frequency

ω̃c = min
(

π
M̃
, π
L̃

)

in order to avoid aliasing. Under these premises, the resampled

version of x̃, can be written as
ỹ = X̃h̃,

where X̃ is a matrix of size Ñz × Ñh with Ñz =
L̃
M̃
Ñx,

1 which is constructed from

the samples of x̃, i.e., x̃i with i = 0, . . . , Ñx−1, and as a function of the employed
resampling factor ξ̃. Each element (i, j) of the matrix X̃ is denoted by X̃ij and
is defined as:

X̃ij ,







x̃ iM̃+k−j

L̃

, if iM̃+k−j

L̃
∈
(⌈

iM̃−k
L̃

⌉

,
⌊

iM̃+k
L̃

⌋)

∩ Z

0, otherwise,
(5.1)

with k , Ñh−1
2

, i = 0, . . . , Ñz − 1 and j = 0, . . . , Ñh − 1. In the above expression,
⌈·⌉ and ⌊·⌋ denote the ceiling and floor functions, respectively.

The interpolated values of ỹ will be generally represented with more bits
than for the original signal x̃, hence a requantization to the original precision is
commonly done prior to saving the resulting signal. This quantized version of
the resampled signal, denoted by z̃, is expressed as

z̃ = Q∆̃ (ỹ) = Q∆̃

(

X̃h̃
)

, (5.2)

1Without loss of generality and for the sake of simplicity, we will assume that Ñx is a multiple
of M̃ and also that Ñh is an odd number.
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Figure 5.1: Illustrative scheme of the set-membership formulation of a general
problem whose solution belongs to the space Ξ.

where Q∆̃ (·) represents a uniform scalar quantization with step size ∆̃ (i.e., the
same one used for the original signal).2

5.2.1. Set-Membership Formulation

As pointed out above, the set-membership theory is governed by the concept
of feasibility; hence, once applied to a particular problem, its main goal is to
find a solution that satisfies simultaneously all the constraints defined through
the observed data and the a priori knowledge about the problem. In those cases
where there exists no solution fulfilling all the requirements at the same time, the
problem does not have a feasible solution.

Let us first introduce the set-membership formulation of a general problem
whose solution belongs to a space Ξ. Each piece of information from the observed
data, i.e., each i-th observation, is associated with a property set Si in the solution
space Ξ and can be defined as follows

Si = {a ∈ Ξ : a satisfies Ψi} ,

where Ψi represents a constraint of the problem and a is an arbitrary point of
the solution space Ξ. Figure 5.1 illustrates in a graphical manner such problem
formulation within a set-membership framework.

Each subset Si represents all the estimates that are consistent with the i-
th observation. Therefore, the feasible set of solutions for the problem will be
composed by the intersection of all the property sets that are obtained with
N available observations, thus having S = ∩N−1

i=0 Si, where S is also commonly
known as the solution set. If the solution set is empty, i.e., ∩N−1

i=0 Si = ∅, then the
problem is designated as infeasible, as exemplified in Figure 5.2(a). Otherwise,

2Note that having the same quantization step size in both cases is not a limiting condition,
since the problem can be reformulated if it is not so.
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(a) Infeasible problem (b) Feasible problem

Figure 5.2: Examples of possible outputs in a set-theoretic formulation.

the problem is feasible and a set-membership estimate consists in choosing any
point â ∈ S, as shown in Figure 5.2(b).

Set-membership theory allows us to define a feasibility problem for checking
whether a vector of observations z of length Nz has been resampled or not with
a candidate resampling factor ξ , L

M
, with L,M ∈ N

+. Note that in this case
we will assume that Nz is a multiple of L for the sake of simplicity and without
loss of generality. To characterize this problem in set-membership terms, we need
to define the solution space Ξ, which in this case turns out to be the Cartesian
product of two sets, i.e., Ξ = X ×H, where the set X represents the domain of
the original signal, and the set H specifies the domain of the interpolation filter.

Prior knowledge about the problem helps us define these two sets. For the
original signal, we infer that each sample xi has been quantized with step size
∆, so we could assume that xi ∈ ∆Z, but this assumption would make the
resolution of the subsequent optimization problem notably more complicated. In
order to lighten the consequent computational burden, we assume without loss
of generality that each sample lies in a real interval [xmin, xmax], thus having

X =
{

x ∈ R
Nx : xmin ≤ xi ≤ xmax, i = 0, . . . , Nx − 1

}

,

where Nx represents the dimension of the set and is defined as a function of the
number of observations and the candidate resampling factor, i.e., Nx = Nz

M
L
.

Regarding the interpolation filter, we assume that each coefficient falls in a real
interval [hmin, hmax], hence

H =
{

h ∈ R
Nh : hmin ≤ hi ≤ hmax, i = 0, . . . , Nh − 1

}

,

where the dimension of the set comes from the order of the FIR filter, which
is assumed to be Nh − 1. The interval [hmin, hmax] can be specified according
to any particular filter, for instance, for a linear interpolator we could presume
hi ∈ [0, 1], ∀i.
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In order to check if each component zi of the vector of observations has been
generated through the sampling rate conversion of a vector x ∈ X by a candidate
resampling factor ξ and using an interpolation filter h ∈ H, we must rely on the
quantization applied to the resampled signal in (5.2). Since we assume as known
the size of the quantization step, i.e., ∆, we have information about the interval
where the values of the resampled signal y = Xh will lie on.3 Therefore, any pair
(x,h) from the solution space must generate values of the resampled signal y with
the candidate resampling factor ξ inside the interval defined by the quantization
error of the scalar quantizer with step size ∆, that can be written as

zi −
∆

2
< yi ≤ zi +

∆

2
, for i = 0, . . . , Nz − 1.

Consequently, we assume that the feasible region imposed by each observation zi
of the signal under analysis is limited by two hyperplanes that yield the following
property sets

Si = Xi ×Hi =

{

(x,h) ∈ Ξ : − ∆

2
< xT

i h− zi ≤
∆

2

}

, (5.3)

for i = 0, . . . , Nz − 1, and where xi is a column vector built up with the Nh

elements of the i-th row of matrix X. Finally, the feasible solution set for our
problem will be the intersection of these Nz property sets: S = ∩Nz−1

i=0 (Xi ×Hi).
If such intersection leads to S = ∅, then there exists no x ∈ X and h ∈ H that
would generate the vector of observations z with such candidate resampling factor
ξ. Otherwise, an estimate of the original signal x̂ together with an estimate of
the interpolator ĥ can be obtained by taking any (x̂, ĥ) ∈ S.

5.3. Practical Algorithms

One of the widely-known methods for solving feasibility problems in terms
of set-membership theory is the Optimal Value Ellipsoid (OVE) algorithm [76].
However, this method can only be applied when constraints are convex and, in
our particular case, the modeling of the resampling identification problem requires
nonconvex terms. As it can be observed from the definition of the property sets
in (5.3), the constraints of our problem are actually bilinear, due to the product
between the variables x and h. Under these conditions, the feasible solution set
is not necessarily convex, leading to consider nonlinear programming algorithms
as a way to solve the problem.

Before explaining the particular strategy we have designed, we formally intro-
duce the feasibility problem (derived from Section 5.2.1) that is addressed for the

3Note that the matrix X with size Nz × Nh is generated according to (5.1) but with the
elements of the vector x.
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identification of resampled signals: given a vector of observations z̃, a candidate
resampling factor ξ, and a particular length for the interpolation filter Nh, we
want to

find x,h,
subject to x ∈ R

Nx ,h ∈ R
Nh ,

xmin ≤ xi ≤ xmax, i = 0, . . . , Nx − 1,
hmin ≤ hj ≤ hmax, j = 0, . . . , Nh − 1,

−∆
2
< xT

kh− z̃k ≤ ∆
2
, k = 0, . . . , Ñz − 1.

(5.4)

If the problem proves to be feasible, then the forensic analyst could also be
interested in finding an estimation of both the original signal and interpolation
filter that have generated the vector of observations z̃. This can be done by
considering an objective function that measures the squared error between the
resampled signal y = Xh and the vector of observations z̃, leading to the following
optimization problem

minimize ‖Xh− z̃‖22,
subject to x ∈ R

Nx ,h ∈ R
Nh ,

xmin ≤ xi ≤ xmax, i = 0, . . . , Nx − 1,
hmin ≤ hj ≤ hmax, j = 0, . . . , Nh − 1,

−∆
2
< xT

kh− z̃k ≤ ∆
2
, k = 0, . . . , Ñz − 1,

(5.5)

where ‖ · ‖22 denotes the squared Euclidean norm. We remark that since this is
a nonconvex problem, the resulting estimates x̂ and ĥ will probably correspond
to local minima. Given this situation, we have first considered global optimiza-
tion techniques (e.g., branch-and-bound strategies). However, we have found
difficulties in handling large-scale problems (with a few hundreds of variables),
thus deciding to use a local optimization method as a practical way to solve our
problem.

5.3.1. Solver Based on Local Optimization

The main goal of local optimization is not the search for a globally optimal
solution of the problem, but only the pursuit of a locally optimal point that
minimizes the objective function within a feasible region close to it. Local opti-
mization has been deeply studied with the aim of solving nonlinear problems, and
many different algorithmic approaches can be found in the literature. In our case,
we have selected an interior-point method, that is available through the function
fmincon of MATLAB.

In general, local solvers are less computationally demanding than global ones
and, consequently, they can handle in a more suitable way large-scale problems.
Nevertheless, local solvers require a good starting point for the optimization vari-
able in order to work properly. The selection of the starting point is crucial since
it affects the final result provided by the solver. For instance, by choosing a
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starting point that is far from a feasible region, the solver could wrongly classify
a feasible problem as infeasible. This could lead the forensic analyst to wrongly
declare that the observed signal was not resampled by a factor ξ when it actually
was so.

In the following, we focus on the process we have designed to obtain a starting
point near the feasible region of our problem (whenever the problem is actually
feasible). Thus, given a vector of observations z̃, a candidate resampling factor
ξ, and the length of the filter Nh, the following steps are taken:

1. An approximation x(0) of the original signal is first obtained (note that we
use the superindex (·)(0) to indicate starting point variables). To that end,
the vector of observations z̃ is resampled by a factor equal to the inverse of
the candidate resampling factor,4 i.e., by ξ−1 = M

L
.

2. Since z = Q∆ (Xh) ≈ Xh, an approximation of the interpolation filter
can also be obtained if X is known. For this purpose, an approximation
of matrix X, denoted by X(0), is obtained according to (5.1) using the
components of vector x(0) (calculated in the previous step) and using the
considered values for ξ and Nh.

3. After obtaining X(0), an approximation h(0) of the interpolation filter is
constructed as h(0) =

(

X(0)
)+

z̃, where
(

X(0)
)+

denotes the Moore-Penrose

pseudoinverse of matrix X(0).

Even though the obtained starting point, composed of x(0) and h(0), might not
strictly belong to the solution space nor satisfy all the constraints of the problem,
it will be sufficiently close to a feasible region (again, whenever the problem is
actually feasible) and the local solver will be able to find a feasible solution after
several iterations. Notice that when the candidate resampling factor ξ does not
match the actual one ξ̃, the obtained starting point will probably be far from the
true feasible region, thus yielding an infeasible solution.

In practice, for solving the feasibility problem in (5.4), a constant objective
function can be considered. As we will show in next section, this practical im-
plementation, i.e., the local solver together with a good starting point, is able
to successfully solve the feasibility problem in (5.4). Moreover, in those cases
where the resulting solution set is not empty after solving (5.4), this practical
approach is also able to provide locally optimal solutions by further addressing
the optimization problem in (5.5).

4The low-pass filter used in this particular case is designed to avoid aliasing and it is con-
structed from a spectral Kaiser window, independently of h̃.
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Table 5.1: Details of the interpolation filters for different scenarios.

Scenario 1 (kw = 2) Scenario 2 (kw = 4)

ξ̃ < 1 Kaiser, Ñh = M̃kw + 1 Kaiser, Ñh = M̃kw + 1

ξ̃ > 1 Linear, Ñh = L̃kw + 1 Cubic, Ñh = L̃kw + 1

5.4. Experimental Results

The performance analysis of the proposed technique is twofold. In the first
part, synthetic signals are used to quantify the accuracy in solving the feasibility
problem in (5.4), and also to measure the Mean Squared Error (MSE) of the
estimates obtained through the optimization problem in (5.5). In the second
part, a realistic scenario with audio signals is considered.

5.4.1. Performance Analysis with Synthetic Signals

For the evaluation of the feasibility problem in (5.4), we construct the original
signal x̃ using 8-bit precision samples gathered from a discrete uniform distribu-
tion in the interval [0, 255], thus having xmin = 0, xmax = 255 and ∆̃ = ∆ = 1.
We take into consideration a finite discrete set of resampling factors, obtained
by sampling the interval [0.6, 3] with step sizes 0.1 (from 0.6 to 2) and 0.5 (from
2 to 3). The same set is used for the true resampling factor ξ̃ and for checking
the feasibility problem with ξ. Regarding the interpolation procedure, we employ
the filters specified under Scenario 1 in Table 5.1: a linear interpolator for ξ̃ > 1,
and a low-pass FIR filter designed through a spectral Kaiser window when ξ̃ < 1.
Note that both filters have their coefficients inside the interval [−1, 1], thus we
assume hmin = −1 and hmax = 1. For simplicity, Nh is selected according to
Table 5.1, but using ξ.

Taking into account all these settings and fixing the number of observations
to Ñz = Nz = 512, the study of the feasibility problem is carried out with
the proposed local solver providing a starting point (computed as in Section
5.3.1). In Figure 5.3, the obtained results are shown in a graphical manner, where
the horizontal axis represents the true resampling factor ξ̃, and the vertical axis
contains the tested candidate resampling factor ξ. Green boxes mean that the
problem has a feasible solution for the pair (ξ̃, ξ), while blue ones symbolize that
there exists no solution that satisfies all the constraints of the problem.

There are three important aspects that become apparent from the results
shown in Figure 5.3:
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Figure 5.3: Illustrative representation of the solutions given by the local solver
to the feasibility problem in (5.4), for the Scenario 1 in Table 5.1. Green boxes
imply feasibility, whereas blue boxes represent infeasibility.

1. When the feasibility problem is evaluated for a candidate resampling factor
ξ < 1, there is always a feasible solution regardless of the true resampling
factor. We must remark that this is not an error due to the set-membership
approach; instead, in this case there is not sufficient information (prior
or observed) to rule out such ξ. In mathematical terms: the number of
degrees of freedom of the problem, which is the dimension of the solution
space, i.e., Nx + Nh, is larger than the number of observations Nz, given
that Nx = Nz

M
L
. This problem could be overcome by adding enough a

priori knowledge about the distribution of the original signal.

2. All the cases where the candidate resampling factor ξ coincides with the
true one ξ̃ have always been categorized as feasible problems. This is an
intrinsic property of the set-membership formulation of the problem and
perhaps the most valuable feature of this method.

3. For several resampling factors ξ̃ > 1 (e.g., ξ̃ ∈ {1.5, 2, 3}), when ξ > 1 the
solver is capable of finding a feasible solution, even if the true resampling
factor is not equal to the candidate factor (e.g., ξ̃ = 1.5 and ξ = 1.2). This
is due to the existence of solutions that are theoretically feasible. However,
given that the opposite case (e.g., ξ̃ = 1.2 and ξ = 1.5) will not yield a
feasible solution, no ambiguities are possible.

From the last point, we have found that, when an original signal is resampled by
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(b) Scenario 2

Figure 5.4: Accuracy of the proposed approach achieved by the local solver under
the two scenarios of Table 5.1, for different number of observations.

a factor ξ̃ > 1, then the set of all the possible candidate resampling factors ξ > 1
that lead to a feasible solution (besides the case ξ = ξ̃), are:

ξ ∈
{

L

M
:
L

M
< ξ̃, (L = kL̃) ∧ (M > kM̃), k ∈ N

+

}

, (5.6)

where L ∈ N
+ and M ∈ N

+ must be coprime, and ∧ represents the logical
conjunction operation. This property also holds for the second scenario in Table
5.1.

As a conclusion, excepting the cases where the resampling factor ξ̃ < 1, if
we have a sufficiently large number of observations, then we are able to exactly
match the resampling factor applied to the original signal.

5.4.1.1. Accuracy analysis for different number of observations

To quantify the performance of the method solving the problem in (5.4) we
use the accuracy, defined as the following ratio:

Accuracy =
TP + TN

TP + FP + TN+ FN
,
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where TP,TN,FP,FN represent the number of true positives, true negatives, false
positives and false negatives, respectively. In our problem, a true positive occurs
when a feasible solution is found in (5.4) and the candidate resampling factor
matches the actual one, i.e., ξ = ξ̃. On the other hand, a true negative takes
place when no feasible solution is achieved in (5.4) and the candidate resampling
factor is indeed different from the true one, i.e., ξ 6= ξ̃. Note that for those
cases where a feasible solution is theoretically possible even if ξ 6= ξ̃ (i.e., for the
candidate resampling factors in (5.6) and for ξ < 1 when ξ̃ > 1), we will consider
that a true positive case occurs if such feasible solution is found.

Figure 5.4 shows the accuracy obtained in the two scenarios described in
Table 5.1 as a function of the true resampling factor ξ̃ and for different number
of observations Ñz ∈ {64, 128, 256, 512}. From this plot, we can observe that the
accuracy improves as the number of observations increases, which is the expected
behavior, since with each new piece of information the feasible set in the solution
space generally gets smaller. Furthermore, by comparing the results gathered
from the two scenarios, the dependence between the number of observations and
the degrees of freedom of the problem becomes evident, obtaining generally worse
performance in the second scenario where the order of the interpolation filters is
larger. Such dependence also justifies the smaller accuracy when ξ̃ < 1 in both
scenarios.

5.4.1.2. MSE analysis for different number of observations

Concerning the results obtained when the optimization problem in (5.5) is
solved (after having reached a solution in (5.4)), we will only show, for the sake
of brevity, the empirical MSE of ĥ (i.e., (1/Nh)‖h̃ − ĥ‖2). Taking into account
the two scenarios defined in Table 5.1, the evolution of such empirical MSE as a
function of the resampling factor and for different number of observations Ñz ∈
{128, 256, 512}, is depicted in Figure 5.5. As we can observe, the MSE of ĥ
decreases as the resampling factor increases and, although the differences are
not very significative, smaller values are generally attained when the number of
observations increases. The important reduction of the estimation error for ξ̃ > 1
is mainly due to the higher redundancy that is present on those resampled signals.
The noisy shape of the MSE (e.g., ξ̃ = 1.6 in Figure 5.5(b)) is a consequence
of the local optimization performed, which in some cases converges to a local
minimum that can be far from the global optimum point, but still yielding a
feasible solution.

5.4.2. Performance Analysis with Real Audio Signals

For the evaluation of the set-membership approach solving the feasibility prob-
lem in (5.4) within a real scenario, we use the “Music Genres” audio database
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Figure 5.5: MSE of ĥ when solving the optimization problem in (5.5) with the
local solver, under the scenarios of Table 5.1, and for different number of obser-
vations.

[72], from which we take a subset of 100 uncompressed audio files with 10 differ-
ent music styles. Each original audio signal is quantized to a 16-bit precision per
sample, thus having xmin = 0 and xmax = 216− 1. For comparison, the same tests
are carried out with two state-of-the-art methods: the “EM method” proposed
in [8], and the “ML method” in [77] (i.e., the one explained in Chapter 4). Given
that the ML method has only been defined for linear interpolators and ξ > 1, we
consider a discrete set of resampling factors in the interval [1.1, 2] (sampled with
a step size of 0.1) and a linear interpolation filter as the one specified in Scenario
1 from Table 5.1.

In this case, we are interested in comparing the percentage of correct
resampling factor estimation for different number of observations: Ñz ∈
{64, 128, 256, 512}. In Figure 5.6, we report the obtained results with each
method. The best performance is achieved by the ML method, which actually
never fails with any of the considered parameters. These optimal results are pos-
sible due to the complete knowledge of the original filter used in the resampling
process. Interestingly, a similar performance is obtained with the proposed set-
membership approach (except for Ñz = 64), where limited assumptions are made
about the filter, thus increasing the applicability of the method. On the other
hand, the EM method clearly exhibits some of the shortcomings mentioned in the
Introduction, i.e., a high dependency on the number of observations and a worse
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Figure 5.6: Comparison of the correct estimation percentage of the proposed set-
membership technique (dotted lines) versus the ML method (solid lines) and the
EM method (dashed lines).

performance for those resampling factors close to 1 due to the windowing effect.
These limitations are not an issue for the proposed set-membership technique.

5.5. Conclusions

Set-membership estimation theory has proven to be a useful resource for ad-
dressing the problem of resampling factor estimation. The presented technique
provides reliable solutions that do not violate any constraint of the problem, and
thus are a valuable asset for a forensic analyst, who needs to provide unquestion-
able proofs of tampering. Moreover, the evaluation of the proposed approach in
a real scenario with audio signals has demonstrated its good performance.



Chapter 6

An SVD Approach to Forensic
Image Resampling Detection

On researching open questions that have arisen from the previous chapter,
such as the number of observations that are needed to discard a candidate re-
sampling factor, we have found out that image resampling detection (whenever
the applied resampling factor is larger than one) can be performed via subspace
decomposition. In particular, delving into the linear dependencies induced in
an image after the application of an upsampling operation, we have discovered
that interpolated images belong to a subspace defined by the interpolation kernel.
Within this framework, by computing the SVD of a given image block and a mea-
sure of its degree of saturated pixels per row/column, we derive a simple detector,
described along this chapter, which is capable of discriminating between upsam-
pled and genuine images. Furthermore, the proposed detector shows remarkable
results with blocks of small size and outperforms state-of-the-art methods.

6.1. Introduction

A first attempt to characterize the linear dependencies induced by resampling
through the SVD of a resampled image has been carried out in [22] by Wang and
Ping, resorting to an SVM classifier to perform the detection of resampling. A
deeper understanding of the linear correlations originated locally has been de-
scribed by Kirchner in [13], where a local predictor per each row/column of the
image is computed. By analyzing in the frequency domain the differences between
the obtained predictor coefficients, Kirchner provided an effective resampling de-
tector, especially for downsampling. However, as indicated in [78], the frequency
analysis presents some drawbacks impairing the performance of the detector when
a reduced number of samples is available and also when a regular structure or a
periodic pattern is present in the original image under analysis.

93
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With regard to the last two works, and motivated by their shortcomings,
here we investigate the local linear dependencies introduced once an upsampling
process is applied to an image. As a result, we propose a very simple method
that relies on the calculation of the SVD of a given block from an image, with-
out resorting to an SVM classifier and being able to produce suitable results by
processing blocks of small size. Note that we do not address the downsampling
process in this chapter, but we further provide in Chapter 9 (cf. Section 9.1)
some insights about how the proposed detector could be adapted to deal with
downscaled images.

The remaining of the chapter is organized as follows: the theoretical analysis
of the linear dependencies in upsampled images and the basic idea behind the
proposed detector are explained in Section 6.2. The formal definition of the
developed detector is tackled in Section 6.3, while the experimental results are
treated in Section 6.4. Finally, conclusions are reported in Section 6.5.

6.2. Problem Modeling

Recalling the thorough description of the 2-D resampling process introduced
in Section 1.2.2, let us define a digital image with a single color channel as a P×Q
matrix F with elements Fp,q and indices p ∈ {0, . . . , P−1} and q ∈ {0, . . . , Q−1}.
The values of each element Fp,q are discrete quantities whose range is determined
according to the image bit depth.

The resampling operation is assumed to be linear, so each pixel value in the
resampled image G is computed by linearly combining a finite set of neighboring
samples coming from the original image. We consider that the applied resampling
factor ξ uniformly scales each dimension of the original image and we define it as
ξ , L

M
, i.e., the ratio between the upsampling factor L ∈ N

+ and the downsam-
pling factor M ∈ N

+. The application of this resampling operation involves two
main steps: the definition of the resampling grid with the new pixel locations,
and the computation of the values in those locations. In a single expression, each
pixel value Gi,j of the resampled image can be obtained as follows:

Gi,j =
P−1
∑

k=0

Q−1
∑

l=0

h

(

i
M

L
+ δ − k

)

h

(

j
M

L
+ δ − l

)

Fk,l, (6.1)

where δ denotes a shift between the two sampling grids1 and h(·) represents the
impulse response of an interpolation kernel whose length or width is denoted by
kw.

1As noted in Section 1.2.2, in practice, the shift corresponds to δ , 1

2

(

1 + M

L

)

.
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Column-ordered vectors

Figure 6.1: Illustrative example showing how the linear transformation is estab-
lished.

The analysis in the remainder of this section is applicable to any linear kernel
regardless of its width or impulse response, such as those gathered in Table 1.1;
however, for non-linear kernels, the forthcoming modeling could only be under-
stood as an approximation.

Notice that after computing all the pixels of the resampled image, its values
must fit the original resolution or bit depth of the input image. Therefore, as a
last step, the resampled values must be quantized to the original precision, having

Ri,j = Q∆ (Gi,j) , (6.2)

where Ri,j denotes each element of the quantized resampled image R and Q∆ (·)
represents a uniform scalar quantizer with step size ∆.

From the resampling operation shown in (6.1) and following the graphical
example from Figure 6.1, it can be easily checked that any resampled value Gi,j

is calculated using exactly the same interpolation weights as for Gi+k1L,j+k2L

with k1, k2 ∈ N. More precisely, for any k1, k2 ∈ N, the column-ordered vector
y ∈ R

(L+2)2 that is built up from an L×L block of the resampled image starting
at sample Gk1L,k2L and adding a surrounding border of one pixel, is computed
through the linear combination of samples from the column-ordered vector x ∈
R

(M+kw)2 , which, in turn, is set up from an M ×M block of the original image
starting at sample Fk1M,k2M and adding a border of kw/2 pixels.2 Notice that the

2For the sake of simplicity, we assume that the width of the kernel is an even number, as it
is the case for those collected in Table 1.1.
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amount of border pixels to add to each block depends on the shift δ introduced
between the original and the resampled grid.

According to this observation, each column-ordered vector from the resampled
signal y is obtained through the following linear transformation

y = Hx, (6.3)

whereH represents the interpolation matrix containing the weights of the interpo-
lation kernel, as depicted in Figure 6.1. From the linear transformation in (6.3), it
is clear that each column-ordered vector y belongs to an (M + kw)

2-dimensional
subspace of R(L+2)2 generated by matrix H. We will use Y for denoting this
subspace, which is defined as

Y ,
{

w ∈ R
(L+2)2 : w = Hs, s ∈ R

(M+kw)2
}

.

However, note that due to the quantization applied after performing the resam-
pling operation in (6.2), the observed vectors z of length (L+2)2 (i.e., starting at
sample Rk1L,k2L with k1, k2 ∈ N and adding a surrounding border of one pixel),
are a perturbed version of the interpolated ones. As long as the statistical dis-
tribution of the input signal is smooth and its variance is much larger than the
square quantization step ∆2, each vector z can be modeled as

z = Hx+ n,

where the new variable n is a random vector, whose components are i.i.d. with
zero mean and variance σ2

N = ∆2

12
(i.e., the mean and variance of the quantization

noise).

Based on this model, by stacking K vectors z into a K × (L+ 2)2 matrix, we
obtain an observation matrix ZK that can be represented in terms of its singular
value decomposition, having

ZK = UΣVT ,

where U ∈ R
K×K is a unitary matrix whose columns are the left-singular vectors

of ZK ; Σ ∈ R
K×(L+2)2 is a rectangular diagonal matrix whose diagonal elements

σi (with i ∈ {0, . . . , (L+2)2 − 1}), are known as the singular values of ZK which
are sorted in descending order; and, finally, V ∈ R

(L+2)2×(L+2)2 is a unitary matrix
with the right-singular vectors of ZK .

From this decomposition, it is expected that the (M + kw)
2 dominant right-

singular vectors of ZK (i.e., those corresponding to the largest singular values)
span the signal subspace Y (induced by the resampling operation), while the
remaining ones span the noise subspace (caused by the rounding operation), i.e.,
for i ≥ (M + kw)

2 we have σi ≈
√

Kσ2
N , for K large enough.

In Figure 6.2, we show an example of the evolution of the singular values
when matrix ZK is built from a block of size 512 × 512 of an image resampled
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Figure 6.2: Evolution in logarithmic scale of the singular values of matrix ZK built
from a block of size 512 × 512 from the green channel of a quantized resampled
image without demosaicing traces. ξ = 7

5
= 1.4 and linear kernel.

by ξ = 7
5
= 1.4 with a linear kernel (kw = 2). It is easy to see how the first

(M + kw)
2 = 49 singular values (out of (L + 2)2 = 81) have a magnitude above

the quantization noise level
√

Kσ2
N (with K = 5184 and ∆ = 1), as it was

anticipated.

Note that the proposed scheme assumes L to be known at the detector; of
course, this does not hold in real forensic scenarios. As a plausible solution,
an iterative procedure could be considered covering all the possible values of L,
but this would significantly increase the computational burden. Therefore, we
simplify the process of resampling detection by directly resorting to the singular
value decomposition of an image block. Then, we explore when the singular
values vanish in such a manner that the signal subspace is discernible from the
noise subspace.

6.2.1. Practical Solution

Let us define Z as a matrix gathering pixel intensity samples from a block of
size N × N of a quantized resampled image R under test. Due to the presence
of noise (e.g., rounding errors after resampling), we will initially assume that
matrix Z has N non-zero singular values, i.e., Z has full rank, but at the end of
this section, a discussion on how to manage rank-deficient matrices will also be
introduced.
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Figure 6.3: Evolution in logarithmic scale of the singular values of an image block
Z of size 512×512. Dashed lines represent the results from a non-resampled image
and solid lines correspond to an image resampled with ξ = 2 and linear kernel.

The rows (or columns) of Z can be treated as N points belonging to an N -
dimensional space. In the previous analysis, we have seen throughout the appli-
cation of the SVD to ZK that in a resampled image, the vectors of length (L+2)2

can be represented by (M +kw)
2 dimensions, yielding a dimensionality reduction

of a factor around ξ2 (i.e., the applied upsampling factor in each direction). By
considering now each row/column of Z as a vector of length N , it will be possible
to represent the set of N points with a smaller number of dimensions k ≈ N

ξ
,

since each single row/column has been resampled solely by ξ.

This will be reflected in the calculation of the SVD of Z, where only the first
k ≈ N

ξ
singular values will have a considerably larger magnitude than the rest.

Conversely, if we take a block Z from a never-resampled image, there will not
exist such characteristic linear dependency between neighboring samples and all
singular values will have a magnitude significantly larger than the noise level in
a resampled image.

Figure 6.3 draws a comparison in terms of singular values in two different
cases, i.e., when matrix Z is built from a block of size 512 × 512 from the green
channel of a non-resampled image without demosaicing traces (dashed line) and
from its resampled version, obtained by using ξ = 2 and a linear interpolation
kernel (solid line). In both cases, matrix Z has N = 512 non-zero singular
values, but as it can be checked in Figure 6.3, the magnitude of the singular
values from the resampled image drops more sharply than the corresponding one
coming from the non-resampled image. For the resampled image, the number k
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of singular values significantly larger than the noise level approaches N
ξ
, so in this

particular case k ≈ 512
2

= 256. This is due to the fact that approximately half
of the samples of each row/column of Z can be computed in this resampled case
as a linear combination of the remaining ones. For non-resampled images, there
should only be a significant drop-off in indices close to the rank of the matrix
under analysis.

Since we are assuming the applied resampling factor to be larger than one, we
can state that typically the total amount of variance of the input signal explained
by those singular values with indices smaller than i ≈ N

ξ
− 1 for any image

resampled by ξ, will be larger than for a non-resampled image. As a consequence,
the magnitude of the singular values at such index is also expected to be smaller.
This fact indicates that a statistic accounting for the magnitude of a singular
value at the correct position can be discriminative for detecting the application
of a resampling operation in a given image block.

As indicated above, any matrix Z built from an image block is assumed to
have N non-zero singular values; however, in practice, undesirable artifacts as
pixel saturation may arise, thereby removing part of the noise due to rounding
and yielding singular values with negligible magnitude. The presence of satura-
tion and the possibility of having some linear dependency between samples will
affect the expected evolution of the singular values of Z, producing two possible
outcomes:

1. The number of non-zero singular values is substantially smaller than N .
This rarely happens unless several rows/columns of matrix Z are completely
saturated.

2. The number of non-zero singular values is close to N , but their magnitude
vanishes more sharply than usual. This takes place when linear depen-
dencies are present among the rows/columns of Z, and can be boosted by
saturations.

Therefore, the detector will have to deal with the degree of saturation borne by
any image block under analysis and it will also probably consider a means for
deciding when a computed singular value is negligible. In the next section, the
adopted detection strategy is described.

6.3. Proposed Detector for ξ > 1

From the analysis carried out on the previous section, it is clear that by
exploiting the magnitude of the singular values at a certain index we can derive a
hypothesis test for image resampling detection. In the definition of our hypothesis
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test, the observed data consists of an N × N matrix Z containing a block of
samples coming from one of the color channels of a digital image which may
have been resampled or not. Under the null hypothesis, i.e., H0, we assume
that the observed data Z has never been resampled; while, under the alternative
hypothesis, i.e., H1, we assume that the observed data has been resampled by
any factor greater than one.

The definition of the test statistic ρ will depend on the degree of saturation
that the image block under analysis may have experienced, as pointed out in the
last part of Section 6.2.1. By denoting γrow (respectively, γcolumn) as the quotient
between the total number of saturated pixels in a block (i.e., pixels equal to 255
for an 8-bit depth image) and the number of rows (respectively, columns) that
contain at least one saturated pixel, the degree of saturation s, is defined as

s ,
1

N
max {γrow, γcolumn} .

On the other hand, to determine which of the computed singular values are
negligible, we use a tolerance level that is defined as a function of σ0 (the largest
singular value of Z) and N , i.e., Nǫ(σ0).

3 Moreover, we define a variable r ≤ N
that represents the total number of singular values above this tolerance level.
Accordingly, the proposed test statistic is:

ρ ,











0, if r < 0.1N,

log
(

σν−⌊0.05N⌋−1

)

, if s ≥ 0.45 and r > 0.95N,

log (σν−2) , otherwise,

(6.4)

where ν =
⌊

r
ξmin

+ 0.5
⌋

represents the rounded version of the maximum number

of significant dimensions that could be achieved by a resampled image with any
ξ ≥ ξmin. Hence, ξmin is the minimum resampling factor that can be detected
by our detector. Notice that the first two cases contemplated in (6.4) have been
heuristically derived and are set to avoid the two effects caused by pixel saturation
discussed at the end of Section 6.2.1.

Assuming all the particularities for obtaining the test statistic, we expect to
find larger values of ρ for non-resampled images, thus accepting the hypotheses
according to the following conditions:

H0 : ρ > T,

H1 : ρ ≤ T,

where T is a predefined threshold. Several experiments are performed next to
study the validity of the proposed approach.

3Function ǫ(x) represents the function eps in MATLAB, measuring the positive distance
from |x| to the next larger in magnitude floating point number of the same precision as x.
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Non-demosaiced

image

(a) Without demosaicing traces

Demosaiced

image

(b) With demosaicing traces

Figure 6.4: Schematic representation of how the non-resampled image F is built.

6.4. Experimental Results

The designed detector is tested over all the uncompressed images belonging
to the Dresden Image Database [79] and stemming from Nikon cameras (a total
of 1317 images). To perform each full-frame resampling operation, the image
processing tool convert from ImageMagick’s software is used. As interpolation
kernels, we select those that are commonly available in any image processing
tool, namely: Linear; from the family of cubic filters we choose Catmull-Rom
and B-spline; and, finally, a three-lobed Lanczos-windowed kernel. The employed
discrete set of resampling factors is defined in the interval [1.05, 2] (sampled with
a step size of 0.05), given that these are the most appropriate upsampling factors
to avoid the introduction of visible distortions.

Since our main objective is to unveil tampered regions (which might be small)
through the detection of resampling inconsistencies, we are interested in studying
the achieved performance of our detector with blocks of small size, thus leading us
to processN×N image blocks Z withN = 32. The analysis of resampling traces is
then carried out by taking the center 32×32 block of the green channel from each
image under study. The evaluation of the performance of the proposed detector
is conducted in terms of AUC (Area Under the ROC Curve) and detection rate
at a fixed False Alarm Rate (FAR), i.e., concretely at FAR ≤ 1%. All results are
compared with the detector proposed by Kirchner in [13], because this method
outperforms Popescu and Farid’s detector [8], which is usually considered to be
the most reliable detector.

The performance analysis is twofold: first, images without demosaicing traces
are processed, and then, demosaiced images are tested. The process for obtain-
ing non-resampled images without demosaicing traces consists in getting access
to the output of the camera sensor (through the image processing tool dcraw)
and then picking always the same-positioned green pixel from the two available
samples in each 2× 2 Bayer pattern, as illustrated in Figure 6.4(a). On the other
hand, non-resampled images with demosaicing traces are obtained by extracting
directly the green channel of the demosaiced image under analysis, as depicted
in Figure 6.4(b). In each of these cases, both detectors must also be applied on
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Figure 6.5: Evaluation of the proposed detector (solid lines) against Kirchner’s
detector (dashed lines) in terms of AUC and detection rate for blocks of size 32×
32. The first row contains the results from images without traces of demosaicing,
while the second row is for images with demosaicing traces.

all the non-resampled images in order to fix the detection thresholds (i.e., T ).
For our test statistic we take ξmin = 1.05, and a neighborhood size K = 3 for
Kirchner’s detector, as specified in [13].

The first row of Figure 6.5 shows the performance of the proposed approach
when testing images without demosaicing traces. From these results, we can state
that our method shows better performance with B-spline and Linear interpolation
kernels than with Catmull-Rom and Lanczos, which commonly get the worst
results. Our detector presents some difficulties with resampling factors close to
one, i.e., for 1.05 ≤ ξ ≤ 1.2, whereas less issues arise when the resampling factor
approaches 2. Although not being reported, additional experiments have been
performed increasing the size of the block (e.g., with N = 128), obtaining values
of AUC ≥ 0.998 for all tested filters and ξ ≥ 1.1.

An interesting aspect is that our detector shows a strong gain with respect to
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Kirchner’s when images are resampled with the B-spline kernel, regardless of the
value of ξ. For instance, in Figure 6.5(b), Kirchner’s detection rate is below 0.1
for all tested ξ, while our detector shows a detection rate almost always above 0.9
(excepting ξ = 1.05). Therefore, the proposed SVD-based analysis has proven
to be very convenient for B-spline resampling detection. A second stimulating
feature is that our detector needs a very small set of samples (i.e., 32× 32 pixels)
to work remarkably well, while this particular size starts to be a problem for
Kirchner’s detector.

The second row of Figure 6.5 collects the results arising from images with
demosaicing traces. By comparing the achieved outcomes in this case with respect
to the previous ones (i.e., without traces of demosaicing), it becomes apparent
that our detector works better when it has to distinguish purely non-resampled
(i.e., non-demosaiced) images against their upsampled version. The reason is that
when non-resampled images exhibit demosaicing traces, there exist unavoidable
linear dependencies which affect the expected value of the statistic ρ for genuine
images. Usually, these linear correlations caused by the demosaicing process are
not so strong as the ones introduced by the resampling operation (mainly because
current demosaicing algorithms are adaptive and, commonly, non-linear), but
this will harm to some extent the idea behind the use of the SVD as a means to
distinguish linearly correlated data against uncorrelated data.

Apart from this global lost in performance, the behavior of our detector is
almost identical to the one discussed for images without demosaicing traces. In
general, all the experimental results show that our detector is a reliable solution
for image resampling detection.

6.5. Conclusions

In this chapter, a simple strategy for resampling detection has been derived.
The proposed detector only needs to compute the SVD of a given image block and
a measure of its degree of saturated pixels per row/column, for discerning upsam-
pled images from genuine ones. The achieved performance is promising and when
compared with Kirchner’s state-of-the-art method, our detector outperforms it.
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Chapter 7

Detection of Video Double
Encoding with GOP Size
Estimation

Video forensics is an emerging discipline that aims at inferring information
in a blind fashion about the processing history undergone by a digital video.
Currently, most of the available techniques follow concepts inherited from image
forensics or work under restrictive assumptions such as the use of a fixed quan-
tization structure which is rarely adopted in real scenarios due to bandwidth or
storage constraints. However, in this chapter, we introduce a new forensic foot-
print, whose origin is directly related to the encoding strategy followed by a video
encoder when taking decisions on which coding mode is the most convenient (in
terms of quality and bitrate) for compressing a particular macroblock. Based on
the variation of such footprint when double compression is performed, we propose
a method for detecting whether a video has been encoded twice and, if that is the
case, we estimate the size of the Group Of Pictures (GOP) employed during the
first encoding. As shown in the experiments, the derived approach proves to be
very robust even under realistic settings (i.e., when encoding is carried out using
typical compression rates), that are barely treated by existing techniques.

7.1. Introduction

Edition and composition of video sequences is nowadays easier due to the
availability of a large number of video editing software tools. As pointed out
in Section 1.3.1, these tools do not work directly on the compressed domain,
but on the recovered spatio-temporal domain. Therefore, when editing a single
compressed video, an initial decoding step and a posterior re-encoding process are

107
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required. In most cases, the second encoding will leave a characteristic footprint
in the resulting video sequence that can be detected and further analyzed to
extract information about the processing history of the original video sequence.

Most of the related works investigating footprints left by this double encoding
process have been covered in Section 1.3.3. For instance, by relying on the result-
ing double quantization, authors in [43] propose a method to identify tampered
regions on MPEG-2 video sequences with only I-frames, i.e., in a similar way as
with digital images. The same authors propose in [41] to take into account the
information about the motion error when P-frames are used, as a means to detect
deletion or addition of frames.

Although these two techniques make the localization of tampered regions pos-
sible (either in the spatial or temporal domain), they do not allow to acquire
knowledge about the origin of a given video stream. In this sense, some works
have been developed trying to retrieve information about the processing history
of a compressed video. As an example, estimation of video coding parameters
has been addressed in [80], providing a method to estimate MPEG-2 settings
from the decoded video stream. Valenzise et al., in [81], later extend this work
to H.264 video, estimating the quantization parameter and motion vectors from
decoded frames.

Concerning the first steps in the processing history of a digital video,
Bestagini et al. have proposed an approach in [39] for the identification of the
first codec applied (out of three possible ones) to a video sequence that has been
doubly encoded. This method works by recompressing the video under analysis
with the three possible codecs and computing a similarity measure between the
two sequences. Based on the same approach, Luo et al. [38] propose a method
for detecting double encoding in MPEG-2 compressed videos, by recompressing
a given sequence with different GOP lengths and then performing an analysis
of blocking artifacts. The main drawback of all the proposed techniques for de-
tection of double encoding is the way they are affected by the second encoding,
since their performance drops very rapidly as the strength of the last compression
increases.

Motivated by these shortcomings and with the aim of generalizing the double
encoding detection to a scenario with several codecs, different GOP sizes, and
distinct target bitrates, we propose to use a robust and very distinctive footprint
that arises from the second encoding of a video sequence. Assuming that a differ-
ent GOP size is applied during the second compression, an anomalous variation
of the macroblock prediction types takes place on the P-frames that were origi-
nally encoded as I-frames in the first encoding. An advantage of this Variation
of Prediction Footprint (VPF) is that its presence can be unveiled by partially
decoding the video, without requiring subsequent recompressions as in [38, 39].
Furthermore, given that the VPF becomes apparent only in P-frames that were
encoded as intra in the first encoding, we also describe a method to estimate the
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length of the GOP used in the first compression.

GOP size estimation is not only an important step toward assessing the pro-
cessing history of a digital video, but can also act as a catalyst for further forensic
analysis, e.g., tampering detection. Although in the succeeding sections we are
not targeting video doctoring detection, in the next chapter we will see how the
estimation of the GOP size can help to localize intra-frame forgeries in MPEG-2
videos.

In the next section, we introduce the considered scenario for double encod-
ing detection, analyzing why the VPF appears. In Section 7.3, we explain how
this particular footprint can be measured and discuss our method for the estima-
tion of the first compression GOP size. The experimental results for validating
the detection accuracy and the performance of the estimator are presented in
Section 7.4. Finally, Section 7.5 concludes this chapter.

7.2. Preliminaries and Problem Statement

In this chapter, the forensic analysis of compressed video sequences is inves-
tigated on three major video coding standards, namely MPEG-2 [24], MPEG-4
[25] and H.264 [26]. From the description in Section 1.3.2, we have seen that
each of these standards defines its own coding characteristics, but their design
is built over a common block-based hybrid video coding approach, thus sharing
several syntactic features. In this sense, the following analysis will not focus on a
particular compression standard, since the footprint we introduce here relies on
principles that are valid for the three mentioned standards.

For the sake of simplicity, we do not contemplate the use of B-frames in this
work. Therefore, we constrain the compression to be performed according to the
baseline profile for H.264 and to the equivalent simple profile for MPEG-2 and
MPEG-4. These profiles support only I-frames and P-frames, along with three
main types of macroblocks: intra-coded macroblocks (I-MB), predictive-coded
macroblocks (P-MB) and skipped macroblocks (S-MB). In particular, the mac-
roblocks of an I-frame can only be encoded by means of intra coding modes (i.e.,
I-MB), while in P-frames any of the available coding modes can be used, thus
containing macroblocks of any type (i.e., I-MB, P-MB, or S-MB). Every stan-
dard proposes its own coding modes for each type of frame with the final goal
of increasing the coding efficiency and some of them are collected in Table 7.1.
Note that even if the same name is used, the particular implementation of each
mode could be different from one standard to another, but maintaining a similar
functionality. Other existing modes and sub-modes are not presented for brevity.
With the aim of easily identifying a coding mode applied to a macroblock (inde-
pendently of the standard), the last row of Table 7.1 provides the three types of
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Table 7.1: Available coding modes for I- and P-frames for each standard.

❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵
Standards

Modes
Intra Coding Inter Coding

MPEG-2 INTRA-16×16 SKIP INTER-16×16

MPEG-4 INTRA-16×16 SKIP
INTER-16×16
INTER-8×8

H.264 SKIP

INTER-16×16
INTRA-4×4 INTER-16×8
INTRA-16×16 INTER-8×16

INTER-8×8

Macroblock type I-MB S-MB P-MB

macroblocks we study along this chapter. The background color of each cell will
allow the visual classification of these types of macroblock in further illustrative
examples. Finally, we will assume that the GOP structure is fixed for each video
sequence and for the extraction of the VPF we will only process the luminance
component.

Let us now consider the following scenario. In the first place, during the
capture of a scene, a first compression is performed with an arbitrary GOP size,
denoted by G1, and a fixed constant bitrate, represented by B1. Then, after
the reconstruction of the video sequence in a raw uncompressed video format,
a second compression (temporally aligned with the first one) is carried out on
the uncompressed sequence, but with a different GOP size, i.e., G2 such that
G2 6= G1, and a fixed constant bitrate, i.e., B2, that can be equal or different from
the one used in the first compression. Assuming this double encoding framework,
a specific variation of the number of I-MB and S-MB shows up in the P-frames
previously encoded as I-frames in the course of the first compression.

To get a better understanding on this change of macroblock types, we first
describe an example where this variation does not take place and then, we analyze
the opposite situation. Figure 7.1 refers to the first case where a double encoding
with G1 = 45 and G2 = 50 is taken into account. The conversion between the
types of frames for the indices 29, 30 and 311 is illustrated in Figure 7.1(a), and as
we can see, each P-frame in the first compression is encoded again as a P-frame.
From Figures 7.1(b)-(d), where the macroblock types for the doubly compressed
P-frames are overlaid, we cannot notice a clear variation of the number of each
type of macroblock between the 3 depicted frames.

Nevertheless, if we just change the GOP size in the first compression to
G1 = 30 and we repeat the same double encoding, we get the results shown
in Figure 7.2. In this case, as it is depicted in Figure 7.2(a), the frame with index

1Note that we assume that the frame indices start counting from 0.
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P P P2
nd

29 30 31

(a) G1 = 45, G2 = 50 (b) Frame 29 (c) Frame 30 (d) Frame 31

Figure 7.1: Example where the VPF is not present. Leftmost picture shows the
types of frames with indices 29, 30 and 31 for both compressions. The remaining
three pictures represent the macroblock types for each frame. The color of each
macroblock is established according to the last row of Table 7.1. Both first and
second encodings are carried out using the x264 library, with a QP fixed to 20.

P I P1
st

P P P2
nd

29 30 31

(a) G1 = 30, G2 = 50 (b) Frame 29 (c) Frame 30 (d) Frame 31

Figure 7.2: Example where the VPF becomes apparent in frame 30. The above
details in Figure 7.1 also apply to this figure.

30 is converted from an I-frame to a P-frame in the second compression. Check-
ing the corresponding macroblock types for the frame 30 in Figure 7.2(c), we can
easily appreciate a noticeable increase of I-MB and a considerable reduction of S-
MB. Hence, the VPF takes place in the frame number 30. Since until this frame
nothing changes from the previous case, we get exactly the same macroblock
types for frame 29, and, as it can be observed, the number of each macroblock
type in the frame 31 returns to its normal value, even if the underlying grid has
changed.

The explanation of this effect is based on the different way an I-frame is
encoded with respect to a P-frame. Generally, the quantization matrix or the
quality factor for encoding an I-frame differs from the one considered for a P-
frame because I-frames are used directly or indirectly as a reference for encoding
several future frames. Besides, the following effects are observed:

Change of P-MB or S-MB in homogeneous regions into I-MB. In general,
the use of I-MB in a P-frame is intended for encoding more efficiently a
region where there is not a good match in previous reference frames, like a
new uncovered region.
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In this case, the compression of a reconstructed I-frame with a P-frame
(whose reference frame will probably not be so correlated with this uncom-
pressed frame) will lead to a less efficient encoding in general. However,
if the changes introduced by the I-frame are small in homogeneous regions
(for instance, like a change in the DC component of a whole block), then
those blocks will be more efficiently coded as I-MB than P-MB where at
least a motion vector should be considered and more bits would be needed.
That is the main reason why I-MB appear in smooth regions.

Change of S-MB in static regions into P-MB. The use of skipped mac-
roblocks is very likely for any encoder given that neither residual informa-
tion nor motion vector are needed and a lot of bits are saved.

Nevertheless, in the case we are studying, when a reconstructed I-frame
comes into play during the encoding of a P-frame, small variations are
introduced in static regions with respect to its reference frame and, thus,
the use of S-MB is no longer possible. Consequently, P-MB must be used
instead for satisfying the perceptual requirements.

As we stated earlier, even if each standard performs prediction and quanti-
zation in a different way, the common characteristics shared by the codecs make
them agree with the behavior described above. Of course, the presence of VPF
will also depend on the particular implementation of each codec, but since the
main objective of any implementation is to reduce the bitrate according to a pre-
defined quality, the observed behavior should also be consistent with any specific
implementation.

As a conclusion, if we can detect those variations in the number of I-MB and
S-MB, then we will be able to detect if a double encoding of the same sequence
has been carried out and, if this is the case, we have a way to estimate the size
of the first GOP from those variations.

7.3. Measuring the VPF

In this section we show how the VPF can be used to detect double encoding
and to estimate the GOP size of the first compression from a given video sequence.
The method we introduce is essentially based on two steps: firstly, the frames
showing the VPF are located and the strength of the footprint is measured;
secondly, provided that the obtained signal should show relevant peaks where
I-frames of the first compression were located, a periodicity analysis is carried
out.

In the rest of this section, the following notation is used: for a given video
sequence x(n), with n = 0, . . . , N − 1, being N the total number of frames, we
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denote with i(n) and s(n), respectively, the number of I-MB and S-MB that are
present in the n-th frame. We also recall that G1 and G2 are the GOP sizes used
for the first and the second compression, respectively.

7.3.1. Peak Extraction

In this first phase, we jointly analyze the two signals i(n) and s(n). From
Section 7.2, we know that the number of I-MB increases at the same time the
number of S-MB decreases in those P-frames of the video under analysis that
were originally coded as I-frames in the first compression. Note that signal i(n)
cannot be directly processed as it is, given that it also keeps track of all the I-MB
used in the encoding of I-frames from the second encoding. To avoid peaks in
i(n) that are not related to the effect of the first encoding, we simply remove
those values that are periodically located at the beginning of a GOP. Since G2 is
known, we substitute the elements of i(n) at multiples of G2 by the average value
of its adjacent neighboring samples, i.e.,

i(kG2) =
i(kG2 − 1) + i(kG2 + 1)

2
, ∀k ∈

{

0, . . . ,

⌊

N − 1

G2

⌋}

.

Notice that when values at the edges are not available, such as i(−1) for k = 0
or i(N) for k = (N − 1)/G2, the closest sample value is directly assigned to i(n).
For the sake of clarity, we will denote by P the set of frames where the effect
described in Section 7.2 is present, having

P , {n ∈ N : (i(n− 1) < i(n) ∧ i(n) > i(n+ 1))∧
(s(n− 1) > s(n) ∧ s(n) < s(n+ 1))},

where ∧ represents the logical conjunction operation. Based on the above set,
we define a new vector that quantifies the strength of the effect for every frame
n ∈ {0, . . . , N − 1} as follows

v(n) ,

{

E(n), if n ∈ P
0, otherwise

, (7.1)

where E(n) measures the energy of the effect in the n-th frame, being defined as

E(n) , |(i(n)− i(n− 1))(s(n)− s(n− 1))|
+ |(i(n+ 1)− i(n))(s(n+ 1)− s(n))| .

This measure follows a simple intuition: first, we envision an increase in the
number of I-MB together with a decrease in the number of S-MB and, then, we
expect a decrease in the number of I-MB along with an increase in the number of
S-MB, reaching the common proportion of these macroblock types in P-frames.
Therefore, by taking the product of the variations of i(·) and s(·) we measure the
strength of the sudden change in the prediction types, i.e., we quantify the VPF.
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7.3.2. Analysis of Periodicity

The second phase of the proposed scheme consists in investigating the period-
icity of the extracted feature. If no periodic behavior is detected, we can classify
the video as singly encoded; conversely, if a periodicity is present, then it will
allow us to estimate G1.

Usually, the periodicity of a signal is well-exposed using its frequency repre-
sentation, e.g., taking its Fourier transform. However, this approach is well-suited
for cases where many periods of the signal are available, otherwise the resulting
representation is noisy and periodicity estimation is inaccurate. On the other
hand, we want our method to work also with a limited number of frames, so
the frequency representation is not the best tool for our task. For these reasons,
we propose a simple yet effective strategy for estimating the periodicity of peaks
in v(n), that is based on two steps: candidate GOP selection, and candidate
evaluation.

The candidate GOP selection aims at determining a set of possible values for
G1. Since we are searching in a set of integer values P , an element generating
subsequent multiples of itself, it makes sense to restrict the search to the set of
the Greatest Common Divisors (GCD) between all possible couples of elements
of the sequence. Therefore, we define the set C of candidate GOPs as

C ={c ∈ N : c = GCD(n1, n2), ∀ n1, n2 ∈ P}.

Notice that evaluating C requires at most N2 runs of the GCD algorithm, whose
complexity is quadratic in the number of base-10 digits of its argument (⌈log10 N⌉
at most, in our case). However, provided that the signal v(n) is typically sparse
(in the experiments presented in Section 7.4, ≈ 90% components are null on
average), the practical computational effort is surely affordable.

In the GOP estimation stage, each candidate value c ∈ C is associated with
a fitness value φ : C → R, that measures how well the choice of c models the
periodicity of the signal v(n). Before giving the formal definition of φ(c), we
briefly develop the intuition behind this measure. Due to content related issues,
like sudden changes of scene or strongly textured regions, the signal v(n) could
contain some noisy components, or could be missing some expected peaks in
multiples of G1. With this in mind, it is essential to define a fitness measure that
takes into account, for each candidate value c ∈ C, the following aspects:

1. The energy of peaks that are located at multiples of c, given by

φ1(c) =

⌊N−1

c ⌋
∑

k=0

v(kc).
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2. The absence of peaks that would be expected in multiples of c, quantified
as

φ2(c) = β|Ac|, with Ac ,
{

kc : k = 0, . . . ,
⌊

N−1
c

⌋}

\ P ,

where | · | stands for the cardinality of a set, \ represents the set-theoretic
difference, and β is a penalization factor for missing peaks, that can be
taken as β , 0.1maxn v(n).

3. The energy of the most relevant periodic component with a period smaller
than c, defined as

φ3(c) = max
i=1,...,c−1

⌊N−1

c ⌋−1
∑

k=0

v(kc+ i).

Then, we combine these three measures to define the function φ(c) as

φ(c) = φ1(c)− φ2(c)− φ3(c), (7.2)

where it is evident that φ2 and φ3 act as a penalization for the candidate c. Once
the fitness of every candidate in C has been evaluated, we can classify the video
as singly or doubly encoded and, in the latter case, provide the estimate for G1.
The video x(n) is assigned to a class with the following rule:

C(x) =

{

1, if maxc∈C φ(c) > Tφ

0, otherwise
, (7.3)

where Tφ is a threshold, C(x) = 1 accounts for videos classified as doubly encoded,
and C(x) = 0 stands for videos classified as singly encoded. Whenever a video is
classified as doubly encoded, the estimate of G1 is

Ĝ1 = argmax
c∈C

φ(c). (7.4)

7.4. Experimental Results and Discussion

The performance of the proposed approach for double encoding detection and
GOP size estimation is evaluated in this section. A realistic experimental setup,
which is often challenging for video forensics, is designed for conducting all the
tests. We build the datasets for our experiments using 14 video sequences with
CIF resolution, i.e., 352×288 pixels, that are available in YUV-uncompressed for-
mat.2 Given that these sequences have different lengths, we always limit ourselves

2Freely available at this website: http://trace.eas.asu.edu/yuv
Chosen sequences are: akiyo, bridge-close, bridge-far, coastguard, container, foreman, hall, high-
way, mobile, news, paris, silent, tempete, and waterfall.

http://trace.eas.asu.edu/yuv


116 7.4. Experimental Results and Discussion

Table 7.2: Parameters for creating doubly encoded sequences.

Parameters 1st encoding 2nd encoding
Encoder {MPEG-2, MPEG-4, H.264} {MPEG-2, MPEG-4, H.264}

Bitrate (kbps) {100, 300, 500, 700} {100, 300, 500, 700}
GOP size {10, 15, 30, 40} {9, 16, 33, 50}

to process only their first 250 frames (that is, 10 seconds of video at 25 fps), in
order to investigate the reliability of the proposed approach in presence of short
clips. Furthermore, in all the experiments, video encoding is performed specify-
ing a target constant bitrate, i.e., without using a fixed quantization structure,
because this is the typical encoding setting in a realistic scenario. As it was men-
tioned in Section 7.2, adaptive GOP structures are not tackled in this work. For
all the tests, we have used the libavcodec and x264 libraries (through FFmpeg)
to encode/decode all the video sequences.

Because we propose to use the VPF both for double encoding detection and
GOP size estimation, we split the experiments in two parts; this choice also
accounts for the different nature of these tasks, since detection and estimation
methods need different evaluation criteria.

7.4.1. Double Encoding Detection

To test the discrimination capability of the proposed approach, we use the
mentioned 14 raw sequences to create a dataset consisting of:

672 singly encoded videos, by using all combinations of encoders and pa-
rameters in the rightmost column of Table 7.2;

672 doubly encoded videos, by randomly selecting 48 joint configurations of
1st and 2nd encoding (from those collected in Table 7.2), per video sequence.

Since the proposed detection method relies on a threshold-based rule (see
Eq. (7.3)), we use Receiver Operating Characteristic (ROC) curves to evaluate
its performance: we report in Figure 7.3 the ROC of the proposed method on the
whole dataset (dashed lines), and the ROCs obtained separately, differentiating
the encoder employed for the second compression (which, of course, is known to
the analyst). It is worth noting that when the second encoding is carried out
using H.264 (as we have seen, the most commonly used nowadays), the detector
yields its best performance (94% detection rate for a false positive rate of 5%). In
fact, while the VPF will rarely appear in singly encoded sequences, independently
from the codec being used, it cannot be taken for granted that it will show up
clearly in a doubly encoded video: when the quality of the second compression
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Figure 7.3: ROC curves for the proposed double encoding detector.

is very low (e.g., 100 kbps) the footprint could be hidden by spurious effects.
This explains the behavior shown in Figure 7.3: since H.264 is known to provide
better quality with respect to MPEG-x codecs for a fixed bitrate, it facilitates the
detection of the VPF and, consequently, the correct classification of the video.
Therefore, the proposed method retains considerable accuracy also when MPEG-
x codecs are used, and yields on average a detection rate of 80% when the false
positive rate is fixed at 5%.

7.4.2. First GOP Size Estimation

For studying the performance of the proposed GOP size estimation technique,
we create a dataset with a total of 32256 doubly encoded videos, by compressing
each of the 14 available sequences with all the possible combinations of settings
given in Table 7.2. Each sequence is analyzed in about 1.4 seconds on a desktop
computer3, but the actual analysis, that starts when the macroblock types have
been extracted, takes only 0.025 seconds on average.

We investigate the results of the estimation method from different points
of view: as a function of 1st and 2nd bitrate, as a function of the 1st and 2nd
encoder, and as a function of the 1st and 2nd GOP size. Each time we investigate
a parameter, all the other settings are marginalized out, i.e., results are averaged
over them. We assume a correct estimation (or exact match) whether the value Ĝ1

3Intel Core2Duo @3.4GHz, 8GB RAM, running Ubuntu 10.04.



118 7.4. Experimental Results and Discussion

20

40

60

80

100

Bitrate sequence

E
x
a

c
t 

M
a

tc
h

 (
%

)

 

 

100
700

100
500

100
300

100
100

300
700

300
500

300
300

300
100

500
700

500
500

500
300

500
100

700
700

700
500

700
300

700
100

paris waterfall Average (14 sequences)

B
1

B
2

Figure 7.4: Performance of the method as a function of the B1 − B2 bitrate.

obtained from (7.4) actually matches G1. Otherwise, we believe that having just
an approximation of G1 is not meaningful from a forensic point of view. Finally,
given that we are using 14 different source sequences, for each experiment we
report: i) average performance; ii) results from the video sequence yielding the
best estimation percentage (paris in all the experiments); iii) results from the
video sequence leading to the worst estimation percentage (waterfall in all the
experiments).

In Figure 7.4 we report the percentage of exact match as a function of B1−B2

combination of bitrates. We see that lower bitrates during the first encoding result
in better performance, in agreement to what is said in Section 7.2: low bitrates
require strong quantization which acts like a low-pass filter, thus increasing the
number of blocks that will be more conveniently encoded as I-MB. This will
be especially true for videos where uniform regions are available, like the paris
sequence (which yields the best results), while textured content is against this
phenomenon, as confirmed by the waterfall sequence (which is rich of textures)
being the worst. From the second compression point of view, it is confirmed that
low bitrates negatively affect the performance, since they reduce the possible
choices for the encoder when assigning macroblock types; nevertheless, even in
the worst conditions, the proposed footprint is able to correctly estimate G1 half
of the times.

Figure 7.5 shows the percentage of exact match for different combinations of
codecs. We see that reliability increases when the second encoding is carried out
with H.264, which is consistent with the observations made in Section 7.4.1 about
the presence of VPF in doubly encoded videos.

Finally, we evaluate the performance for different combinations of G1 and G2

in Figure 7.6. Results show an intuitive fact: as G1 increases, the accuracy of
the method drops. The simplest justification stems from the fact that we are
using a fixed number of frames for the estimation. Hence, the higher G1, the
less number of periods we are able to observe, and, as expected, this results in
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Figure 7.6: Performance of the method as a function of the G1−G2 combination.

noisier estimates. Another appealing fact is that results improve as G2 increases,
mainly because this reduces the number of spurious effects induced by the GOP
structure of the second compression. Interestingly, GOP size estimation is more
reliable whenever the GOP used for the second compression is larger than the
one employed during the first encoding.

As a last consideration, it is worth noting that the video waterfall proves to
be the most challenging in all the experiments. This video sequence is very rich
in textured frames, where the VPF will show up with more difficulty, according
to the arguments given in Section 7.2.

7.5. Conclusions

Video forensics is an emerging field, targeting the investigation of the pro-
cessing history of a digital video. To this extent, detecting whether a video has
been compressed once or twice is an interesting task, especially if an estimation of
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some of the first encoding parameters can be provided. In this chapter, we have
introduced both a new kind of footprint based on the variation of the macroblock
prediction types in the re-encoded P-frames (VPF), and a method to exploit this
footprint to detect video double encoding and estimate the size of the GOP used
in the first compression. Besides the inherent importance of discovering informa-
tion about the processing undergone by a digital content, we believe that GOP
size estimation can also be seen as a basic tool for more advanced analyses, that
may target tampering detection as it will be noted in the next chapter.

Experiments show that, being based on a simple principle, the VPF is a very
robust footprint. Both the detection of double encoding and GOP size estimation
remain possible (although with some impact on performance) even when the
second compression is stronger than the first one, while this configuration is
prohibitive for most of the existing forensic methods.



Chapter 8

Localization of Forgeries in
MPEG-2 Video through GOP
Size and DQ Analysis

This chapter deals with intra-frame forgery localization in compressed videos,
one of the less studied problems in video forensics up to now. Due to the high
complexity associated to the formal treatment of video compression, most of the
available techniques work under strong assumptions which limit their application
in realistic scenarios. However, in a similar way as noted in the last section of
Chapter 2, a practical solution can be obtained through the combination of ex-
isting tools, such that more complex problems can be addressed. The proposed
method in this chapter is based on the analysis of Double Quantization (DQ)
traces in frames that are encoded twice as intra in MPEG-2 video sequences.
Using the derived approach in the previous chapter, doubly encoded I-frames are
located in the video under analysis by estimating the GOP size used in the first
compression. Then, the DQ analysis is devised for the MPEG-2 encoding scheme
and applied to these located I-frames. By doing this, regions that were manip-
ulated between the two encodings are detected. Compared to existing methods
based on double quantization analysis, the proposed scheme makes forgery local-
ization possible on a wider range of settings.

8.1. Introduction

In the previous review of the literature carried out in Section 1.3.3, we have
argued that a relevant part of the research activity in video forensics is focused
on detection of double encoding. Although double compression is almost always
necessary for creating a tampered video, by simply assuring that a video sequence

121
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has been encoded twice is not a sufficient proof for claiming its non-authenticity.
For instance, it may be the case that the video is automatically re-encoded when
it is downloaded from the acquisition device. For this reason, investigating the
authenticity of a digital video entails taking a further step in the analysis. Fur-
thermore, a distinction must be made between intra-frame and inter-frame video
forgeries [3]: in the former, the attacker changes the content of some frames (e.g.,
by adding or removing an object), while in the latter at least one or more frames
are entirely added/removed from the video sequence. Given the different nature
of each problem, distinct techniques are needed to investigate each of these two
tampering scenarios.

An effective method for detecting inter-frame forgeries, such as deletion of
frames, was proposed in [41]. In this work, the de-synchronization (induced by
the forgery) between the GOP used in the first and the second encoding is exposed
through the detection of a periodic behavior in the magnitude of the prediction
error of P-frames. Another strategy is presented in [42], which exploits the fact
that the MPEG-2 video coding standard defines different quantization matrices
for intra- and inter-coded frames. Looking for anomalies in the energy conveyed
by high-frequency DCT coefficients, authors are able to find out GOP structure
inconsistencies, thus revealing the forgery.

Regarding intra-frame forgery, Wang and Farid’s seminal work in [43] was
the first to separately apply a DQ analysis to each macroblock of a video under
analysis, as a means to localize forged regions. The main idea lies in the fact
that when some of the macroblocks in a frame show the double quantization
effect and some others do not, the last ones have been probably pasted from
another sequence. This idea is borrowed from JPEG image forensics and, as
such, the analysis makes sense only on frames that have been encoded twice
as intra. The authors work around this problem by assuming that only intra-
coded pictures are used, thus heavily restricting the applicability of the method.
Furthermore, the MB-by-MB analysis in a whole video sequence severely increases
the computational burden.

In line with the last work, this chapter presents a method for intra-frame
forgery localization in MPEG-2 compressed videos, allowing one to determine
which parts of a frame under analysis have been altered. The method basically
works by searching for traces of double quantization at a spatial level, enabling
the construction of a fine-grained probability map of tampering for each analyzed
frame. This is done by adapting and extending the method proposed in [82],
which originally works on JPEG images, to the MPEG-2 encoding scheme. Due
to how the video encoding is performed, this kind of analysis is only possible on
frames that have been intra-coded twice. Therefore, we first adopt the VPF-based
approach [83], which has been described in the previous chapter, for localizing
the position of the I-frames in the first encoding, and then perform the proposed
analysis on the suitable (double-encoded) I-frames.
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Compared to state-of-the-art techniques targeting the same task, the proposed
method achieves forgery localization under more realistic working scenarios (e.g.,
video encoded using motion prediction which are the vast majority), and exploits
some advantages of the MPEG-2 encoding standard to improve the robustness of
the analysis.

The chapter is structured as follows: Section 8.2 covers the basics on MPEG-
2 video compression; then the proposed method is explained in Section 8.3 and
experimentally validated in Section 8.4; finally, Section 8.5 reports conclusions.

8.2. MPEG-2 Video Compression

MPEG-2 video standard (ISO/IEC 13818-2/ITU-T recommendation H.262)
[24] is a widely employed method for video compression, that basically works by
reducing both spatial and temporal redundancy in a captured video sequence.
The standard follows a block-based hybrid video coding approach (similar to the
one depicted in Figure 1.6) and defines different types of pictures: intra-coded
pictures, referred to as I-frames (only progressive videos are considered here), and
predictive-coded pictures, commonly named P-frames and B-frames. Given the
block-based structure, each frame of a video sequence is divided into macroblocks
(MBs), i.e., blocks of 16×16 samples, which are encoded following several coding
modes that are available according to the selected type of frame.

In a similar way as it happens with JPEG images, the MBs in I-frames are
encoded without making reference to other frames: each MB of the luminance
component (we obviate the chrominance for brevity) is divided into blocks of
8 × 8 pixels that are transformed according to the DCT and whose coefficients
are later quantized (details about this step will be given in Section 8.3). Quanti-
zation in the DCT domain allows to remove spatial redundancy in a perceptually
convenient way.

By compressing the whole video using only intra-coded pictures, this would
lead to the so-called M-JPEG encoding, where temporal redundancy is not ex-
ploited. Notice that, although being very similar to the JPEG compression
scheme, the mentioned procedure uses a slightly different quantization function.
In MPEG-2, the coarseness of the quantization is selected by the encoder through
the quantizer scale factor, denoted as Q, that ranges from 0 to 31 and maps the
values of the multiplier k that is applied to the quantization matrix. Two differ-
ent mappings are available in the standard, but in this chapter we will assume
the one that corresponds to k = 2Q (except for Q = 0, where no value is assigned
to k). Therefore, by fixing the multiplier to a certain value, the factor Q enables
to control the trade-off between the quality and bitrate of a compressed video.
If the value of Q is constant, then a fixed quantizer will be used and a Variable
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BitRate (VBR) will be provided, while if it is adapted on a frame to frame (or
even on a MB to MB) basis, then a Constant BitRate (CBR) can be achieved.

In a general scenario, a strong correlation between adjacent frames will be
present since the scene is captured at several frames per second, and this temporal
redundancy should be exploited to increase the level of compression. This is
obtained through motion compensation. For instance, when encoding a picture
as a P-frame, each MB is compared with the respective area in neighborhood
positions within the previous encoded and reconstructed frame (i.e., a reference
frame), in order to find the region that better resembles the MB to encode. If a
good match is found, then the MB is predictive-coded: the displacement vector
(i.e., a motion vector) is stored and the residual difference with the reference MB
is 8×8-DCT transformed and further quantized. However, if a good match is
not available, then the MB is intra-coded like in an I-frame and we will refer to
this type of macroblocks as I-MB (cf. Section 7.2). Finally, if after performing
the predictive-coding there is no need to transmit the motion vector (because it
is null) and the residual difference after quantization is also negligible, then the
standard defines a specific type of macroblock, called skipped MB and we will
refer to this type of macroblocks as S-MB (cf. Section 7.2).

The only difference between P- and B-frames is that the MBs on B-frames can
be bidirectionally predictive-coded, in such a way that the motion compensation
can be carried out from a past and/or a future reference frame. However the
latter type of frames will not be addressed in the following.

8.3. Proposed Method

In this section, we present a new method for localizing forgeries in MPEG-2
videos. We focus on the intra-frame forgery scenario, and we assume that, start-
ing from an MPEG-2 video sequence, the attacker decodes the video, alters the
content of a group of frames, and finally encodes the resulting sequence again with
an MPEG-2 encoder, using a different GOP size. In the following, we assume a
fixed quantizer and that the default quantization matrix is employed, leading to
a VBR coding.

The proposed approach makes use of the method presented in Chapter 7 (i.e.,
[83]) to retrieve the GOP size of the first compression. By knowing this, the
location of the I-frames in the first encoding is inferred and the DQ effect is
studied in those frames that have been encoded as intra both in the first and
second encoding. In this work, we do not consider the removal/addition of whole
frames: this would cause a misalignment in the GOP structures, complicating
the localization of frames that have been encoded twice as intra.
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8.3.1. Detection of Frames Encoded Twice as Intra

As just seen in the previous chapter, the Variation of Prediction Footprint
(VPF) has been proposed as a method to detect double video encoding. This
footprint captures a characteristic phenomenon that occurs when an I-frame is re-
encoded as a P-frame: in such a frame, the number of S-MB noticeably decreases,
while the number of I-MB strongly increases. By measuring the presence and
the periodicity of this anomalous variation, an algorithm has been proposed to
detect double compression and to estimate the size of the GOP used for the first
encoding.

Let us assume that a video, composed by N frames, has been encoded twice
using G1 and G2 as the GOP size for the first and second encoding respectively,
where G1 6= m ·G2, ∀m ∈ N. Assuming a fixed GOP structure, the set of indices
of the frames that have been intra-coded twice is

CG1,G2
= {n ∈ N : n = m · lcm(G1,G2) ∧ n ≤ N, ∀m ∈ N},

where lcm(G1,G2) represents the least common multiple between G1 and G2.
The cardinality of the set CG1,G2

is simply given by

|CG1,G2
| = 1 +

⌊

N

lcm(G1,G2)

⌋

,

where ⌊·⌋ stands for the floor function. In other words, forgery localization can
be performed every lcm(G1,G2) frames. Therefore, for relatively prime values of
G1 and G2 the analysis can be carried out only once every G1 ×G2 frames, and
this value might be not appealing in practice. On the other hand, the GOP size
is usually chosen from a set of possibilities, like 12 for PAL videos, 15 for NTSC
videos, while recording devices often choose a GOP size around 30. At a frame
rate of 25 fps, combinations of the mentioned values for G1 and G2 result in a
satisfactory time resolution for the analysis.

Note that the adoption of the VPF-based approach will have to be evaluated
again in this chapter, given that in Chapter 7 experiments were conducted on
double encoded videos without modifications between the first and the second
encoding. In contrast, now we are assuming that the video is manipulated (by
altering the content of a group of frames) before the second compression takes
place. Therefore, the robustness of the VPF in this scenario must be investigated,
and this task will be addressed in Section 8.4.

8.3.2. Forgery Localization Based on DQ Analysis

According to the assumed forgery scenario, tampered frames that have been
encoded twice as intra will consist of two groups of pixels: one that has not been
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Figure 8.1: Histogram of a DCT coefficient from a single compressed frame (a),
double compressed frame (b) and tampered frame (c). Notice that the histogram
from the tampered frame can be seen as a mixture of the previous two histograms.

modified, thus undergoing a double quantization, and another that has been in-
troduced between the encodings. Even when these latter pixels come from a com-
pressed sequence, they will unlikely be pasted respecting the 8 × 8 quantization
grid of the host frame and, therefore, will not show traces of double quantization
after the second encoding, thus making localization possible. A thorough expla-
nation of this model is given in [84]. Looking at the histogram of a specific DCT
coefficient (e.g., the one at position (0, 1) in all 8 × 8 blocks) from a tampered
frame, we should see a mixture of two components: a “standard” component due
to the new added regions (see Figure 8.1(a)), and a comb-shaped component due
to double compressed regions that remain unaltered (see Figure 8.1(b)). The
final result is plotted in Figure 8.1(c) where a mixture of both components can
be appreciated.

In [82], a Bayesian inference method is proposed to compute the probability
that each 8 × 8 block in a frame has been tampered with. This approach first
assigns to each DCT coefficient from an 8×8 block its probability of belonging to
any of the two above illustrated components (i.e., “standard” or “comb-shaped”).
Then it accumulates these probabilities for all the coefficients of the block, yield-
ing an aggregated probability for the whole block of being/not being doubly com-
pressed. The resulting output is a map associating to each 8×8 block of pixels its
probability of being tampered (i.e., not showing the DQ effect) or untouched (i.e.,
showing the effect). In order to compute such a map, the mentioned algorithm
basically performs the following steps (see [82] for a formal presentation) for each
group of DCT coefficients sharing the same position:

1. From the observed DCT coefficients, estimate the histogram h(x) that
would result after a single encoding with the quantization step used in
the second compression.

2. Estimate the quantization step that was used during the first compression.
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3. Knowing both quantization steps, compute a function n(x) that gives the
number of bins of the original histogram that are mapped in the bin corre-
sponding to the value x in the double quantized histogram.

Then, denoting with H0 and H1 the hypothesis of being tampered and original,
respectively, for each coefficient x it is obtained that

p(x|H0) = h(x) (8.1)

and

p(x|H1) = n(x)h(x), with x 6= 0. (8.2)

These steps are carried out separately for each DCT coefficient (usually only the
first dozen of AC coefficients are used for the analysis). Then, for each 8 × 8
block, the probability of being tampered is “accumulated” as:

p =
1

∏

i|xi 6=0 ni(xi) + 1
, (8.3)

where ni(x) is the n(x) function for the i-th coefficient.

Since DCT coefficients quantization is a key step both in JPEG and MPEG-2
coding, the above method can be borrowed from image to video forensics, as
suggested in [43]. However, some significant differences must be considered to
devise a correct model for MPEG-2:

1. The dequantization formula in JPEG differs from that of MPEG-2 [24].

2. In JPEG, the 8× 8 quantization matrix is declared in the header and it is
usually not governed by the quality factor; in MPEG-2, instead, the adopted
matrix (the default or a custom one) is parameterized by the multiplier k
(cf. Section 8.2), to adjust the quantization strength.

3. In JPEG, the quantization matrix is the same along the whole image. This
also holds for MPEG-2 when a fixed quantizer is used, while the quantiza-
tion matrix may change from frame to frame or MB to MB, for instance,
for CBR coding.

Each of these facts has a direct implication on the model described in [82]. In
light of the fact that a different quantization formula is used in MPEG-2, the
function n(x) will likely change. On the other hand, since all the quantization
coefficients are determined by the multiplier k, it is not necessary to estimate
a different quantization step for each coefficient (we can directly estimate k).
Finally, in the case of CBR coding, that is left for future work, MBs that are not
quantized using the same k must be analyzed separately.
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Inspired by [82], the approach we follow is to model the histogram of DCT
coefficients in tampered frames as a mixture between a double quantized com-
ponent and a single quantized component. To get a reliable estimate of single
quantized coefficients (by the quantization factor employed in the last encoding),
we make use of the calibration technique [85]: the frame is cropped by one row
and one column, and the result is quantized with the second quantization matrix.
Consistently with [82], this component will be indicated by h(x). Therefore, given
a coefficient x, its probability of belonging to a tampered region is estimated as
in (8.1).

To get an estimate of the double quantized component, we need to derive the
appropriate function n(x) for the MPEG-2 quantization scheme. In the following,
we denote the never-compressed DCT coefficient on the i-th row and j-th column
of an 8 × 8 block with x(i, j), where i, j ∈ {0, . . . , 7}. Similarly, the quantized
version of the coefficient is denoted by u1(i, j), its dequantized version by x1(i, j),
and the re-quantized version by u2(i, j). On the other hand, each element in
the 8× 8 quantization matrix is represented by W (i, j), and the multipliers that
parameterize the quantization matrix in the first and second compression, are
labeled as k1 and k2, respectively. According to the MPEG-2 standard [24], and
following the proposed notation, the dequantized version of the DCT coefficients
coming from a single compressed intra-coded frame corresponds to

x1(i, j) = sign (u1(i, j))

⌊

W (i, j) |u1(i, j)| k1
16

⌋

, (8.4)

for all coefficients apart from the DC, and where |·| is the absolute value operator.
Taking (8.4) as reference, the most intuitive way to define the quantization is

u1(i, j) =

⌊

16 x(i, j)

k1W (i, j)

⌉

, (8.5)

where ⌊·⌉ represents the rounding to nearest integer operation. Using (8.4) and
(8.5), the re-quantized version of the DCT coefficients (i.e., the double quantized
coefficients), can be written as

u2(i, j) =









16

k2W (i, j)



sign

(⌊

16 x(i, j)

k1W (i, j)

⌉)









W (i, j)
∣

∣

∣

⌊

16 x(i,j)
k1W (i,j)

⌉∣

∣

∣ k1

16





















.

From this formula, the function n(x(i, j)) for each DCT coefficient x(i, j) can
be obtained. For the sake of notational simplicity, we omit the position indices,
yielding

n(x) =
k1W

16

(⌈

16

k1W

⌈

k2W

16

(

u2 +
1

2

)⌉⌉

−
⌈

16

k1W

⌈

k2W

16

(

u2 −
1

2

)⌉⌉)

, (8.6)

where ⌈·⌉ denotes the ceiling function. In the above equation, k1 is the only
parameter that must be estimated, given that k2 and the values ofW are available
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from the bitstream. The multiplier k1 is defined by its relation with the quantizer
scale factor used in the first encoding Q1 as explained in Section 8.2, thus being
a possible value within the set K1 = {2Q1 : 1 ≤ Q1 ≤ 31}. If we assume to have
the actually used k1, i.e., k̃1, the histogram of doubly quantized coefficients can
be obtained from h(x) as n(x; k̃1)h(x).

1 Therefore, in general, we can write the
probability distribution of the observed coefficients as the following mixture

p(x; k1, α) = (1− α)h(x) + α n(x; k1)h(x),

where α ∈ [0, 1]. As suggested in [82], an effective way to get an estimate of
k1 is to iteratively search the value k̂1 that minimizes the difference between
the observed histogram h̃(x) and p(x; k̃1, α), choosing the optimal α in the least
square sense (formula is given in [82]).

Contrary to the JPEG case, the minimization process here is simplified, given
that the quantization matrix is specified by the MPEG-2 standard [24], and all
the coefficients share the same k1. Thus, we define the following vector from the
observed histograms

h̃ ,
(

h̃1(−B
2
), . . . , h̃1(−1), h̃1(1), . . . , h̃1(

B
2
), h̃2(−B

2
), . . . , h̃C(

B
2
)
)T

,

where B + 1 is the number of bins of h̃(x) and C is the number of considered
coefficients. We similarly build up h from the histogram obtained using the
calibration technique and n by gathering values according to (8.6). Then, we can
write:

p(k1, α) = (1− α)h+ α n(k1)⊙ h,

where ⊙ denotes the element-wise product of vectors. Finally, k̂1 is obtained as

k̂1 = arg min
k1∈K1

||h̃− p(k1, α)||2.

By using all the coefficients to estimate k1, a more robust estimation is obtained.
This is a crucial benefit, especially if we consider that: i) the quantization steps
in W (i, j) are quite large even for small i and j, ii) the spatial resolution of videos
is usually smaller than that of images. Both of these facts reduce the number of
DCT coefficients that can be fruitfully exploited for the estimation.

At this point, the probability in (8.2) can be computed by means of the
resulting k̂1 and the n(x) function defined in (8.6) for the MPEG-2 case. Finally,
the probability for each 8×8 block of being tampered is obtained through equation
(8.3). Figure 8.2 shows a forged frame along with the probability map generated
by the proposed method.

1For the sake of a better readability, we define n(x; k̃1) , n(x)|
k1=k̃1

.
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Figure 8.2: An intra-frame tampering (left figure) and the computed probability
map (right figure). For showing purposes, a 3× 3 median filter has been applied
to the p-map.

8.4. Experimental Results

Experiments have been conducted on a set of well-known videos, containing
several heterogeneous scenes,2 which have been cropped to a 576p resolution, i.e.,
720× 576 pixels. All the tests are performed using the built-in MPEG-2 encoder
and decoder from the FFmpeg coding software. The encoder is configured on VBR
mode, i.e., using a fixed quantizer for each frame.

The experimental validation follows this workflow: each video is compressed
with a quantizer scale factor Q1; then it is decoded and a square block of 200×200
pixels is replaced with the same content coming from its genuine uncompressed
version; finally, the resulting video is re-encoded with a factor Q2. Using the
uncompressed version of the same video as a source for tampered pixels, it is
possible to create a forgery that is practically imperceptible to the eye, thus
mimicking the work of an editing expert.

Given that the VPF does not strongly depend on the size of GOPs (cf. Sec-
tion 7.4), we set two GOP sizes: G1 = 12 and G2 = 15 for the first and second
compression, respectively. Note that the selection of these particular values for
G1 and G2 has been motivated in Section 8.3.1. Furthermore, we limit ourselves
to use P-frames, provided that GOP size estimation in presence of B-frames is
not possible with the VPF-based approach. As shown in [82], forgery localization
generally works better when the second compression is not as strong as the first
one. For this reason, we choose Q1 ∈ {6, 8, 10, 12} and Q2 ∈ {2, 3, 4, 5}. Then,
all the possible combinations between these two sets are used for generating tam-

2Freely available at: http://media.xiph.org/video/derf
Selected videos are: ducks take off, in to tree, old town cross, park joy, shields, sunflower, and
touchdown pass.

http://media.xiph.org/video/derf
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Table 8.1: AUC obtained with the proposed method.

❍
❍
❍
❍
❍
❍

Q1

Q2 2 3 4 5

6 0.98 0.97 0.68 0.63
8 0.98 0.98 0.96 0.93
10 0.98 0.98 0.91 0.94
12 0.98 0.98 0.97 0.94

pered videos. Finally, since the model proposed in Section 8.3.2 has been derived
assuming that the fixed quantizer is uniform, the dead-zone of the quantizer im-
plemented in FFmpeg is fixed to the interval [−∆/2,∆/2] (where ∆ denotes the
quantization step), by setting the parameter ibias equal to 128. Notice that the
model can be easily adjusted to work with different dead-zones.

As a first step in the evaluation, we have investigated the reliability of the
VPF-based GOP size estimator in the described scenario, because in the case of
a wrong estimation, the proposed practical solution would fail. The GOP size
was estimated from the available set of tampered videos and the number of exact
estimations of G1 was calculated as in Section 7.4. The estimation never failed
under the considered settings, thus confirming that VPF can be safely used in
the proposed chain of analysis.

After retrieving the GOP size of the first compression, i.e., Ĝ1, for each tam-
pered video, the DQ analysis is applied to the specific frames indexed by the
elements in the set CĜ1,15

, defined in Section 8.3.1. Only the first 5 AC coeffi-
cients in the zig-zag ordering have been used for the analysis. The probability
map produced from each frame is then thresholded and compared to the ground
truth mask, allowing us to calculate the true positive and false positive rate.
These values are averaged over all videos sharing the same combination of Q1

and Q2.

By covering different values of the threshold for all the explored combinations
of Q1 and Q2, Receiver Operating Characteristic (ROC) curves are obtained and
depicted in Figure 8.3. The resulting AUC is calculated in each case, collecting
the achieved results in Table 8.1. From these outcomes, we clearly see that, for
a given factor Q1, smaller values of Q2 facilitate the forgery localization. At the
same time, larger values of Q1 yields better performance.

Interestingly, it can be observed that better results are achieved in terms of
AUC when Q1 is an integer multiple of Q2. For example, when fixing Q1 = 10,
a larger value of AUC is achieved with Q2 = 5 (i.e., AUC = 0.94) with respect
to Q2 = 4 (i.e., AUC = 0.91), even if in the former case a slightly stronger
compression has been applied. The reason of this fact still remains unclear, but
will be further investigated.
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(c) Q1 = 10
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(d) Q1 = 12

Figure 8.3: ROC curves obtained for the examined combination of Q1 and Q2.
From left to right and top to bottom, increasing values of Q1 are considered,
and performance for varying values of Q2 are plotted (notice that curves have
been magnified to improve readability). As expected, lower values for the second
compression facilitate the localization.

8.5. Conclusions

In this chapter, a method for localizing intra-frame forgeries in MPEG-2 com-
pressed video sequences has been proposed. The method works by first locating
frames that have been intra-coded twice, and then applying a double quantization
analysis to them. The double quantization analysis has been specifically designed
to fit the standardized MPEG-2 dequantization process. As a key contribution,
our method exploits the characteristics of MPEG-2 coding, and it is the first
allowing to apply DQ analysis to videos that have been encoded using P-frames.



Chapter 9

Conclusions and Future Work

This thesis has presented an array of new techniques in the field of multimedia
forensics, focusing on the estimation of the processing a multimedia content has
gone through. Two lines of research have been covered: firstly, the forensic anal-
ysis of resampled signals has been cast in a theoretical framework and secondly,
more complex signals such as video compressed sequences have been character-
ized from a forensic point of view. In both cases, practical forensic tools have
been proposed for detecting particular forgeries applied to multimedia contents.

The modeling of the resampling problem has been addressed from different
perspectives along this thesis. We started working with cyclostationarity theory,
adapting first the underlying concepts to build a comprehensible framework, and
then tackling the estimation of the resampling factor as a means to identify the
spatial transformation undergone by a certain region of a digital image. From
this analytical description, we have realized that the use of a prefilter, prior to
perform the search for cyclostationarity, improves the estimation accuracy. The
design of prefilters has therefore been further investigated within this framework,
providing a measure that enables the derivation of better prefilters for resampling
factor estimation.

After remarking the influence on the previous model of the rounding opera-
tion, used as a last step in the resampling process, we have moved to a statistical
characterization of the resampling problem relying on the maximum likelihood
criterion. In this context, a new approach has been derived by establishing con-
nections between the linear dependencies introduced by the resampling process
and the structure imposed by the quantization of the resampled values due to
rounding. Interestingly, this method only needs a few number of samples to
correctly estimate the applied resampling factor to a given signal. This statis-
tical analysis has served as a bridge for linking the resampling problem to set-
membership estimation theory. This theory has proven to be a useful resource
for addressing the problem of resampling factor estimation, provided that the
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obtained solutions have the singular characteristic of being consistent with all
information arising from the observed data. Hence, the presented technique be-
comes a valuable asset for a forensic analyst who needs to provide unquestionable
proofs of tampering.

Deepening the understanding of the linear dependencies induced by the re-
sampling process among neighboring samples, a simple strategy for resampling
detection has been proposed. In particular, we have shown that interpolated im-
ages belong to a subspace defined by the interpolation kernel. As a result, the
proposed detector only needs to compute the SVD of a given image block for
discerning upsampled images from genuine ones (nonetheless, a measure of the
degree of saturated pixels is also needed to avoid misdetections). In addition,
the detector can cope with very small regions, which is appealing for exposing
tampered regions (which might be small) through the detection of resampling
inconsistencies.

A qualitative assessment of all the proposed resampling-based methods is sum-
marized in Table 9.1, where the advantages and disadvantages of each technique
are highlighted. Note that the first three rows in the table collect information
about the resampling estimators covered in Chapters 2, 4, and 5, while the last
one corresponds to the resampling detector described in Chapter 6. As it can
be observed, depending on the feature exploited, each technique offers distinctive
characteristics, but also associated drawbacks. The comparison is established in
terms of computational complexity, domain of application (i.e., 1-D or 2-D), in-
terpolation kernel support, number of needed samples, and other peculiarities of
each technique, such as: alignment with the resampling grid, presence of periodic
patterns, saturation, or flat regions, etc.

Apart from these approaches, a practical forensic tool has been designed to
distinguish original from duplicated regions in a copy-move forgery with con-
tent adaptation. This practical solution combines a SIFT-based method and
a resampling-based approach with the final aim of detecting duplicated regions
and then revealing which of the detected regions have been adapted (i.e., the
duplicates) and which of them have not (i.e., the originals).

Concerning the forensic analysis of video sequences, we have mainly focused
our research on three aspects: the study of double compression detection re-
gardless of the codec used, the estimation of the GOP size adopted in the first
compression from a double encoded video, and finally, the localization of intra-
frame forgeries for the particular MPEG-2 video coding standard.

As a key contribution, we have revealed the presence of a new footprint emerg-
ing from the double encoding of video sequences. This new footprint has proven
to be robust after transcoding and also under a CBR coding. Significantly, both
the detection of double encoding and the GOP size estimation are feasible even
when the second compression is considerably stronger than the first one, while
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Table 9.1: Qualitative comparison of the proposed resampling estimators (first
three rows) and the resampling detector (last row).

Methods Advantages Disadvantages

Cyclo-based (Ch. 2)

1. 2-D analysis

2. Scaling factor and

rotation angle estimation

3. Supports any linear kernel

4. No alignment is needed

1. Large number of samples

2. High computational

complexity

3. Affected by periodic

patterns

ML-based (Ch. 4)

1. Small number of samples

2. Low computational

complexity

3. Not affected by periodic

patterns

1. 1-D analysis

2. Supports only a fixed

linear kernel

3. Needs alignment with

resampling grid

SME-based (Ch. 5)

1. Small number of samples

2. Consistent solutions with

all the observed data

3. Not affected by periodic

patterns

4. Supports any linear kernel

1. 1-D analysis

2. High computational

complexity

3. Needs alignment with

resampling grid

SVD-based (Ch. 6)

1. 2-D analysis

2. Low complexity

3. Small number of samples

4. No alignment is needed

5. Supports any linear kernel

1. Affected by flat or

saturated regions

2. Impaired by demosaicing

3. Does not support

downsampling detection

this configuration is prohibitive for most of the existing forensic methods.

Deriving a method for the localization of intra-frame forgeries, a first step
has been taken in one of the most challenging problems on video forensics. The
proposed approach works by first locating frames that have been intra coded twice
(through the use of the earlier mentioned footprint) and then applying a double
quantization analysis to expose manipulated regions. Although the proposed
approach can only handle MPEG-2 videos compressed under the simple profile,
this scenario for the localization of intra-frame forgeries has rarely been considered
before.

In conclusion, distinct theoretical aspects have been investigated in this thesis
encompassing the forensic analysis of multimedia contents. As a consequence,
practical solutions have arisen facing realistic scenarios and providing promising
results that could be used in the future to unveil forgeries in multimedia contents.
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9.1. Future Research Lines

The work carried out in this thesis is sometimes constrained to specific settings
which could be hindering its applicability in real-world scenarios. Therefore, this
leaves room for improvement and several extensions are further proposed.

Forensic Analysis of Resampled Signals

The main topics that should be investigated in the future regarding the re-
sampling problem are summarized below:

1. The analysis of the resampling operation has always been addressed assum-
ing as input an uncompressed signal. However, most times, audio signals
and images are only available in a compressed format. Although increas-
ing support is given, for instance, to raw image formats, the vast majority
of shared images through the Internet are JPEG compressed, thus being
more likely to be manipulated. Consequently, the modeling of the process-
ing chain build upon the combination of the resampling operation and the
JPEG compression should be tackled to provide more reliable resampling
detectors/estimators.

2. In relation to the previous point, the analysis of the resampling operation
has almost always been discussed considering that the resampling factor is
larger than one, i.e., resulting in an upsampling operation. Nevertheless,
it is very likely that a forger use downsampling as a last step to minimize
possible visible distortions after manipulating an image. Hence, modeling
accurately the downsampling problem becomes a priority in future research
lines. As a first attempt in this direction, we believe that the same idea
derived in Chapter 6, could be adapted for detecting downsampling opera-
tions, by jointly exploiting the traces left by the demosaicing process and
the downsampling in the three color components of a digital image.

3. A constant assumption in our model is the linearity of the resampling pro-
cess. However, current demosaicing algorithms, for instance, are adaptive
and commonly non-linear. Therefore, a more complex analysis should be
developed or at least the derived approaches should be tested in a non-linear
scenario to evaluate the achieved performance.

4. The analysis of resampling inconsistencies to unveil tampered regions has
always been addressed in a block-based fashion. An alternative shape could
be more appropriate in certain cases. As discussed at the end of Chapter 2,
the resampling factor estimation should also be investigated on non-square
areas, provided that the zero-padding technique is not the optimal one in
any case.
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Forensic Analysis of Video Sequences

Future work on video forensics should be oriented towards modeling more
complex scenarios with less restrictive assumptions. Some possible lines for ex-
tending our work are detailed below:

1. Current camera devices have enough computation power to capture video
sequences using B-frames in real-time. The assumption of a baseline or
simple profile as indicated in Chapters 7 and 8, does no longer hold and it
leads us to a less realistic scenario. Therefore, the analysis of the VPF in
presence of B-frames should be further investigated.

2. GOP size estimation assuming adaptive GOPs entails a difficult task be-
cause the GOP size changes according to the captured scene, without fol-
lowing a periodic behavior. However, it would be interesting to analyze
whether the proposed detector in Chapter 7 could be able to detect double
video encoding under this particular scenario with adaptive GOPs.

3. Intra-frame forgery has been addressed assuming that both encodings are
performed using always the same quantizer scale factor. This scenario is too
restrictive, since nowadays most camera devices automatically change the
quantizer scale factor to fit the bandwidth or storage constraints. Therefore,
as a next step in the modeling of the forgery localization, the case where
one or both compressions are at a constant bitrate should be investigated.

4. The experimental validation of the intra-frame forgery localization has been
performed processing automatically generated video forgeries. Neverthe-
less, a more challenging procedure should be considered. In particular, the
experimental validation should be extended to realistic, hand-made, video
forgeries.
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