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Abstract

The problem of optimum watermark embedding and detection was addressed in a recent paper by Merhav and

Sabbag, where the optimality criterion was the maximum false–negative error exponent subject to a guaranteed false–

positive error exponent. In particular, Merhav and Sabbag derived universal asymptotically optimum embedding and

detection rules under the assumption that the detector relies solely on second order joint empirical statistics of the

received signal and the watermark. In the case of a Gaussian host signal and a Gaussian attack, however, closed–form

expressions for the optimum embedding strategy and the false–negative error exponent were not obtained in that work.

In this paper, we derive the false negative error exponent for any given embedding strategy and use such a result to

show that in general the optimum embedding rule depends on the variance of the host sequence and the variance of

the attack noise. We then focus on high SNR regime, deriving the optimum embedding strategy for such a set-up. In

this case a universally optimum embedding rule turns out to exist and to be very simple with an intuitively–appealing

geometrical interpretation. The effectiveness of the newly proposed embedding strategy is evaluated numerically.
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I. I NTRODUCTION

About a decade ago, the community of researchers in the field of watermarking and data hiding has learned about

the importance and relevance of the problem of channel coding with non–causal side information at the transmitter

[1], and in particular, its Gaussian version –writing on dirty paper, due to Costa [2], along with its direct applicability

to watermarking, cf. [3], [4]. Costa’s main result is that the capacity of the additive white Gaussian noise (AWGN)

channel with an additional independent interfering signal, known non–causally to the transmitter only, is the same

as if this interference was available at the decoder as well (or altogether non–existent). When applied in the realm

of watermarking and data hiding, this means that the host signal (playing the role of the interfering signal), should

not be actually considered as additional noise, since the embedder (the transmitter) can incorporate its knowledge

upon generating the watermarked signal (the codeword). Themethods based on this paradigm, usually known as

side-informedmethods, can even asymptotically eliminate (under some particular conditions) the interference of the

host signal, that was previously believed to be inherent to any watermarking system.

Ever since the relevance of Costa’s result to watermarking has been observed, numerous works have been

published about the practical implementation of the side–informed paradigm for the so-calledmulti–bit watermarking

[4], [5], [6], [7] case, where the decoder estimates the transmitted message among many possible messages. Far less

attention has been devoted, however, to the problem of deciding on the presence or absence of a given watermark

in the observed signal. In fact, in most of the works that dealwith this binary hypothesis testing problem, usually

known as zero–bit (a.k.a. one–bit) watermarking, the watermarking displacement signal does not depend on the host1

[8], [9], [10], [11], [12] that then interferes with the watermark, thus contributing to augment the error probability.

To the best of our knowledge, exceptions to this statement are the works by Coxet al. [3], [13], Liu and Moulin

[14], Merhav and Sabbag [15] and Furonet al. [16], [17]. In the next few paragraphs, we briefly describe the main

results contained in these works.

Cox et al. [3], [13]: In [3], Cox et al. introduce the paradigm of watermarking as a coded communication system

with side information at the embedder. Based on this paradigm, and by considering a statistical model for attacks,

the authors propose a detection rule based on the Neyman–Pearson criterion. The resulting detection region is

replaced by the union of two hypercones; mathematically, this detection rule is given by|st·u|
‖s‖·‖u‖ ≥ τ(α), where

s is the received signal,u is the watermark,st is the transpose ofs, st · u is the inner product ofs andu, α is

the maximum allowed false–positive probability, andτ(α) is the decision threshold, which is a function ofα. In a

successive paper [13], Milleret al. also compare the performance of the strategy of [3] to other typical embedding

strategies. No attempt is made to jointly design the optimumembedding and detection rules.

In [18] Furon and Bas used a set of (sligthly modified) double hypercones for zero–bit watermarking applications,

and proposed to design the embedding strategy in such a way tomaximize the minimum distance to the detection

boundary.

1This is not really the case in practical scenarios, where thewatermarking displacement signal must be perceptually shaped; nevertheless,
when performing theoretical analysis the Euclidean norm isextensively used for the sake of analysis simplicity, therefore neglecting perceptual
considerations. In any case, the dependency produced by perceptual considerations is not intended to reduce the host–interference effect.
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Liu and Moulin [14]: In [14], both false–positive and false–negative error exponents are studied for the zero–bit

watermarking problem, both for additive spread spectrum (Add-SS) and a quantization index modulation (QIM)

technique [4]. The constraint on the embedding distortion is expressed in terms of the mean Euclidean norm of the

watermarking displacement signal, and the non–watermarked signal is also assumed to be attacked (with attacks

that impact the false–positive error probability). For Add-SS, exact expressions of the error exponents of both

false–positive and false–negative probabilities are derived. For QIM, the authors provide bounds only. These results

show that although the error exponents of QIM are indeed larger than those obtained by public Add-SS (where the

host signal is not available at the detector), they are stillsmaller than those computed for private Add-SS (where

the host signal is also available at the detector). This seems to indicate that the interference due to the host is not

completely removed.

A practical scheme where quantization–based methods are used for zero–bit watermarking purposes was proposed

by Pérez-Freireet al. in [19]. In that work several detection regions are proposed, based on the geometry of

the quantization noise at the detector; the corresponding false–positive and false–negative error probabilities are

calculated.

Merhav and Sabbag [15]: In [15], the problem of zero–bit watermarking is approached from an information–

theoretic point of view. Optimum embedders and detectors are sought, in the sense of minimum false–negative

probability subject to the constraint that the false–positive exponent is guaranteed to be at least as large as a

given prescribed constantλ > 0, under a certain limitation on the kind of empirical statistics gathered by the

detector. Another feature of the analysis in [15] is that thestatistics of the host signal are assumed unknown. The

proposed asymptotically optimum detection rule compares the empirical mutual information between the watermark

u and the received signaly to a threshold depending onλ. In the Gaussian case, this boils down to thresholding the

absolute value of the empirical correlation coefficient between these two signals. Merhav and Sabbag also derive the

optimal embedding strategy for the attack–free case and derive a lower bound on the false–negative error exponent.

Furthermore, the optimization problem associated with optimum embedding is reduced to an easily implementable

2D problem yielding a very simple embedding rule. In the samepaper, Merhav and Sabbag also study the scenario

where the watermarked signal is attacked. In this case, however, closed–form expressions for the error exponents

and the optimum embedding rule are not available due to the complexity of the involved optimizations.

Furon et al. [16], [17]: In [16] Furonet al.propose to use the discrimination (i.e., the Kullback-Leibler Divergence)

between the probability density function (pdf) of the original host signal and the pdf of its watermarked and attacked

version in order to quantify the goodness of zero–bit embedding strategies. The considered attack is based on

adding AWGN to the watermarked content, and scaling the resulting signal in order to have the same variance of

the original host. The argument put forward [16] is that a high discrimination is a necessary condition to have good

detection performances, so the watermark detection problem is equivalent to finding the embedding function that

maximizes the discrimination; be aware that this analysis requires a perfect knowledge of the statistics of all the

involved signals. By using this measure, the authors analyze the effect of considering quantization–based approaches,

February 26, 2010 DRAFT



4

as well as the Improved Spread Spectrum [20] technique, showing that the later achieves optimal performance for

asymptotically long sequences. In the second part of [16], and in [17], Furon uses the Pitman–Noether theorem [21]

to derive the form of the best detector for a given embedding function, and the best embedding function for a given

detection function. By combining these results, a differential equation is obtained, that the author refers to as the

fundamental equation of zero-bit watermarking. Furon shows that many of the most popular watermarking methods

in the literature can be seen as special cases of the fundamental equation, ranging from Add-SS, multiplicative

spread spectrum, or JANIS [22] (a zero–bit watermarking technique previously proposed by Furonet al., where

the detector statistic is heuristically computed as ann-order function, and the watermarking displacement signal

is a scaled version of its gradient), to a two-sheet hyperboloid, or even combinations of the previous techniques

with watermarking on a projected domain [23], or watermarking based on lattice quantization. Compared with the

framework introduced in [15], two important differences must be highlighted:

• In [17], the watermarking displacement signal is constrained to be a function of the host signal which is

scaled to yield a given embedding distortion. This means that in this set–up the direction of the watermarking

displacement signal can not be changed as a function of the allowed embedding distortion.

• One of the conditions that must be verified to apply the Pitman–Noether theorem is that the power of the

watermarking displacement signal goes to zero when the dimensionality increases without bound. In fact,

Furon hypothesizes that this is the reason why neither the absolute normalized correlation nor the normalized

correlation are solutions of the fundamental equation.

In this paper, we extend the results of [15] by deriving the false negative error exponent for any given embedding

strategy in the Gaussian set–up, that is, for a Gaussian hostsignal and a Gaussian attack channel. As in [15], we

assume that the detector is of limited resources, specifically, that it relies only on the Euclidean norm of the received

signal and the empirical correlation between the received signal and the watermark. We then use the optimal (under

the mentioned constraints) detector obtained in [15] to derive the optimum embedding strategy in the Neyman–

Pearson sense of maximizing the false–negative error exponent for a given guaranteed false–positive error exponent.

In particular, we show that the optimum embedding rule depends on the variance of both the host sequence and the

attacking noise. In the second part of the paper, we turn our attention to the high-SNR regime, where the variance

of the attacking noise is much smaller than the variance of the host signal and the embedding distortion. For this

set-up a class of universal (asymptotically) optimum embedding strategies is derived, in the sense that they do not

depend on the variances of the host sequence and the attacking noise. Closed-form expressions for asymptotically

optimum embedding rules are also derived. We then consider one particular embedding strategy in the class derived

before fitting the case of a vanishingly small (yet strictly positive) false negative error exponent. The performance of

the new scheme is evaluated numerically, showing that in addition to be asymptotically optimum in the considered

set-ups, the proposed scheme provides good performance in awide range of settings, including realistic situations.

The remaining part of the paper is organized as follows: In Section II, we introduce notation conventions and

formalize the problem. In Section III, the asymptotically optimum detection region is derived. In Section IV, we
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use it to derive the false–negative error exponent for a generic embedding rule. The optimization of the false–

negative error exponent resulting in the derivation of the high-dimensionality asymptotically optimum embedding is

addressed in Section V. Section VI is devoted to the evaluation of the performance of the embedding rules derived

in Section V for various settings. Finally, the main resultsof this work are summarized in Section VII where some

suggestions for future research are also outlined.

II. N OTATION AND PROBLEM FORMULATION

Throughout the sequel, we denote scalar random variables bycapital letters (e.g.,V ), their realizations with

corresponding lower case letters (e.g.,v), and their alphabets, with the respective script font (e.g., V). The same

convention applies ton–dimensional random vectors and their realizations, usingbold face fonts (e.g.,V, v). The

alphabet of each correspondingn–vector will be taken to be then–th Cartesian power of the alphabet of a single

component, which will be denoted by the alphabet of a single component with a superscriptn (e.g.,Vn). The i-th

component of a vectorV is denotedVi. The probability law of a random vectorV is described by its pdffV(v).

The equality in the exponential scale as a function ofn will be denoted by
.
=; more precisely, if{an} and{bn}

are two positive sequences,an
·
= bn means thatlimn→∞

1
n log an

bn
= 0.

Let u andx, bothn−dimensional vectors, be thewatermark sequenceand thehost sequence, respectively. While

ui, i = 1, . . . , n, the components ofu, take on binary values inU = {−1, +1}, the components ofx, namely,xi,

i = 1, . . . , n, take values inX = IR. The embedder receivesx andu, and produces thewatermarked sequencey,

yet anothern–dimensional vector with components inY = IR. We refer to the difference signalw = y− x as the

watermarking displacement signal. The embedder must keep the embedding distortiond(x,y) = ‖y−x‖2 = ||w||2

within a prescribed limit, i.e.,d(x,y) ≤ nD, whereD > 0 is the maximum allowed distortion per dimension,

uniformly for everyx andu.

The output signal of the transmitter may either be the unaltered original hostx, in the non–watermarked case,

or the vectory, in the watermarked case. In both cases, the output signal issubjected to an attack, which yields

a forgery signal, denoted bys. The action of the attacker is modeled by a channel, which is given in terms of a

conditional probability density of the forgery given the input it receives,W (s|x) – in the non–watermarked case,

or W (s|y) – in the watermarked case. For the sake of convenience, we define z as the noise vector added by

the attacker, i.e., the difference between the forgery signal s and the channel input signal, which is the transmitter

output (x or y, depending on whether the signal is watermarked or not). We assume thatz is a Gaussian vector

with zero–mean, i.i.d. components, all having varianceσ2
Z .2

The detector partitionsIRn into two complementary regions,Λ (a.k.a. the detection region) andΛc. If s ∈ Λ, the

detector decides that the watermark is present (hypothesisH1), otherwise it decides that the watermark is absent

(hypothesisH0). We assume that the detector knows the watermarku, but does not know the host signalx (blind

2Although different additive noise variances could be considered depending on the fact of the transmitted signal being watermarked or not,
we will not distinguish the case where those variances are different, as due to the circular symmetry of the Gaussian noise, it is irrelevant for
the subsequent derivation.
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or public watermarking). The design of the optimum detection region for the attack–free case was studied in [15],

and it is generalized to the case of Gaussian attacks in Section III.

The performance of a zero–bit watermarking system is usually measured in terms of the tradeoff between the

false positiveprobability of deciding that the watermark is present when it is actually absent, i.e.,

Pfp =

∫

Λ

ds · [2π(σ2
X + σ2

Z)]−n/2 · exp

{

− ‖s‖2

2(σ2
X + σ2

Z)

}

(1)

and thefalse negativeprobability, of deciding that the watermark is absent when it is actually present, i.e.,

Pfn =

∫

Λc

ds
∫

IRn

dx · (2πσ2
X)−n/2 · exp

{

−‖x‖2

2σ2
X

}

· (2πσ2
Z)−n/2 · exp

{

−‖s− f(x,u)‖2

2σ2
Z

}

, (2)

wheref is the embedding function, that is,y = f(x,u). As n grows without bound, these probabilities normally

decay exponentially. The corresponding exponential decayrates, i.e., theerror exponents, are defined as

Efp , lim
n→∞

− 1

n
lnPfp, (3)

Efn , lim
n→∞

− 1

n
lnPfn. (4)

The aim of this paper is to devise a detector as well as an embedding rule for a zero–mean, i.i.d. Gaussian host

with varianceσ2
X and a zero–mean memoryless Gaussian attack channel with noise powerσ2

Z , where the detector is

limited to base its decision on the empirical energy of the received signal and its empirical correlation withu. Both

σ2
X andσ2

Z are assumed unknown to the detector, while the embedder knows them3. We seek high-dimensionality

asymptotically optimum embedding and detection rules in the sense of maximizing the false–negative error exponent,

Efn, subject to the constraint thatEfp ≥ λ, whereλ is a prescribed positive real.

III. O PTIMUM DETECTION RULE

In [15], an asymptotically optimum detector is derived for the discrete case and for the continuous Gaussian

case. In the latter case, it is shown that if the detector is limited to base its decision on the empirical energy of the

received signal,1n
∑n

i=1 s2
i , and its empirical correlation with the watermark,1

n

∑n
i=1 uisi, then an asymptotically

optimum decision strategy, in the above defined sense, is to compare the (Gaussian) empirical mutual information,

given by:

Îus(U ; S) = −1

2
ln

[

1 −
(

1
n

∑n
i=1 uisi

)2

(

1
n

∑n
i=1 u2

i

) (

1
n

∑n
i=1 s2

i

)

]

= −1

2
ln

[

1 −
(

1
n

∑n
i=1 uisi

)2

1
n

∑n
i=1 s2

i

]

(5)

to λ, or equivalently, to compare the absolute normalized correlation

|ρ̂us| =

∣

∣

1
n

∑n
i=1 uisi

∣

∣

√

1
n

∑n
i=1 s2

i

, (6)

3We will remove this assumption in the second part of the paperwhere we focus on the high SNR regime.
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to
√

1 − e−2λ, i.e., the detection region is the union of two hypercones, around the vectorsu and−u, with a spread

depending onλ. This decision rule of thresholding the empirical mutual information, or empirical correlation, is

intuitively appealing since the empirical mutual information is an estimate of the degree of statistical dependence

between two data vectors.4

For the present setting, we have to extend the analysis to incorporate the Gaussian attack channel. This turns

out to be a straightforward task, since in the non–watermarked case (pertaining to the false–positive constraint),s

continues to be Gaussian – the only effect of the channel is tochange its variance, which is assumed unknown to

the detector anyhow. Thus, the detection rule outlined above continues to be asymptotically optimum also in our

setting.

Before we proceed with the derivation of the optimum embedder, it is instructive to look more closely at the

dependence of the detection region on the false–positive exponentλ. As mentioned earlier, the choice ofλ imposes

a threshold that must be compared with (6) in order to providethe detector output. This is equivalent to establishing

the limit angle of the detection region, that we will denote by β = arccos(
√

1 − e−2λ) = arcsin(e−λ) ∈ [0, π/2].

Letting θ = arccos(ρ̂us), we then have:

Pfp = Pr{ρ̂2
us > 1 − e−2λ|H0}

= Pr{0 ≤ θ < β|H0} + Pr{π − β < θ ≤ π|H0}

= 2Pr{0 ≤ θ < β|H0} =
2An(β)

An(π)
= 1 − Icos(β)2(1/2, (n− 1)/2)

.
= en ln(sin β), (7)

whereAn(θ) is the surface area of then–dimensional spherical cap cut from a unit sphere centered in the origin, by

a right circular cone of half angleθ, andI(·)(·, ·) is the Regularized Incomplete Beta Function. In (7), we usedthe

fact that in the non–watermarked case, wheres is a zero–mean Gaussian vector with i.i.d. components, independent

of u, the normalized vectors/‖s‖ is uniformly distributed over the surface of then–dimensional unit sphere, as

there are no preferred directions.

IV. T HE FALSE–NEGATIVE EXPONENT

In this section, we derive the false–negative error exponent as a function of the watermarking displacement signal

w. In order to do that, and without loss of generality, we applythe Gram–Schmidt orthogonalization procedure to

the vectorsu, x and w,5 and then select the remainingn − 3 orthonormal basis vectors forIRn in an arbitrary

manner; thenth basis vector will be denoted byen. After transforming to the resulting coordinate system, the

above vectors have the formsu = (
√

n, 0, 0, . . . , 0), x = (x1, x2, 0, . . . , 0), x2 ≥ 0, w = (w1, w2, w3, 0, . . . , 0) and

4It is also known from the literature on universal decoding that the maximum mutual information (MMI) decoder, which selects the codeword
having the highest empirical mutual information with the channel output vector, is universally optimum (in the random coding error exponent
sense) for memoryless channels.

5In casex lies in the subspace spanned byu (i.e.,x is proportional tou), an arbitrary unit vector, orthogonal tou can be chosen as a second
basis vector as part of the Gram–Schmit procedure. Similarly, if w lies in the subspace spanned by the two previous vectors, then an arbitrary
unit vector orthogonal to both can be selected as the third basis vector.
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y = (x1+w1, x2+w2, w3, 0, . . . , 0), while all the components of the noise sequencez will remain, in general, non–

null. For the sake of convenience, in the remainder of the paper we will consider the normalized vector̄w = 1√
n
w

instead ofw. The false–negative error exponent derived in this section, will be used later to derive asymptotically

optimal embedding rules subject to the distortion constraint, ‖w‖2 ≤ nD, which corresponds to the constraint

‖w̄‖2 ≤ D. For convenicence, we also define the function

S(x) =
1

2
(x − lnx − 1).

Our first main result is the following.

Theorem 1:Let Pfp, Pfn and their corresponding error exponentsEfp andEfn, be defined as in eqs. (1), (2),

(3) and (4), respectively. Let̄w = (w̄1, w̄2, w̄3) ∈ IR3 be given, and letΛ = {s : ρ̂2
us ≥ 1 − e−2λ}. Then,

Efn = min
r∈IR+

min
x̄1∈IR

min
(z̄1,z̄2,z̄3)∈IR3

min
q≥[T1]+

{

S

(

q

σ2
Z

)

+
x̄2

1

2σ2
X

+ S

(

r

σ2
X

)

+
z̄2
1 + z̄2

2 + z̄2
3

2σ2
Z

}

, (8)

where[u]+ = max{0, u}, and

T1 = T1(r, w̄, t) = (x̄1 + z̄1 + w̄1)
2 tan2 β − (

√
r + w̄2 + z̄2)

2 − (w̄3 + z̄3)
2.

Proof. From (6), a false–negative event occurs whenever

(x1 + w1 + z1)
2

(x1 + w1 + z1)2 + (x2 + w2 + z2)2 + (w3 + z3)2 +
∑n

j=4 z2
j

< cos2 β,

wherew2
1 + w2

2 + w2
3 ≤ nD. This is equivalently to:

(x1 +
√

nw̄1 + z1)
2 tan2 β − (x2 +

√
nw̄2 + z2)

2 − (
√

nw̄3 + z3)
2

= (x1 +
√

nw̄1 + z1)
2 tan2 β −

[√
nr +

√
nw̄2 + z2

]2 − (
√

nw̄3 + z3)
2 <

n
∑

j=4

z2
j = nq,

where

r ,
1

n

n
∑

j=2

x2
j =

x2
2

n
,

q ,
1

n

n
∑

j=4

z2
j .

By defining

x̄ ,
x√
n

,

z̄ ,
z√
n

,

T , (x̄1 + w̄1 + z̄1)
2 tan2 β − (

√
r + w̄2 + z̄2)

2 − (w̄3 + z̄3)
2, (9)
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a false negative event is now defined by the conditionq > T . Next, observe thatnQ
σ2

Z

, whereQ designates the

random variable associated withq, is aχ2 random variable withn− 3 degrees of freedom, i.e., its density is given

by

fQ(q) =











n
σ2

Z

(

1
2

)(n−3)/2 1

Γ(n−3

2 )

(

nq
σ2

Z

)( n−3

2
−1)

exp
{

− nq
2σ2

Z

}

, if q ≥ 0

0, elsewhere
. (10)

By the same token,nR
σ2

X

, whereR is the random variable associated withr, is aχ2 distribution withn− 1 degrees

of freedom, and so

fR(r) =











n
σ2

X

(

1
2

)(n−1)/2 1

Γ(n−1

2 )

(

nr
σ2

X

)(n−1

2
−1)

exp
{

− nr
2σ2

X

}

, if r ≥ 0

0, elsewhere
. (11)

On the other hand,

fX̄1
(x̄1) =

√
n exp

{

−nx̄2
1/(2σ2

X)
}

√

2πσ2
X

,

and, equivalently,

fZ̄i
(z̄i) =

√
n exp

{

−nz̄2
i /(2σ2

Z)
}

√

2πσ2
Z

,

where1 ≤ i ≤ 3. Therefore, the probability of false negative is given by:

Pfn =

∫

IR+

dr

∫

IR

dx̄1

∫

IR3

dz̄1dz̄2dz̄3

∞
∫

[T ]+

dq
n

σ2
Z

(

1

2

)(n−3)/2
1

Γ
(

n−3
2

)

(

nq

σ2
Z

)(n−3

2
−1)

exp

{

− nq

2σ2
Z

}

n3/2 exp
{

−n(z̄2
1+z̄2

2+z̄2
3)

2σ2
Z

}

(2πσ2
Z)3/2

n

σ2
X

(

1

2

)(n−1)/2
1

Γ
(

n−1
2

)

(

nr

σ2
X

)( n−1

2
−1)

exp

{

− nr

2σ2
X

}

√
n exp

{

− nx̄2
1

2σ2
X

}

√

2πσ2
X

.

The last integral becomes

lim
n→∞

− 1

n
lnPfn = −1

2
− 1

2
− lim

n→∞
1

n
ln

∫

IR+

dr

∫

IR

dx̄1

∫

IR3

dz̄1dz̄2dz̄3

∞
∫

[T1]+

dq exp

{

−n(z̄2
1 + z̄2

2 + z̄2
3)

2σ2
Z

}

exp

{(

n − 3

2
− 1

)

ln

(

q

σ2
Z

)

− nq

2σ2
Z

+

(

n − 1

2
− 1

)

ln
r

σ2
X

− nr

2σ2
X

− nx̄2
1

2σ2
X

}

,

where we used the fact that

lim
n→∞

1

n
ln

[

(1/2)
n
2 n

n
2

Γ(n/2)

]

=
1

2
.

Finally, by using Laplace method of integration (see, e.g.,[24]), we observe that the exponential rate of this multi–

dimensional integral is dominated by the point at which the integrand is maximum, thus obtaining the result asserted

in the theorem and completing the proof.
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V. OPTIMUM WATERMARK EMBEDDING

Having calculatedEfn as a function of̂w, we can now characterize a class of asymptotically optimum embedding

functions, i.e., those that maximizeEfn. To this end, we must take into account that the embedder has access to

the host signal, but not to the attacking signal (the noise).Formally, we can write the false–negative error exponent

when the embedder designs the watermarking displacement signal trying to maximizeEfn as

Efn = min
r∈IR+

min
x̄1∈IR

max
ŵ:||ŵ||2≤D

min
z̄∈IR3

min
q≥[T ]+

{

S

(

q

σ2
Z

)

+ S

(

r

σ2
X

)

+
x̄2

1

2σ2
X

+
‖z‖2

2σ2
Z

}

. (12)

Note that the dependence ofEfn on (w̄1, w̄2) is throughT only.

From this formula, we can derive the following conclusions about the optimal values of̄x1, w̄3 andz̄3, henceforth

denotedx̄∗
1, w̄

∗
3 , z̄

∗
3 , respectively:

• x̄∗
1 = 0: given the definition ofT , and the fact that the embedder knows the host signal when computing the

watermarking displacement signal,̄w1 could be chosen so to have the same sign ofx̄1, and the embedder

would take advantage of any value ofx̄1 6= 0 to maximizeT , and therefore maximizeEfn. Formally,

max
ŵ:||ŵ||2≤D

min
z̄∈IR3

min
q≥[T ]+

{

S

(

q

σ2
Z

)

+ S

(

r

σ2
X

)

+
x̄2

1

2σ2
X

+
‖z̄‖2

2σ2
Z

}

≥ max
ŵ:||ŵ||2≤D

min
z̄∈IR3

min
q≥[T ]+

{

S

(

q

σ2
Z

)

+ S

(

r

σ2
X

)

+
‖z̄‖2

2σ2
Z

}

≥ max
ŵ:||ŵ||2≤D

min
z̄∈IR3

min
q≥[T2]+

{

S

(

q

σ2
Z

)

+ S

(

r

σ2
X

)

+
‖z̄‖2

2σ2
Z

}

,

where

T2 , (w̄1 + z̄1)
2 tan2 β − (

√
r + w̄2 + z̄2)

2 − (w̄3 + z̄3)
2,

and the second inequality is based on the fact thatT ≥ T2, as the embedder would selectw̄1 to be of the

same sign as̄x1, so that for anȳz1 there exists̄z′1 for which z̄2
1 ≥ (z̄′1)

2 and (x̄1 + w̄1 + z̄1)
2 ≥ (w̄1 + z̄′1)

2.

Note that equality between the first and the last expressionsis only achieved when̄x1 = 0.

• w̄∗
3 = 0: According to the definition ofT and the fact that the determination of the worst noise takes into

account the choice of the watermark,z̄3 could be chosen to have the same sign asw̄3. Therefore, any value

of w̄3 6= 0 would yield a smaller minimumT , which is not desired by the embedder.

Specifically, letT3 be the value ofT when w̄3 = 0. We have:

T3 , (x̄1 + w̄1 + z̄1)
2 tan2 β − (

√
r + w̄2 + z̄2)

2 − (z̄3)
2.

Given that in the optimization of (12), one has the freedom tochoose the sign of̄z3, it is clear that the selected

value will satisfyz̄3 · w̄3 ≥ 0, so (w̄3 + z̄3)
2 ≥ (z̄3)

2, and consequentlyT ≤ T3, achieving equality only when

w̄∗
3 = 0.

• z̄∗3 = 0. We calculate thēz3 that minimizesT3, subject to the constraint̄z2
2 + z̄2

3 = K, for any arbitrary
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budget(i.e., values providing a fixed value of the last term of (12))available forz̄2 and z̄3, K. To this end,

we consider the fact thatz is chosen based on the knowledge ofw andx, so z̄2 can be chosen to have the

same sign as
√

r + w̄2, as this is the sign that minimizesT . Therefore, we can writeT3 as

T3 = (x̄1 + w̄1 + z̄1)
2 tan2 β −

(√
r + w̄2 +

√

K − z̄2
3

)2

− (z̄3)
2

= (x̄1 + w̄1 + z̄1)
2 tan2 β − (

√
r + w̄2)

2 − K + z̄2
3 − 2(

√
r + w̄2)

√

K − z̄2
3 − z̄2

3 ,

which is obviously minimized when̄z3 = 0.

Incorporating these facts, eq. (12) can be rewritten as

Efn = min
r∈IR+

max
w̄1,w̄2:w̄2

1
+w̄2

2
≤D

min
(z̄1,z̄2)∈IR2

min
q≥[T ]+

{

S

(

q

σ2
Z

)

+ S

(

r

σ2
X

)

+
z̄2
1 + z̄2

2

2σ2
Z

}

, (13)

where now

T = (w̄1 + z̄1)
2 tan2 β − (

√
r + w̄2 + z̄2)

2. (14)

The most important conclusion from (13) is that, in general,the asymptotically optimum watermarking displacement

signal depends onσ2
X andσ2

Z . This implies that the watermark embedding strategy that solves (13) is not universal.

A. Optimum watermark embedding in high SNR regime

An interesting situation takes place when the variance of the attacking noise is much smaller than the variance of

the host sequence, i.e.,σ2
Z << σ2

X , which we refer to as thehigh SNR regime. The high SNR regime is motivated

by situations of non–malicious attacks, where the modification of the watermarked signal is very small compared

with the host signal. For fixed (but arbitrary)σ2
X , the high SNR regime is, of course, equivalent to a vanishingσ2

Z .

It should be noted that the high SNR regime poses limitationsneither on the value ofσ2
X nor on its ratio toD. As

it will be shown below, our proposed class of optimum embedding strategies does not depend on these quantities,

so it is universal in that sense (similarly as in [15]).

Since the target function in (13) is monotonically decreasing with σ2
Z for a given(r, w̄1, w̄2, z̄1, z̄2), Efn itself

is monotonically decreasing withσ2
Z . Therefore, the limit ofEfn asσ2

Z → 0, whether finite or infinite, must exist.

The following theorem asserts thatEfn converges to a finite limit and a universally optimum embedding rule exists

in the largen limit.

Theorem 2:In the high SNR regime, i.e.σ
2
X

σ2
Z

→ ∞, the maximum false–negative exponent, subject to the

constraintw̄2
1 + w̄2

2 ≤ D, is given byS
(

max
{

1, D
σ2

X
cos2 β

})

, and it is attained by the set of equally optimal

embedding strategies defined by:

M(r) =

{

(w̄1, w̄2) : w̄2
1 + w̄2

2 ≤ D, and if r <
D

cos2 β
then w̄2

1 >
1

tan2 β

[√
r + w̄2

]2
}

. (15)

Proof.
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For the sake of notational simplicity, we defineξ ,
σ2

X

σ2
Z

. We are interested inlimξ→∞ Efn, which we denote as

Ehigh-SNR
fn . We also define

f(r, z̄1, z̄2, q) = S

(

ξq

σ2
X

)

+ S

(

r

σ2
X

)

+
ξ(z̄2

1 + z̄2
2)

2σ2
X

. (16)

The proof is based on the following chain of inequalities:

min
r∈IR+

min
(z̄1,z̄2)∈IR2

min
q≥[T (w̄∗

1
(r),w̄∗

2
(r))]+

f(r, z̄1, z̄2, q)

≤ min
r∈IR+

max
w̄1,w̄2:w̄2

1
+w̄2

2
≤D

min
(z̄1,z̄2)∈IR2

min
q≥[T (w̄1,w̄2)]+

f(r, z̄1, z̄2, q)

= Efn

≤ min
r∈IR+

max
w̄1,w̄2:w̄2

1
+w̄2

2
≤D

min
q≥[T (w̄1,w̄2)]+

f(r, 0, 0, q)

≤ max
w̄1,w̄2:w̄2

1
+w̄2

2
≤D

min
q≥[T (w̄1,w̄2)]+

f(r∗, 0, 0, q), (17)

where we have made explicit the dependency ofT upon (w̄1, w̄2), and wherer∗ = max
{

σ2
X , D

cos2 β

}

. Here,

(w̄∗
1(r), w̄∗

2(r)) stands for an arbitrary embedding rule inM(r). When r < D
cos2 β , the setM(r) is nonempty.

As an example, for the embedding strategy(w̄1, w̄2) = (sign(x1)|
√

D − r cos4 β|,−√
r cos2 β),6 the constraint

w̄2
1 > 1

tan2 β [
√

r + w̄2]
2 can be rewritten as

(D − r cos4 β) tan2 β > r sin4 β, (18)

which is equivalent toD tan2 β > r sin2 β, that always holds wheneverr < D
cos2 β . On the other hand, when

r ≥ D
cos2 β , any embedding strategy that meets the distortion constraint belongs toM(r). We first prove that all

these embedding rules satisfȳw2
1 ≤ 1

tan2 β [
√

r + w̄2]
2. To this end, we use areductio ad absurdumargument:

assume, conversely, that there is at least one embedding rule (w̄1, w̄2) such thatw̄2
1 + w̄2

2 ≤ D and

w̄2
1 >

1

tan2 β

[√
r + w̄2

]2
. (19)

Since |w̄2| ≤
√

D
cos β ≤ √

r, (19) is equivalent to|w̄1| tan β − w̄2 >
√

r. Note that due to the embedding power

constraint and its monotonicity in̄w1, max(w̄1,w̄2):w̄2
1
+w̄2

2
≤D |w̄1| tanβ − w̄2 is equivalent tomaxw̄1

|w̄1| tan β +

|
√

D − w̄2
1 |. The solution to this optimization problem is̄w1 = ±

√
D sin β, being the value of the target function

√
D

cos β . Therefore, on the one hand, we have that for any(w̄1, w̄2) satisfying the distortion constraint,|w̄1| tan β−w̄2 ≤
√

D
cos β , whereas on the other hand, from (19) we can say that|w̄1| tan β − w̄2 >

√
r ≥

√
D

cos β , proving that whenever

r ≥ D
cos2 β and w̄2

1 + w̄2
2 ≤ D, thenw̄2

1 ≤ 1
tan2 β [

√
r + w̄2]

2, regardless of(w̄1, w̄2).

From an intuitive point of view, the previous derivation means that if one fixes in the optimization described

in (13) z̄1 and z̄2 to be null (and consequently obtains an upper bound of (13)),then the detection region is the

6The sign(·) function value is+1 or −1, depending on the sign of its argument; if its argument were0, then+1 or −1 can be arbitrarily
returned. This choice of the sign of̄w1 is related to the first bullet of Sect. V.
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hypercone

(w̄1)
2 tan2 β − (

√
r + w̄2)

2 ≥ 0,

or equivalently

|w̄1| tan β − w̄2 ≥
√

r,

where we have assumed that
√

r ≥ |w̄2|. In that case, wheneverr ≥ D
cos2 β the host signal is too large, in the sense

that the embedder will not have power enough to produce a watermarked signal in the detection region.

a) Upper bound:First, we study the behavior ofmaxw̄1,w̄2:w̄2
1
+w̄2

2
≤D minq≥[T (w̄1,w̄2)]+ f(r∗, 0, 0, q). Here,

the optimization problem can be written as

max
w̄1,w̄2:w̄2

1
+w̄2

2
≤D

min
q≥[T ]+

S

(

ξq

σ2
X

)

+ S

(

r∗

σ2
X

)

, (20)

or equivalently,

max
w̄1,w̄2:w̄2

1
+w̄2

2
≤D

S

(

max

[

ξT

σ2
X

, 1

])

+ S

(

r∗

σ2
X

)

, (21)

where

T = w̄2
1 tan2 β − (

√
r∗ + w̄2)

2. (22)

First, we prove that (21) vanishes wheneverDcos2 β < σ2
X . To this end, note thatr∗ = σ2

X , and as was shown above,

|w̄1| tanβ− w̄2 ≤
√

D
cos β for any embedding strategy satisfying the distortion constraint, which yieldsT < 0 for any

(w̄1, w̄2). Considering both results together,r∗ = σ2
X andT < 0, provide a null value for (21). For this reason, in

the following we assume that D
cos2 β ≥ σ2

X .

Maximization of (21) is equivalent to maximize (22). Therefore, when D
cos2 β ≥ σ2

X , the embedding strategies

(w̄1(r
∗), w̄2(r

∗)) solving (21) must satisfy

(w̄opt
1 , w̄opt

2 ) = arg max
(w̄1,w̄2):w̄2

1
+w̄2

2
≤D

w̄2
1 tan2 β − (

√
r∗ + w̄2)

2. (23)

Since the target function is monotonically increasing withw̄2
1, the maximum is achieved for̄w2

1 + w̄2
2 = D, which

allows to represent the optimization problem as

(w̄opt
1 , w̄opt

2 ) = arg max
(w̄1,w̄2):w̄2

1
+w̄2

2
≤D

w̄2
1 tan2 β −

[√
r∗ −

√

D − w̄2
1

]2

. (24)

Equating the partial derivative of the target function withrespect tow̄1 to zero, and solving for̄w1, we obtain three
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solutions:


















w̄1 = 0

w̄1 = −
√

D − r∗ cos4 β

w̄1 =
√

D − r∗ cos4 β

. (25)

Considering the second partial derivative, we see that forw̄opt
1 = ±

√

D − r∗ cos4 β = ±
√

D sin β one obtains

maxima of the target function, yieldinḡwopt
2 = −

√
r∗ cos2 β = −

√
D cosβ, and a corresponding value ofT =

D tan2 β − r∗ sin2 β = 0, for any value ofξ.

Summarizing, in this part we have proven that for any embedding strategy satisfying the distortion constraint,

the false–negative is upper bounded byS
(

r∗

σ2
X

)

.

b) Lower bound:Consider now the problem

min
r∈IR+

min
(z̄1,z̄2)∈IR2

min
q≥[T (w̄∗

1
(r),w̄∗

2
(r))]+

f(r, z̄1, z̄2, q). (26)

Defining K1 , ξz̄2
1 , K2 , ξz̄2

2 , η1 , sgn(z̄1), η2 , sgn(z̄2), this optimization problem is equivalent to

min
r∈IR+

min
(η1,η2)∈{−1,+1}2

min
(K1,K2)∈(IR+)2

K1 + K2

2σ2
X

+ S

(

r

σ2
X

)

+

S



max







1,
ξ

σ2
X





(

w̄∗
1(r) + η1

√

K1

ξ

)2

tan2 β −
(

√
r + w̄∗

2(r) + η2

√

K2

ξ

)2












 . (27)

where we have used the fact that

min
q≥T

S

(

ξq

σ2
X

)

= S

(

max

{

1,
ξT

σ2
X

})

. (28)

As was proven in the derivation of the upper bound, the false–negative error exponent is bounded, independently

of ξ, by a finite constant, which we shall denote byEu
fn. Since the lower bound onEfn, in eq. (27), is the sum

of three non-negative terms, the first of which increases without bound asK1 and/orK2 go to ∞ the existence

of a uniform upper bound,Eu
fn, implies that a necessary condition for a point(r, η1, η2, K1, K2) to solve the

minimization problem (27) is that each term of (27) is smaller than or equal toEu
fn. Applying this consideration to

the termK1/(2σ2
X), we have K1

2σ2
X

≤ Eu
fn, hence enabling us to confine the search overK1 to the interval[0, Ku],

whereKu = 2Eu
fnσ2

X . The same comment applies, of course, toK2. Consequently, the lower bound in (27) is

equivalent to

min
r∈IR+

min
(η1,η2)∈{−1,+1}2

min
(K1,K2)∈[0,Ku]2

K1 + K2

2σ2
X

+ S

(

r

σ2
X

)

+

S



max







1,
ξ

σ2
X





(

w̄∗
1(r) + η1

√

K1

ξ

)2

tan2 β −
(

√
r + w̄∗

2(r) + η2

√

K2

ξ

)2












 . (29)

Now, the second argument of themax operator is quadratic in
√

ξ, i.e., it is of the form asa2ξ +a1

√
ξ +a0, where

a0, a1 and a2 are independent ofξ. Therefore, there exists a value ofξ, which we will denote byξ0, such that
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a2ξ + a1

√
ξ + a0 is either monotonically increasing for allξ ≥ ξ0, or monotonically decreasing and less than unity

for all ξ ≥ ξ0, depending on the signs ofa1 anda2.7 Accordingly, for anyξ ≥ ξ0, max{1, a2ξ + a1

√
ξ + a0} is

either strictly larger than one and monotonically increasing (in the former case), or it is equal1 (in the latter case).

In either case, it is monotonically non–decreasing. Considering the fact that the functionS(x) is monotonically

increasing forx ≥ 1, the target function in (29) is monotonically non–decreasing for ξ ≥ ξ0. Thus, asξ → ∞, this

function has a limit (finite or infinite) for any fixed(r, η1, η2, K1, K2). The same applies to the behavior of (29)

asξ goes to infinity. As (29) is known to be upper bounded byEu
fn for any ξ, its limit must be finite.

Let us first assume that there are arbitrarily large values ofξ for which the solution to (29) satisfiesr < D
cos2 β .

Then, by the definition ofM(r), w̄2
1 tan2 β − [

√
r + w̄2]

2 > 0. On the other hand,

limξ→∞
(

w̄∗
1(r) + η1

√

K1

ξ

)2

tan2 β −
(√

r + w̄∗
2(r) + η2

√

K2

ξ

)2

= (w̄∗
1(r))

2 tan2 β − (
√

r + w̄∗
2(r))

2
, (30)

where we have taken into account that bothK1 andK2 are bounded byKu < ∞. Therefore, the right argument

of the max operator in (29) would grow without bound asξ → ∞, yielding an unbounded value of (29) whenξ

goes to infinity. However, (29) is upper bounded byEu
fn irrespectively ofξ, which is a contradiction. Thus, for all

sufficiently largeξ, the solution to (29) must satisfyr ≥ D
cos2 β . We can then rewrite (29) as

lim
ξ→∞

min
r∈IR+

min
(η1,η2)∈{−1,+1}2

min
(K1,K2)∈[0,Ku]2

K1 + K2

2σ2
X

+ S

(

r

σ2
X

)

+

S



max







1,
ξ

σ2
X





(

w̄∗
1(r) + η1

√

K1

ξ

)2

tan2 β −
(

√
r + w̄∗

2(r) + η2

√

K2

ξ

)2












 (31)

= lim
ξ→∞

min
r≥ D

cos2 β

min
(η1,η2)∈{−1,+1}2

min
(K1,K2)∈[0,Ku]2

K1 + K2

2σ2
X

+ S

(

r

σ2
X

)

+

S



max







1,
ξ

σ2
X





(

w̄∗
1(r) + η1

√

K1

ξ

)2

tan2 β −
(

√
r + w̄∗

2(r) + η2

√

K2

ξ

)2












 (32)

≥ min
r≥ D

cos2 β

min
(η1,η2)∈{−1,+1}2

min
(K1,K2)∈[0,Ku]2

K1 + K2

2σ2
X

+ S

(

r

σ2
X

)

, (33)

whose solution hasK1 = K2 = 0, independently ofη1 andη2, andr = σ2
X wheneverσ2

X ≥ D
cos2 β , or r = D

cos2 β

wheneverσ2
X < D

cos2 β . From an intuitive point of view, this result shows that having z̄1 6= 0 or z̄2 6= 0 in (13) is

too expensive, in the sense of producing a large increase in the cost function (asσ2
Z is arbitrarily small), but not

significantly modifying (14).

Summarizing, in this part we have proven that for any embedding strategy belonging toM(r), the false–negative

error exponent is lower bounded byS
(

r∗

σ2
X

)

.

7If a2 < 0, or if a2 = 0 anda1 < 0: a2ξ + a1

√
ξ + a0 ≤ 1, for any ξ ≥ ξ0. If a2 > 0, or if a2 = 0 anda1 ≥ 0: a2ξ + a1

√
ξ + a0 is

monotonically increasing for anyξ ≥ ξ0.
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This asymptotic lower bound of the error exponent coincideswith the upper bound previously derived, thus

proving that this is the false–negative error exponent in the high–SNR scenario, and showing also the optimality of

the embedding strategies described byM(r) in the high–SNR scenario. This completes the proof of Theorem 2.

B. Optimum watermark embedding for small false negative error exponents

In the previous subsection we have characterized a family ofembedding strategies that yields the optimum false–

negative error exponent in the high-SNR scenario. A naturalquestion that may arise is whether there is a particular

embedding strategy in this family, which exhibits good performance not only in the high-SNR regime, but in more

general situations. In this short subsection, we focus on the case where the false negative error exponentEfn is

very small. From eq. (13), we see that a necessary condition for Efn to vanish is that̄z1 → 0, z̄2 → 0. This brings

us back to the problem

(w̄∗
1 , w̄∗

2) = arg max
(w̄1,w̄2):w̄2

1
+w̄2

2
≤D

(w̄1)
2 tan2 β − (

√
r + w̄2)

2, (34)

that was studied in the derivation of the upper bound in the proof of Theorem 2, forr = r∗. For a generalr, the

solution isw̄∗
1 = ±

√

D − r cos4 β, and w̄∗
2 = −√

r cos2 β. In the next sections, we will see that this embedding

rule has a nice geometrical interpretation, and most of all,it guarantees fairly good performance even when the

high-SNR assumption does not hold.

C. Discussion

First of all, we will look at the false–negative error exponent in the high–SNR regime of the embedding strategies

in M(r) as a function of the false–positive error exponentλ. For the embedding strategies inM(r), one can see

that S
(

max
{

1, D
σ2

X
cos2 β

})

is equivalent to

lim
σ2

Z
→0

E∗
fn =







0, if D
1−e−2λ ≤ σ2

X

1
2

[

D
σ2

X
(1−e−2λ)

− ln
(

D
σ2

X
(1−e−2λ)

)

− 1
]

elsewhere
. (35)

In view of (35), it is interesting to note that as long asD > σ2
X , E∗

fn > 0 for anyλ. In fact, under these conditions,

the asymptotic value ofEfn whenλ → ∞ is

1

2

[

D

σ2
X

− ln

(

D

σ2
X

)

− 1

]

, (36)

coinciding with the result of [15] (Corollary 1).

On the other hand, whenD ≤ σ2
X another interesting point which reflects the goodness of theclass of optimum

strategies for the high-SNR regime is the computation of therange of values ofλ for which Efn > 0 can be

achieved. In this case, the condition to be verified is

D

1 − e−2λ
> σ2

X , (37)
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Fig. 1. Comparison of the error exponents obtained by the sign embedder described by Merhav and Sabbag [15], its improvedversion, and
the technique presented in this work.σ2
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implying that

λ < −1

2
ln

(

1 − D

σ2
X

)

= λ1, for D ≤ σ2
X , (38)

whereas for the sign embedder [15], the values ofλ for which Efn > 0 are those such that

D

σ2
X

>
1 − e−2λ

e−2λ
, (39)

or, equivalently,

λ < −1

2
ln

(

σ2
X

D + σ2
X

)

= λ2, for all D. (40)

Given thatλ1 > λ2, larger values of false positive error exponents are allowed (while still keepingEfn > 0) by the

embedding rules inM(r). In Figure 1 we compare the bounds on the false–negative exponent for the attack–free

case found in [15], with the real value derived here. As it canbe seen, the improvement brought by the optimum

embedding strategies is significant, especially for smallλ.

As we already saw in the general case, even in the high SNR and the small false negative error exponent

regimes the optimum watermarking displacement signalw, and therefore the watermarked sequencey, lies in the

plane spanned by the watermarku and the host signalx. This allows us to express the optimum watermarking
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displacement signal, as well as the watermarked sequence asa combination of the host signal and the watermark,

leading to the following result:

Corollary 1: WheneverD ≥ r cos2 β, the optimum watermarked signal resulting from the embedding rule derived

in section V-B is given byy = ax + bu, with:

a = 1 − cos2 β

cosα
,

b =
√

r · tan α cos2 β + sign(x1)
∣

∣

∣

√

D − r cos4 β
∣

∣

∣ ,

α = arcsin

(

< x,u >

||x|| · ||u||

)

.

Proof. From Theorem 2 and the result in Sect. V-B, we have:

y1 =
√

nr sin α + sign(x1)
∣

∣

∣

√

n(D − r cos4 β)
∣

∣

∣ , (41)

y2 =
√

nr[cosα − cos2 β].

On the other hand,y2 = a
√

nr cosα, and so, we can conclude thata = 1 − cos2 β
cos α . To find b, we usey1 =

a
√

nr sinα + b
√

n, which when combined with (41), gives the value ofb which is asserted in Corollary 1. This

completes the proof of Corollary 1.

More importantly the optimum embedding strategy derived inSect. V-B depends neither onσ2
X nor onσ2

Z , that

is the optimum embedding rule for the high SNR regime (and thelow Efn scenario) defines a universally optimum

embedding rule. Furthermore, in the two asymptotic cases analyzed in Sect. V-A and V-B both̄z1 and z̄2 goes to

zero, soT in (14) is just reduced to Miller’set al. [13] measure of robustness, geometrically interpreted by Furon

and Bas in [18].

The geometrical interpretation of the embedding strategy derived in Sect. V-B is the following: the embedder

devotes part of the allowed distortion budget to scale down the host signal, thus reducing its interference, and then

injects the remaining energy in the direction of the watermark. Concretely, the watermarking displacement signal is

orthogonal to the detection boundary until the watermarkedsignal is in the detection region, and then it is parallel to

the detection region hypercone axis; due to this geometrical interpretation, we will denote the embedding strategy

derived in Sect. V-B asOrthogonal to the Boundary, and then Parallel to the Axis(OBPA). This geometrical

interpretation explains why, whenever the watermarked signal is within the detection region, only its component

in the direction of the watermark (i.e.,b) depends onD. For illustration, we compare OBPA strategy derived in

this work, and the sign-embedder introduced in [15]. For thesign embedder, the watermarked signal is given by

yse = x + sign(xt · u)
√

Du, so the watermarking displacement signal can be written aswse = sign(xt · u)
√

Du.

The two strategies are compared in Fig. 2, where it is easy to see that the OBPA strategy is that of minimizing

the embedding distortion necessary for obtaining a watermarked signal. It is also interesting to observe that the

new embedding technique we have introduced could not be described by [17], as in that case the watermarking

displacement signal direction is just a function of the hostsignal, and it is scaled for obtaining the desired distortion.
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Fig. 2. Geometrical interpretation of the optimum embedding problem, and comparison between the sign-embedder and theOBPA embedder.
w

min
obpa

and w
min
se denote the minimum norm watermarking displacement signalsthat produce signals in the detection region, for both the

OBPA embedder and the sign embedder, respectively. The corresponding watermarked signals arey
min
obpa

and y
min
se . e1 and e2 denote the

first two basis vectors obtained by the Gram-Schmidt procedure described in Sect. IV, withe1 being proportional tou. Furthermore, one can
see the watermarked signals for the OBPA embedder and the sign embedder when part of the embedding distortion can be used to gain some
robustness to noise (denoted byy

rob
obpa

andy
rob
se ), and the composition ofymin

obpa
asax + bu.

Another way to look at Sect. V-B is by evaluating a joint condition on the embedding distortion and the false–

positive exponent (or equivalently onβ) that allows to obtain a positive false–negative error exponent: if T ≤ 0,

then the optimization on(r, q) in (13) is performed on the region[0,∞)× [0,∞), so any pair(σ2
Z , σ2

X), even with

σ2
Z = 0, will be in the allowed region, yielding a vanishing error exponent. The condition that permits to avoid this

situation isr ≤ D
cos2 β . Indeed, whenD = r cos2 β the watermarked signal is the intersection of the boundary of

the detection region and the perpendicular vector to that boundary that goes throughx. On the other hand, when

D < r cos2 β, even in the high-SNR regime case, one cannot ensure that theembedding distortion constraint allows

to produce a signal in the detection region, so the embeddingfunction in that case will not be so important. In fact,

regardless of the embedding function we choose, the false negative error exponent would vanish.

This last consideration also establishes a connection withthe high-SNR analysis. Due to the absence of noise, the

only source of false negative errors is that the embedding distortion is not enough for moving the host signal into

the detection region, i.e.D < r cos2 β. Nevertheless, wheneverD > r cos2 β a set of equally optimal embedding

strategies exists; indeed, all the embedding strategies able to move the host signal into the detection region with a

minimum-normed distorting vector, i.e. moving the host signal to the detection boundary with distortionr cos2 β,
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yield the same false–negative error exponent, regardless of the exact point where the watermarked signal lies inside

the detection region. This explains why Theorem 2 describesa set of equally optimal embedding strategies. It is

worth remarking that the OBPA embedding strategy belongs tothe class of optimum embedding functions defined

by Theorem 2; nevertheless, it is not the only example in the literature belonging to such class. For example, both

the embedding strategy proposed by Merhav and Sabbag in [15], and that proposed by Furon and Bas in [18] when

just one double hypercone is considered, satisfy the condition set by Theorem 2.

VI. PERFORMANCE EVALUATION

Given a particular embedding strategy, equation (8) allowsto numerically evaluate the corresponding false negative

error exponent. In fact, the optimization problem expressed in equation (8) is rather easy to solve numerically

given that it implies an optimization over three parametersonly, namelyr, z̄1 and z̄2, as the minimization over

q is equivalent to computemax(σ2
Z , T ). Similarly, the computation of the false–negative error exponent for the

optimum embedder in the general case, that, as it was mentioned above, will not yield a universal embedder (as it

requires the knowledge of bothσ2
X andσ2

Z), is obtained as the solution of the optimization problem described in

(13). In that case the number of involved parameters is four,namelyr, w̄1, z̄1 and z̄2, since the maximum over̄w2

is achieved forw̄2 =
√

D − w̄2
1 .

In the following, we show the results that we obtained by computing numerically the optimum (non–universal)

false–negative error exponent, and compare them against the false–negative error exponent obtained with the OBPA

embedding rule, and against those of two popular embedding rules, namely the sign embedder rule introduced in

[15] and the Broken Arrows strategy introduced in [18]. For the latter method, and through the rest of the paper,

we will focus on the particular case where just one double hypercone is considered.

In order to be able to clearly see the differences among the various embedding strategies, the values ofλ should

be large enough, or equivalently the values ofβ small, as for small values ofλ all the considered strategies are

asymptotically equivalent. Therefore, trying to analyze the behavior of the various schemes for large values ofλ,

Fig. 3 shows the false–negative error exponents when the host variance takes a very small value, concretelyσ2
X = 1,

for D = 2 andσ2
Z = 1. In this plot one can see that although the Broken Arrows strategy is slightly better than the

OBPA embedding strategy for smallλ, the situation completely changes for large values ofλ. In effect, whenλ is

increased, and consequentlyEfn is decreased, the optimal performance of the OBPA embeddingstrategy in that

scenario is clearly observed. In fact, one can see that the OBPA strategy is asymptotically optimal for large values

of λ (in the sense of those values yieldingEfn close to zero). It is also remarkable the good behavior of thenew

embedding strategy in the full range of considered values ofλ, not only for the large values. Finally, as expected,

the values ofEfn obtained for the optimal (non-universal) embedding strategy are always the largest ones.

The scenario considered in Fig. 3 and described in the previous paragraph is not a realistic one. Typically,

σ2
X >> D and σ2

X >> σ2
Z . In order to assess the performance of OBPA in more practicalsetups, in Fig. 4 the

false–negative error exponent is plotted as a function ofλ when σ2
X = 1, D = 0.1, andσ2

Z = 1. As mentioned

earlier and as intuition suggests, the maximum value ofλ providing positive false–negative error exponent is much
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Fig. 3. Comparison of the errors exponents obtained by the sign embedder described by Merhav and Sabbag [15], the Broken Arrows strategy
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smaller in this case, implying that the angle of the double hypercone defining the detection region is much larger.

Therefore, the differences among the embedding strategiesare minimal, and as a consequence, the obtained error

exponents are virtually the same for Broken Arrows, OBPA, and the optimal embedder described by (13).

VII. C ONCLUSIONS

In this paper we considered the derivation of a Neyman–Pearson asymptotically optimum zero–bit watermarking

scheme in a Gaussian setting, when the detector is limited tobase its decisions on second order empirical statistics

only. In particular we extended previous works in this direction by considering the presence of noise. The main

contributions of the paper can be summarized as follows: i) we derived the false negative error exponent for any

embedding strategy; ii) we derived a min-max-min expression for the the optimal embedding strategy in a general

context; iii) we derived a class of universally optimum embedding strategies in the high-SNR; iv) we proposed a

new embedding rule, chosen among the optimal embedding rules for the high-SNRr regime, that is particularly

suited to the case of lowEfn values; v) we derived the false negative error exponent of the new embedding

rule and that of some previously proposed methods; vi) finally, we have shown the good (though not optimal)

behavior of the new scheme in a wide range of set-ups including those most relevant from a practical point of

view. Interestingly, the new embedding strategy we introduced is very simple thus opening the door to practical
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implementations. This work can be extended in many interesting directions, including non-Gaussian settings, more

complicated attacks, like de-synchronization attacks [25], [26], more detailed empirical statistics gathered by the

detector, and the introduction of security considerationsin the picture [27].
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