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Abstract

The problem of optimum watermark embedding and detectios adaressed in a recent paper by Merhav and
Sabbag, where the optimality criterion was the maximumefategative error exponent subject to a guaranteed false—
positive error exponent. In particular, Merhav and Sabbaryved universal asymptotically optimum embedding and
detection rules under the assumption that the detecta@srshblely on second order joint empirical statistics of the
received signal and the watermark. In the case of a Gausegtrsignal and a Gaussian attack, however, closed—form
expressions for the optimum embedding strategy and the-faégative error exponent were not obtained in that work.
In this paper, we derive the false negative error exponanarfiy given embedding strategy and use such a result to
show that in general the optimum embedding rule depends ewnatiance of the host sequence and the variance of
the attack noise. We then focus on high SNR regime, deriiegoptimum embedding strategy for such a set-up. In
this case a universally optimum embedding rule turns oukist @nd to be very simple with an intuitively—appealing
geometrical interpretation. The effectiveness of the ggwbposed embedding strategy is evaluated numerically.
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I. INTRODUCTION

About a decade ago, the community of researchers in the fieldiermarking and data hiding has learned about
the importance and relevance of the problem of channel godith non—causal side information at the transmitter
[1], and in particular, its Gaussian versiomwiting on dirty paper due to Costa [2], along with its direct applicability
to watermarking, cf. [3], [4]. Costa’s main result is thaé tbapacity of the additive white Gaussian noise (AWGN)
channel with an additional independent interfering sighabwn non—causally to the transmitter only, is the same
as if this interference was available at the decoder as welhlfogether non—existent). When applied in the realm
of watermarking and data hiding, this means that the hosisifplaying the role of the interfering signal), should
not be actually considered as additional noise, since thgedder (the transmitter) can incorporate its knowledge
upon generating the watermarked signal (the codeword).rm&ods based on this paradigm, usually known as
side-informednethods, can even asymptotically eliminate (under somticpkar conditions) the interference of the
host signal, that was previously believed to be inherentipwatermarking system.

Ever since the relevance of Costa’s result to watermarkiag Ibeen observed, numerous works have been
published about the practical implementation of the sid®+imed paradigm for the so-calleaulti—bit watermarking
[4], [5], [6], [7] case, where the decoder estimates thedmgitted message among many possible messages. Far less
attention has been devoted, however, to the problem of mhgcimh the presence or absence of a given watermark
in the observed signal. In fact, in most of the works that deth this binary hypothesis testing problem, usually
known as zero—bit (a.k.a. one—bit) watermarking, the wadeking displacement signal does not depend on thé host
[8], [9], [10], [11], [12] that then interferes with the watteark, thus contributing to augment the error probability.
To the best of our knowledge, exceptions to this statementha works by Coet al. [3], [13], Liu and Moulin
[14], Merhav and Sabbag [15] and Furenal. [16], [17]. In the next few paragraphs, we briefly describe thain

results contained in these works.

Cox et al. [3], [13]: In [3], Cox et al. introduce the paradigm of watermarking as a coded commtimicaystem
with side information at the embedder. Based on this pamadand by considering a statistical model for attacks,
the authors propose a detection rule based on the NeymarseReeriterion. The resulting detection region is
replaced by the union of two hypercones; mathematicallg, dietection rule is given by‘lssilt_'—”uulu > 7(«), where

s is the received signaly is the watermarks?® is the transpose of, s’ - u is the inner product o§ andu, « is
the maximum allowed false—positive probability, andx) is the decision threshold, which is a functionafin a
successive paper [13], Milleat al. also compare the performance of the strategy of [3] to oy@cal embedding
strategies. No attempt is made to jointly design the optineimibedding and detection rules.

In [18] Furon and Bas used a set of (sligthly modified) doulylpdrcones for zero—bit watermarking applications,
and proposed to design the embedding strategy in such a watamize the minimum distance to the detection
boundary.

IThis is not really the case in practical scenarios, wherewhtermarking displacement signal must be perceptuallpestianevertheless,

when performing theoretical analysis the Euclidean norexiensively used for the sake of analysis simplicity, tf@®e neglecting perceptual
considerations. In any case, the dependency produced bgpteal considerations is not intended to reduce the hdstférence effect.
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Liu and Moulin [14]: In [14], both false—positive and false—negative erroraents are studied for the zero—bit
watermarking problem, both for additive spread spectrumddiSS) and a quantization index modulation (QIM)
technique [4]. The constraint on the embedding distort®axipressed in terms of the mean Euclidean norm of the
watermarking displacement signal, and the non—-watermasignal is also assumed to be attacked (with attacks
that impact the false—positive error probability). For AS8, exact expressions of the error exponents of both
false—positive and false—negative probabilities arevédriFor QIM, the authors provide bounds only. These results
show that although the error exponents of QIM are indeecefaitan those obtained by public Add-SS (where the
host signal is not available at the detector), they are stilbller than those computed for private Add-SS (where
the host signal is also available at the detector). This seenndicate that the interference due to the host is not
completely removed.

A practical scheme where quantization—based methods ad:sfoszero—bit watermarking purposes was proposed
by Pérez-Freireet al. in [19]. In that work several detection regions are propodmsed on the geometry of
the quantization noise at the detector; the corresponditsg-fpositive and false—negative error probabilities are

calculated.

Merhav and Sabbag [15]In [15], the problem of zero—bit watermarking is approattemm an information—
theoretic point of view. Optimum embedders and detectoessaught, in the sense of minimum false—negative
probability subject to the constraint that the false—pasiexponent is guaranteed to be at least as large as a
given prescribed constark > 0, under a certain limitation on the kind of empirical statistgathered by the
detector. Another feature of the analysis in [15] is that staistics of the host signal are assumed unknown. The
proposed asymptotically optimum detection rule compdresmpirical mutual information between the watermark
u and the received signal to a threshold depending on In the Gaussian case, this boils down to thresholding the
absolute value of the empirical correlation coefficientimsn these two signals. Merhav and Sabbag also derive the
optimal embedding strategy for the attack—free case andedadower bound on the false—negative error exponent.
Furthermore, the optimization problem associated withinopin embedding is reduced to an easily implementable
2D problem yielding a very simple embedding rule. In the saaeer, Merhav and Sabbag also study the scenario
where the watermarked signal is attacked. In this case, Vewelosed—form expressions for the error exponents

and the optimum embedding rule are not available due to theptExity of the involved optimizations.

Furon et al. [16], [17]: In [16] Furonet al. propose to use the discrimination (i.e., the Kullback-l&ilDivergence)
between the probability density function (pdf) of the onigii host signal and the pdf of its watermarked and attacked
version in order to quantify the goodness of zero-bit emlmegdtrategies. The considered attack is based on
adding AWGN to the watermarked content, and scaling theltiegusignal in order to have the same variance of
the original host. The argument put forward [16] is that ahhigscrimination is a necessary condition to have good
detection performances, so the watermark detection proldeequivalent to finding the embedding function that
maximizes the discrimination; be aware that this analysguires a perfect knowledge of the statistics of all the

involved signals. By using this measure, the authors apdhe effect of considering quantization—based approaches

February 26, 2010 DRAFT



as well as the Improved Spread Spectrum [20] technique, isigotluat the later achieves optimal performance for
asymptotically long sequences. In the second part of [16],ia [17], Furon uses the Pitman—Noether theorem [21]
to derive the form of the best detector for a given embeddimgtion, and the best embedding function for a given
detection function. By combining these results, a difféisdrequation is obtained, that the author refers to as the
fundamental equation of zero-bit watermarkifgiron shows that many of the most popular watermarking austh

in the literature can be seen as special cases of the fundalngguation, ranging from Add-SS, multiplicative
spread spectrum, or JANIS [22] (a zero—bit watermarkindinégue previously proposed by Furat al, where

the detector statistic is heuristically computed asnaorder function, and the watermarking displacement signal
is a scaled version of its gradient), to a two-sheet hypeidlpbr even combinations of the previous techniques
with watermarking on a projected domain [23], or watermigkibased on lattice quantization. Compared with the

framework introduced in [15], two important differences shbe highlighted:

« In [17], the watermarking displacement signal is consedito be a function of the host signal which is
scaled to yield a given embedding distortion. This meansiththis set—up the direction of the watermarking
displacement signal can not be changed as a function of el embedding distortion.

« One of the conditions that must be verified to apply the PitaNether theorem is that the power of the
watermarking displacement signal goes to zero when the rdiiloeality increases without bound. In fact,
Furon hypothesizes that this is the reason why neither teelate normalized correlation nor the normalized

correlation are solutions of the fundamental equation.

In this paper, we extend the results of [15] by deriving tHedfaegative error exponent for any given embedding
strategy in the Gaussian set—up, that is, for a Gaussiansigrstl and a Gaussian attack channel. As in [15], we
assume that the detector is of limited resources, spedyfitiat it relies only on the Euclidean norm of the received
signal and the empirical correlation between the receiigubs and the watermark. We then use the optimal (under
the mentioned constraints) detector obtained in [15] tavdethe optimum embedding strategy in the Neyman—
Pearson sense of maximizing the false—negative error eqdor a given guaranteed false—positive error exponent.
In particular, we show that the optimum embedding rule ddpam the variance of both the host sequence and the
attacking noise. In the second part of the paper, we turn tention to the high-SNR regime, where the variance
of the attacking noise is much smaller than the variance efhibst signal and the embedding distortion. For this
set-up a class of universal (asymptotically) optimum enclirggl strategies is derived, in the sense that they do not
depend on the variances of the host sequence and the atfaukise. Closed-form expressions for asymptotically
optimum embedding rules are also derived. We then consiteparticular embedding strategy in the class derived
before fitting the case of a vanishingly small (yet stricthsjtive) false negative error exponent. The performance of
the new scheme is evaluated numerically, showing that iftiaddo be asymptotically optimum in the considered
set-ups, the proposed scheme provides good performanceithearange of settings, including realistic situations.

The remaining part of the paper is organized as follows: latiSe 1l, we introduce notation conventions and

formalize the problem. In Section l1ll, the asymptoticallgtionum detection region is derived. In Section IV, we

February 26, 2010 DRAFT



use it to derive the false—negative error exponent for a emenbedding rule. The optimization of the false—
negative error exponent resulting in the derivation of thghtdimensionality asymptotically optimum embedding is
addressed in Section V. Section VI is devoted to the evaloaif the performance of the embedding rules derived
in Section V for various settings. Finally, the main reswitghis work are summarized in Section VIl where some

suggestions for future research are also outlined.

II. NOTATION AND PROBLEM FORMULATION

Throughout the sequel, we denote scalar random variablesapifal letters (e.g.V), their realizations with
corresponding lower case letters (e@., and their alphabets, with the respective script font.(84 The same
convention applies ta—dimensional random vectors and their realizations, ubwld face fonts (e.g.V, v). The
alphabet of each correspondingvector will be taken to be the—th Cartesian power of the alphabet of a single
component, which will be denoted by the alphabet of a singlamonent with a superscript (e.g.)"). Thei-th
component of a vectoV is denotedV;. The probability law of a random vectdf is described by its pdfy/(v).
The equality in the exponential scale as a functiomokill be denoted by=; more precisely, if{a,} and{b,}
are two positive sequences, = b, means thatim,, . %log ‘g—: =

Let u andx, bothn—dimensional vectors, be thveatermark sequencand thehost sequenceespectively. While
u;, i = 1,...,n, the components ofi, take on binary values it = {—1,+1}, the components o, namely,z;,
i1 =1,...,n, take values int = IR. The embedder receivesandu, and produces theatermarked sequenge
yet anothem—dimensional vector with components Jh= IR. We refer to the difference signat =y — x as the
watermarking displacement signdlhe embedder must keep the embedding distortieny) = ||y —x||? = [|w||?
within a prescribed limit, i.e.d(x,y) < nD, whereD > 0 is the maximum allowed distortion per dimension,
uniformly for everyx andu.

The output signal of the transmitter may either be the uredt@riginal hostx, in the non—watermarked case,
or the vectory, in the watermarked case. In both cases, the output sigrelbected to an attack, which yields
a forgery signal, denoted bg. The action of the attacker is modeled by a channel, whichvisngin terms of a
conditional probability density of the forgery given theput it receives W (s|x) — in the non—watermarked case,
or W(s|ly) — in the watermarked case. For the sake of convenience, weedefas the noise vector added by
the attacker, i.e., the difference between the forgeryaigrand the channel input signal, which is the transmitter
output & or y, depending on whether the signal is watermarked or not). ¥8erae that is a Gaussian vector
with zero—-mean, i.i.d. components, all having variange?

The detector partition®R"™ into two complementary regiond, (a.k.a. the detection region) and. If s € A, the
detector decides that the watermark is present (hypottiégisotherwise it decides that the watermark is absent

(hypothesisH,). We assume that the detector knows the waternnatiut does not know the host signal(blind

2Although different additive noise variances could be cdestd depending on the fact of the transmitted signal beiagrmarked or not,
we will not distinguish the case where those variances dfereint, as due to the circular symmetry of the Gaussianendiss irrelevant for
the subsequent derivation.
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or public watermarking). The design of the optimum detectiegion for the attack—free case was studied in [15],
and it is generalized to the case of Gaussian attacks indBeldti
The performance of a zero-bit watermarking system is uguna#tasured in terms of the tradeoff between the

false positiveprobability of deciding that the watermark is present wheis actually absent, i.e.,

03( + O'QZ)

2
Py = [ ds-t2atok + oo - @
A

and thefalse negativeprobability, of deciding that the watermark is absent wheis actually present, i.e.,

anz/ds/dx-(2wa§)—”/2-exp{—||x|2}-(2m§)—n/2-exp{——||s_f(x’“)”2}, @)
o

202 202
X A
Ac

where f is the embedding function, that ig,= f(x,u). As n grows without bound, these probabilities normally

decay exponentially. The corresponding exponential deagss, i.e., thesrror exponentsare defined as

1

Efp £ lim ——In Py, (3)
n—oo n
1

Epn £ lim —=1In Pyy,. 4)
n—oo n

The aim of this paper is to devise a detector as well as an etipdule for a zero—mean, i.i.d. Gaussian host
with variances?, and a zero—-mean memoryless Gaussian attack channel with poivers?, where the detector is
limited to base its decision on the empirical energy of theeneed signal and its empirical correlation with Both
0% ando? are assumed unknown to the detector, while the embeddersktiem?. We seek high-dimensionality
asymptotically optimum embedding and detection rulesénsinse of maximizing the false—negative error exponent,

Ey,, subject to the constraint thét;, > A, where\ is a prescribed positive real.

I1l. OPTIMUM DETECTION RULE

In [15], an asymptotically optimum detector is derived fbetdiscrete case and for the continuous Gaussian
case. In the latter case, it is shown that if the detectomigédid to base its decision on the empirical energy of the
received signal% >, s, and its empirical correlation with the Watermarf!(E;‘:l u;s;, then an asymptotically

optimum decision strategy, in the above defined sense, isrtpare the (Gaussian) empirical mutual information,

given by:

2 n et uf) (% PO 2 % PO
to A, or equivalently, to compare the absolute normalized ¢mtiosn

1§~ iy
|3 D00 wisi]

|pus| = ——
\ n Zi:l Si

3We will remove this assumption in the second part of the payeere we focus on the high SNR regime.

1 n 2 1 n 2
fus(U:5) = —~1n l1_ 1 (5 2y wasi) )] _ l1— (G iy wisi)” ] (5)

(6)
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to /1 — e~2}, i.e., the detection region is the union of two hyperconesyiad the vectorss and—u, with a spread
depending om\. This decision rule of thresholding the empirical mutugbmmation, or empirical correlation, is
intuitively appealing since the empirical mutual inforioatis an estimate of the degree of statistical dependence
between two data vectofs.

For the present setting, we have to extend the analysis trpocate the Gaussian attack channel. This turns
out to be a straightforward task, since in the non—waterathdase (pertaining to the false—positive constraint),
continues to be Gaussian — the only effect of the channel chémge its variance, which is assumed unknown to
the detector anyhow. Thus, the detection rule outlined elmmntinues to be asymptotically optimum also in our
setting.

Before we proceed with the derivation of the optimum embeditiés instructive to look more closely at the
dependence of the detection region on the false—positigereent\. As mentioned earlier, the choice sfimposes
a threshold that must be compared with (6) in order to prothéedetector output. This is equivalent to establishing
the limit angle of the detection region, that we will denote b= arccos(v1 — e=2*) = arcsin(e ) € [0, 7/2].

Letting 6 = arccos(pus), we then have:

Py = Priphs >1—eHy}

= P{0<6<p|Ho}+Pr{r— <6 <mn|Hpy}

24,(8)
Ay ()

whereA,, (9) is the surface area of the-dimensional spherical cap cut from a unit sphere centerduki origin, by

= 2PH{0<6<f|Hp} =

=1- Icos(ﬁ)2(1/2, (n — 1)/2) - eﬂln(sinﬁ)7 (7)

a right circular cone of half anglé, andI.(-,-) is the Regularized Incomplete Beta Function. In (7), we ubed
fact that in the non—watermarked case, wherge a zero—mean Gaussian vector with i.i.d. componentspenigent
of u, the normalized vectos/|s|| is uniformly distributed over the surface of the-dimensional unit sphere, as

there are no preferred directions.

IV. THE FALSE—NEGATIVE EXPONENT

In this section, we derive the false—negative error expbaem function of the watermarking displacement signal
w. In order to do that, and without loss of generality, we apply Gram—Schmidt orthogonalization procedure to
the vectorsu, x andw,> and then select the remaining— 3 orthonormal basis vectors fdR" in an arbitrary
manner; thenth basis vector will be denoted by,. After transforming to the resulting coordinate systerng th
above vectors have the formas= (1/n,0,0,...,0), x = (z1,22,0,...,0), z2 > 0, w = (wq, we, ws3,0,...,0) and

4t is also known from the literature on universal decodinat tthe maximum mutual information (MMI) decoder, which stsethe codeword

having the highest empirical mutual information with theashel output vector, is universally optimum (in the randomdinog error exponent
sense) for memoryless channels.

5In casex lies in the subspace spannedyi.e., x is proportional tou), an arbitrary unit vector, orthogonal tocan be chosen as a second
basis vector as part of the Gram—Schmit procedure. Similéirlw lies in the subspace spanned by the two previous vectons,ahearbitrary
unit vector orthogonal to both can be selected as the thisik haector.
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y = (14w, x2+we,ws,0,...,0), while all the components of the noise sequenedll remain, in general, non—
null. For the sake of convenience, in the remainder of theepag will consider the normalized vecter = ﬁw
instead ofw. The false—negative error exponent derived in this sectidlh be used later to derive asymptotically
optimal embedding rules subject to the distortion constraiw||> < nD, which corresponds to the constraint

|w]||> < D. For convenicence, we also define the function

S(z)==(x—Inxz —1).

N | =

Our first main result is the following.
Theorem 1:Let Py,, P, and their corresponding error exponeits, and E,, be defined as in egs. (1), (2),

(3) and (4), respectively. Lek = (w;, w2, w3) € IR be given, and let\ = {s: p3q > 1 —e 2*}. Then,
us

=2 22 0 52 | 2
Ef, = min min min min < S % + $—12 + S LQ + w , (8)
’ relRT Z1€IR (21,25,23)€R3 ¢>[T1 ]+ Oy 20'X Ox 20'Z

where[u]+ = max{0,u}, and
Ty =Ti(r,w,t) = (2142 + @) tan’® § — (V7 + @ + 2)? — (03 + 23)°.

Proof. From (6), a false—negative event occurs whenever

(1‘1 =+ wq +2’1)2
(21 + w1+ 21)% + (22 + w2 + 22)2 + (w3 + 23)% + 37,

5 < cos? 3,
J

wherew? + w3 + w3 < nD. This is equivalently to:
(1 + Vnwy + 21)° tan® B — (w2 + /g + 22)* — (Vs + 23)°

= (21 4+ Vnwy + 2)* tan? B —

3

[\/m’ + /sy + 22}2 — (Vnws + Z3)2 < ij = ng,
j=4
where
N l - 2 _ T3
Pe oy ee
j=2
s 1,
¢z oY
j=4
By defining
g &2 X
V'
z & 2
vn'’
T 2 (74w +7)*tan’® B — (V7 + 1 + 22)% — (03 + 23)°, 9)
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a false negative event is now defined by the conditjorr 7. Next, observe thaf;—zQ, where ) designates the
z

random variable associated wighis a x? random variable witm — 3 degrees of freedom, i.e., its density is given

by
o (l)(n*?’)/2 1 ("_g)(%g_l) exp{—n—qz} if ¢g>0
folg) =4 =2 () \oz e - (10)
0, elsewhere

By the same tokenZs*, whereR is the random variable associated withis a x? distribution withn — 1 degrees

&2 1]
of freedom, and so

Lm0z _ 1 (m)(%l_l) exp{_ nr } if >0
2 ("z1) \°% 25 )7 -

0 elsewhere

(11)

On the other hand,

L _ Yo {-nat/ 203}
\/ 27703( ’

and, equivalently,

Vivexp {-n22/(203)}
\/ 27T0'% ’

wherel < i < 3. Therefore, the probability of false negative is given by:

o0 (n—3)/2 (232-1)
_ o n (1 1 ng 2 ng
= d d dz1dzad dg— | = — | = ——
L/ T/’x%/ i %./ qo%<2> r(%#>(a;) ‘”p{ 20%}

R+ R R3 [T]+
=2 =2 =2

e () i ()T )
_— X _ .

P ATER

fz,(zi) =

The last integral becomes

1 1 1 1 72 4 22 4+ 72
lim ——InPp, = —-—-— lim —ln/ r/dil dz1dZodZ3 / dq exp _7”L(21+—Z§-|-Z3)
n—oo N 2 2 n—oon 20’Z
R

exp{(nT_g — 1) In <0%
z

where we used the fact that

Finally, by using Laplace method of integration (see, §241]), we observe that the exponential rate of this multi—
dimensional integral is dominated by the point at which titegrand is maximum, thus obtaining the result asserted

in the theorem and completing the proof.
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10

V. OPTIMUM WATERMARK EMBEDDING
Having calculatedt,, as a function of¥, we can now characterize a class of asymptotically optimonbeslding
functions, i.e., those that maximizZé,,. To this end, we must take into account that the embedder dwEss to
the host signal, but not to the attacking signal (the noise)mally, we can write the false—negative error exponent
when the embedder designs the watermarking displacengmaldrying to maximizely,, as

=2 2
Efp, = min min max min min {S (%) —l—S’(%) i - Il } (12)

reR* 71 €R W:[|W|[2< D ZER® ¢>[T]+ oy 5% 20% 203

Note that the dependence &f;,, on (w:,w2) is throughT only.

From this formula, we can derive the following conclusiobsat the optimal values af,, w3 andzs, henceforth

denotedz}, w3, Z5, respectively:

« z7 = 0: given the definition off’, and the fact that the embedder knows the host signal whempwtimg the
watermarking displacement signad; could be chosen so to have the same sigmgfand the embedder

would take advantage of any value ®f # 0 to maximizeT, and therefore maximiz&'s,,. Formally,
72 72
wws min, win {5 () 45 (%) + o+ 40}
W:||W|[2<D ZER? ¢=[T]+ oy 5% 20%  20%
=12
> max  min min {S <i2) + 9 <L2> + @}
W:||[W[2<D ZER? ¢2[T]¢ oy 0% 20%

212
max  min min {S <i2) +S< g > i ||Z||2 }’
W:||W|[2<D ZER? ¢>[T2]4 oy 0% 202

V

Y

where
T = (wl + 21)2‘681125 - (\/;-f— Wy + 52)2 - (1?)3 + 23)2,

and the second inequality is based on the fact fhat T3, as the embedder would selegt to be of the
same sign as, so that for anyz; there existsz} for which 27 > (21)? and (71 + w1 + 21)? > (w1 + 2})°.
Note that equality between the first and the last expresstooaly achieved wher; = 0.

» w3 = 0: According to the definition off" and the fact that the determination of the worst noise tak&s i
account the choice of the watermag, could be chosen to have the same signugs Therefore, any value
of w3 # 0 would yield a smaller minimunT’, which is not desired by the embedder.

Specifically, letT; be the value off’ whenws = 0. We have:
Ts 2 (&1 4w +21)2tan® 8 — (Vi + w2 + 22)° — (23)°.

Given that in the optimization of (12), one has the freedorohoose the sign ofs, it is clear that the selected
value will satisfyz; - w3 > 0, so (w3 + z3)? > (23)2, and consequently < T3, achieving equality only when
'lD3 == O.

« z; = 0. We calculate thezs that minimizesTs, subject to the constraint? + z3 = K, for any arbitrary

February 26, 2010 DRAFT



11

budget(i.e., values providing a fixed value of the last term of (1&)ilable forz, and z3, K. To this end,
we consider the fact that is chosen based on the knowledgewofandx, so z, can be chosen to have the

same sign as/r + ws, as this is the sign that minimiz&3. Therefore, we can writds; as

2
(Z1 + 01 + 71)* tan? 3 — (\/F+m2 +4/K — z§> — (23)?

= (Z1 +w1 + 7)) tan® B — (Vr +w2)? — K + 25 — 2(\/r +wa)\/ K — 22 — 73,

13

which is obviously minimized wheis = 0.

Incorporating these facts, eq. (12) can be rewritten as

=2 | 22
Ef, = min max min _ min {S(%) + S(LQ) + 4 +222 } , (13)
r€RY 1,203+ @< D (21,22)ER? ¢>[T] 4+ oy ox 20%
where now
T = (01 +2z)%tan® 3 — (V7 + w2 + 22)°. (14)

The most important conclusion from (13) is that, in geneta,asymptotically optimum watermarking displacement

signal depends on3- ando?%. This implies that the watermark embedding strategy thizesq(13) is not universal.

A. Optimum watermark embedding in high SNR regime

An interesting situation takes place when the variance efatitacking noise is much smaller than the variance of
the host sequence, i.ery << %, which we refer to as thhigh SNR regimeThe high SNR regime is motivated
by situations of non—malicious attacks, where the modificatf the watermarked signal is very small compared
with the host signal. For fixed (but arbitrary¥., the high SNR regime is, of course, equivalent to a vanishihg
It should be noted that the high SNR regime poses limitatiwither on the value of% nor on its ratio toD. As
it will be shown below, our proposed class of optimum embegdditrategies does not depend on these quantities,
so it is universal in that sense (similarly as in [15]).

Since the target function in (13) is monotonically decregsiith 0% for a given (r, ws, ws, 21, 22), Ef,, itself
is monotonically decreasing with’,. Therefore, the limit of£',, aso% — 0, whether finite or infinite, must exist.
The following theorem asserts that,, converges to a finite limit and a universally optimum embaddile exists
in the largen limit.

Theorem 2:In the high SNR regime, i.e% — oo, the maximum false—negative exponent, subject to the
constraintw? + w3 < D, is given by S (max{l, o’%c#%})’ and it is attained by the set of equally optimal
embedding strategies defined by:

. D
M(r) = {(wlawz):wf—kw% < D,and ifr < 33

1
5 thenwf>m[ﬁ+w2]2}_ (15)

Proof.
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2
For the sake of notational simplicity, we defige= Z—g( We are interested itim¢ . Ey,, which we denote as
zZ

EYISNR we also define

Fraza) =554 ) +5( L) + G2 A (16)
0% 0% Ix

The proof is based on the following chain of inequalities:

min  min f(r 21, 22,q)
reRYT (z1,22)€R? q>[T(w1 (T) wz(r))]
< min max min min f(r,z1,22,q)
relRY w1, W2 w3 +w3<D (21,22) €IR? ¢> [T (w1,%2)] +
< min max min f(r,0,0,q)
relRt w1, Wo:wi+w3<D q>[T (w1,D2)]+
< max min f(r*,0,0,q), (17)

W1, W03+ w3 <D q>[T (w1, w2)] 4

where we have made explicit the dependencylotipon (w;,ws), and wherer* = Inax{ag(, %}. Here,
(@i (r), ws(r)) stands for an arbitrary embedding rule d(r). Whenr < ﬁ, the setM(r) is nonempty.
As an example, for the embedding strate@y;, w2) = (sign(x1)|\/D — rcos* 3|, —/r cos? 3),8 the constraint

w3 > m [V/7 + w,]” can be rewritten as

(D — rcos? B) tan? 8 > rsin? 3, (18)

which is equivalent toD tan? 8 > rsin® 3, that always holds whenever < %. On the other hand, when
> 26, any embedding strategy that meets the distortion constbeglongs toM (). We first prove that all

these embedding rules satisfyf < m [\/F+m2]2. To this end, we use &ductio ad absurdumargument:

assume, conversely, that there is at least one embeddi@gawuy)w,) such thatw? + w3 < D and

’lD% > ﬁ [\/F‘FQI}Q]Q. (29)

Since |wg| < C‘({Sﬁﬁ < /r, (19) is equivalent tdw;|tan 8 — w, > +/r. Note that due to the embedding power
constraint and its monotonicity iy, max g, g,). @2+ w2<D |@; | tan B — wy is equivalent tomaxg, |@1|tan 8 +
|v/D — w?|. The solution to this optimization problem ig, = ++/Dsin 8, being the value of the target function

. Therefore, on the one hand, we have that for @my, w- ) satisfying the distortion constrainty, | tan 5 —wy <

S

Q

»

(o)}

s whereas on the other hand, from (19) we can say [thgttan 8 — @y > /r > vD

— cos 3’

a

proving that whenever

_ 12 _ _
r> Coszﬁ andw? + w3 < D, thenw? < tanzﬁ [v/r + w2]”, regardless ofwy, ws).

From an intuitive point of view, the previous derivation meathat if one fixes in the optimization described

in (13) z; and z; to be null (and consequently obtains an upper bound of (13 the detection region is the

6The sigr(-) function value is+1 or —1, depending on the sign of its argument; if its argument wigrthen+1 or —1 can be arbitrarily
returned. This choice of the sign af; is related to the first bullet of Sect. V.
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hypercone
(w01)? tan? B — (/1 + w2)? > 0,
or equivalently
|w1] tan 8 — 1wy > /T,

where we have assumed thgt > |w-|. In that case, whenever> —%— 5 the host signal is too large, in the sense
that the embedder will not have power enough to produce armatked signal in the detection region.
a) Upper bound:First, we study the behavior ahax;, 4,. @24 w3<D MNg> [T(wy,m2)] 1 f(r*,0,0,q). Here,

the optimization problem can be written as

max min S (5—;1) + S ( 7“2 ) , (20)
Wy, W2 Wi+ wI<D q>[T]+ 0% o
or equivalently,
max S (max {%, 1}) + S ( 7’2 > , (21)
W1, Wa: Wi+ w3 <D Ox oy
where
T = witan®f — (Vi + )2 (22)

First, we prove that (21) vanishes whenevé% < 0%. To this end, note that* = 0%, and as was shown above,

|1 ] tan 8 — wg < ‘F for any embedding strategy satisfying the distortion c@mst, which yieldsI" < 0 for any

CO:

(w1, wW3). Con5|der|ng both results togethet,= 0% andT" < 0, provide a null value for (21). For this reason, in
the following we assume thatl— > o3

tos2 3

Maximization of (21) is equivalent to maximize (22). Theved, when_55 > 0%, the embedding strategies

26
(w1 (r*), we(r*)) solving (21) must satisfy

(@', w3y = arg max 72<D1Df tan® B — (V7r* + wy)2. (23)

(w1,w2):wF+w3 <

Since the target function is monotonically increasing with the maximum is achieved farf + w3 = D, which
allows to represent the optimization problem as
2
(P, w5Pt) = arg max w3 tan? B — [\/ D — wl} . (24)
(w1,W2):w3+w<D

Equating the partial derivative of the target function wigispect tao, to zero, and solving fow;, we obtain three
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solutions:

wy =0
Wy = —/D —r*cost 3 . (25)
w1y = /D —r*cost 3

Considering the second partial derivative, we see thatdf = +./D — r* cos? 3 = +/Dsin 3 one obtains
maxima of the target function, yieldin@é’pt = —/r*cos? 3 = —v/Dcos 3, and a corresponding value @f =
Dtan? 8 — r*sin? g = 0, for any value oft.
Summarizing, in this part we have proven that for any embegidirategy satisfying the distortion constraint,
the false—negative is upper boundedﬂi‘)(%).
b) Lower bound:Consider now the problem

min min min
relRY (z1,22)€R? ¢2[T (w0} (r), w35 (1))]+

f(’f‘, 517 227 q) (26)

Defining K| £ €22, Ky £ €22, 1 £ sgn(z1), n2 £ sgn(%2), this optimization problem is equivalent to

. . . Kl + KQ T
min min min —— +S| =)+
rE€RT (m,m2)€{—1,+1}% (K1, K2)e(RY)2  20% ox

2 2
S | max < 1, iQ w(r) +m st tan? 3 — | /7 +wj(r) + ne K2 . (27)
Ox £ &

where we have used the fact that

. T
zr;lITls’(j—g() =S<max{1,§—§(}>. (28)

As was proven in the derivation of the upper bound, the falsgative error exponent is bounded, independently
of £, by a finite constant, which we shall denote BY, . Since the lower bound o#'s,,, in eq. (27), is the sum

of three non-negative terms, the first of which increasetaut bound ag<; and/or K> go to oo the existence

of a uniform upper boundE?, , implies that a necessary condition for a pointny, n2, K1, K3) to solve the
minimization problem (27) is that each term of (27) is smatean or equal ta%, . Applying this consideration to
the termK /(20%), we have;;%( < EY},, hence enabling us to confine the search dverto the interval0, /],

where K, = 2E}‘n0§(. The same comment applies, of course /ife. Consequently, the lower bound in (27) is

equivalent to

. . . Kl + KQ T
min min min ——— + S| =]+
reR*® (mm2)€{—1,4+1}? (K1,K2)€[0,K.]>  20% ox

2 2
S | max < 1, % Wi (r) +m LSt tan? B — | /7 4+ w5 (r) + 12 K2 : (29)
Tx 3 £

Now, the second argument of theax operator is quadratic i€, i.e., it is of the form asi>¢ + a1+/€ + ag, where

ag, a1 andas are independent of. Therefore, there exists a value §f which we will denote by¢,, such that
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az¢ + a1+/€ + ao is either monotonically increasing for &l> &,, or monotonically decreasing and less than unity
for all ¢ > &, depending on the signs af andas.” Accordingly, for any¢ > &y, max{1, a2& + a1v€ + ao} is
either strictly larger than one and monotonically incregdiin the former case), or it is equal(in the latter case).

In either case, it is monotonically non—decreasing. Cansig the fact that the functio§(x) is monotonically
increasing forz > 1, the target function in (29) is monotonically non—-decragdor £ > &,. Thus, as — oo, this
function has a limit (finite or infinite) for any fixedr, n1, 72, K1, K2). The same applies to the behavior of (29)
as¢ goes to infinity. As (29) is known to be upper boundedy, for any¢, its limit must be finite.

Let us first assume that there are arbitrarily large values fofr which the solution to (29) satisfies<

cos2 IEN
Then, by the definition of\/ (r), w3 tan® 3 — [\/7 + w2]? > 0. On the other hand,
2
tmg e (15() + /) tan2 5~ (VF 4 m50r) + 0y /)
= (@} () tan® f — (V7 + @3 ()", (30)

where we have taken into account that béflh and K> are bounded by, < co. Therefore, the right argument
of the max operator in (29) would grow without bound ds— oo, yielding an unbounded value of (29) whén

goes to infinity. However, (29) is upper bounded b, irrespectively of¢, which is a contradiction. Thus, for all

sufficiently large¢, the solution to (29) must satisfy > —=—. We can then rewrite (29) as
Ki+ K
lim min e +2 2 +S< > +
§—ooreRt (7717772)6{ 1 132 (K17K2)€[0 K2 20% O'X
2 2
K K
S | max 1,% WHr) + [ = | tan® B — [ 7+ @5 (r) + noy | — (31)
0x 3 5
Ki+ K
= lim mln min min # + S (LQ) +
£ r> 5 (n1,m2)€{—1,+1}2 (K1,K2)€[0,K]2  20% 0%
2 2
K K
S | max 1,% @y (r) +m 1) tan?p - VT W (r) +n9 2 (32)
0x 3 5
K+ K
2 g R min s (), (33)
r> osDzﬁ (m,m2)€{—1,+1}2 (K1,K2)€[0,K“]? 2UX Ox
whose solution ha#; = K, = 0, independently ofy, and7,, andr = 0% wheneverr} > L5, or r = 5

whenevers% < %. From an intuitive point of view, this result shows that hayi; # 0 or z3 # 0 in (13) is
too expensive, in the sense of producing a large increadeeirdst function (ag?% is arbitrarily small), but not
significantly modifying (14).

Summarizing, in this part we have proven that for any embegldirategy belonging td/(r), the false—negative

error exponent is lower bounded tﬁy(;—2)
X

“If ag <0, orif az = 0 anday < 0: a2€ + a1v/E€ +ao < 1, foranyé > &. If az > 0, or if az = 0 anday > 0: agé + a1/€ +ag is
monotonically increasing for any > &o.
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This asymptotic lower bound of the error exponent coincidéts the upper bound previously derived, thus
proving that this is the false—negative error exponent inhllygh—SNR scenario, and showing also the optimality of

the embedding strategies describedMyr) in the high—SNR scenario. This completes the proof of Theo2e

B. Optimum watermark embedding for small false negativereerkponents

In the previous subsection we have characterized a famigmdfedding strategies that yields the optimum false—
negative error exponent in the high-SNR scenario. A natyuaktion that may arise is whether there is a particular
embedding strategy in this family, which exhibits good pearfance not only in the high-SNR regime, but in more
general situations. In this short subsection, we focus enctise where the false negative error expotent is
very small. From eq. (13), we see that a necessary condilioF f,, to vanish is thag; — 0, zZ2 — 0. This brings
us back to the problem

(w,ws) = arg (ml,@%af)imggp(wly tan® 3 — (V/r 4+ w2)?, (34)
that was studied in the derivation of the upper bound in tfw{pof Theorem 2, forr = r*. For a generat, the
solution iswj = ++/D — rcos* 8, andw; = —/r cos? 3. In the next sections, we will see that this embedding
rule has a nice geometrical interpretation, and most ofiaiuarantees fairly good performance even when the

high-SNR assumption does not hold.

C. Discussion

First of all, we will look at the false—negative error expahmam the high—SNR regime of the embedding strategies
in M(r) as a function of the false—positive error expongnfor the embedding strategies M (r), one can see

that S (max {1, ;22—Sw}) is equivalent to

X C
0, if =L < 0%
[ai(l?e*“) —In (Ug((lf’fm) - 1} elsewhere

In view of (35), it is interesting to note that as long Bs> 0%, E%, > 0forany\. In fact, under these conditions,

lm Ej, = (35)

(SIS

the asymptotic value oy, when\ — oo is

! [% “In (%) - 1} , (36)

coinciding with the result of [15] (Corollary 1).

On the other hand, wheP < ¢% another interesting point which reflects the goodness otlhes of optimum
strategies for the high-SNR regime is the computation of rtrege of values of\ for which Ey, > 0 can be
achieved. In this case, the condition to be verified is

m > U%{, (37)
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Fig. 1. Comparison of the error exponents obtained by the sigbedder described by Merhav and Sabbag [15], its impreeeslon, and
the technique presented in this Wod%;( =landD = 2.

implying that
)\<—lln (1—22) =\, for D <o%, (38)
2 ox
whereas for the sign embedder [15], the values ébr which Ef,, > 0 are those such that
D 1—e 2
— >

oo (39)

o%
or, equivalently,

1 o3
A< —5 In (m) = )\2, for all D. (40)

Given that\; > A, larger values of false positive error exponents are akbwehile still keepingE,, > 0) by the
embedding rules i/ (r). In Figure 1 we compare the bounds on the false—negativenexpidor the attack—free
case found in [15], with the real value derived here. As it banseen, the improvement brought by the optimum
embedding strategies is significant, especially for small

As we already saw in the general case, even in the high SNR lendrall false negative error exponent
regimes the optimum watermarking displacement sigmabnd therefore the watermarked sequepcées in the

plane spanned by the watermankand the host signak. This allows us to express the optimum watermarking
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displacement signal, as well as the watermarked sequenaeambination of the host signal and the watermark,
leading to the following result:
Corollary 1: WheneverD > r cos? 3, the optimum watermarked signal resulting from the embsgidile derived

in section V-B is given by = ax + bu, with:

cos? 3
a = 1-— ,
cos o
b = \/F-tanacoszﬁ—i—sign(xl)‘\/D—rcos‘lﬁ,
. (<x,u>)
o = arcsin | ————|.
x| - [[ul|

Proof. From Theorem 2 and the result in Sect. V-B, we have:

y1 = +/nrsina+ sign(zy) ‘\/n(D —rcos* )
yo = +/nr[cosa — cos® f3].

; (41)

cos? 3
cosa *

On the other handy, = a+/nrcosa, and so, we can conclude that= 1 —

To find b, we usey; =
a~/nrsin a + by/n, which when combined with (41), gives the valuetoivhich is asserted in Corollary 1. This
completes the proof of Corollary 1.

More importantly the optimum embedding strategy derive@att. V-B depends neither arf, nor onc%, that
is the optimum embedding rule for the high SNR regime (anddheE,, scenario) defines a universally optimum
embedding rule. Furthermore, in the two asymptotic casas/aed in Sect. V-A and V-B both; andz, goes to
zero, soT' in (14) is just reduced to Miller'st al. [13] measure of robustness, geometrically interpreted npi
and Bas in [18].

The geometrical interpretation of the embedding strategiyvdd in Sect. V-B is the following: the embedder
devotes part of the allowed distortion budget to scale ddvenhost signal, thus reducing its interference, and then
injects the remaining energy in the direction of the watekn@oncretely, the watermarking displacement signal is
orthogonal to the detection boundary until the watermaskgdal is in the detection region, and then it is parallel to
the detection region hypercone axis; due to this geoméintarpretation, we will denote the embedding strategy
derived in Sect. V-B a®rthogonal to the Boundary, and then Parallel to the A(BBPA). This geometrical
interpretation explains why, whenever the watermarkedaigs within the detection region, only its component
in the direction of the watermark (i.eh) depends onD. For illustration, we compare OBPA strategy derived in
this work, and the sign-embedder introduced in [15]. Forslgm embedder, the watermarked signal is given by
Y. = X+ signx’ - u)v/Du, so the watermarking displacement signal can be writtew as= signx* - u)v/Du.
The two strategies are compared in Fig. 2, where it is easyéotisat the OBPA strategy is that of minimizing
the embedding distortion necessary for obtaining a watdmdbasignal. It is also interesting to observe that the
new embedding technique we have introduced could not beridedcby [17], as in that case the watermarking

displacement signal direction is just a function of the sighal, and it is scaled for obtaining the desired distortio
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Fig. 2. Geometrical interpretation of the optimum embeddimoblem, and comparison between the sign-embedder andBR& embedder.

WZZ;’Z and w7 denote the minimum norm watermarking displacement sigties produce signals in the detection region, for both the

OBPA embedder and the sign embedder, respectively. Thespmnding watermarked signals a,rg’;)"‘ andy™". e; and e denote the
first two basis vectors obtained by the Gram-Schmidt progedescribed in Sect. IV, witke; being proport|onal taa. Furthermore, one can
see the watermarked signals for the OBPA embedder and theesidpedder when part of the embedding distortion can be usgdih some

robustness to noise (denoted pg‘g’;a andy7¢%), and the composition ergg;’jl asax + bu.

Another way to look at Sect. V-B is by evaluating a joint cdiati on the embedding distortion and the false—
positive exponent (or equivalently g#) that allows to obtain a positive false—negative error equ: if 7' < 0,
then the optimization offr, ¢) in (13) is performed on the regidf, co) x [0, 00), SO any paifc%, 0% ), even with
0%, = 0, will be in the allowed region, yielding a vanishing erropexent. The condition that permits to avoid this
situation isr < —=—. Indeed, whenD = r cos 2 3 the watermarked signal is the intersection of the boundéry o
the detection region and the perpendicular vector to thahbary that goes through. On the other hand, when
D < rcos? 3, even in the high-SNR regime case, one cannot ensure thatithedding distortion constraint allows
to produce a signal in the detection region, so the embeddimgion in that case will not be so important. In fact,
regardless of the embedding function we choose, the falgative error exponent would vanish.

This last consideration also establishes a connectiontivitthigh-SNR analysis. Due to the absence of noise, the
only source of false negative errors is that the embeddistpdion is not enough for moving the host signal into
the detection region, i.eD < rcos? 3. Nevertheless, whenevé? > rcos? 3 a set of equally optimal embedding
strategies exists; indeed, all the embedding strategilestabmove the host signal into the detection region with a

minimum-normed distorting vector, i.e. moving the hostnsilgto the detection boundary with distortieros? 3,
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yield the same false—negative error exponent, regardfebe @xact point where the watermarked signal lies inside
the detection region. This explains why Theorem 2 describest of equally optimal embedding strategies. It is
worth remarking that the OBPA embedding strategy belongheaclass of optimum embedding functions defined
by Theorem 2; nevertheless, it is not the only example in iteeature belonging to such class. For example, both
the embedding strategy proposed by Merhav and Sabbag indaé]that proposed by Furon and Bas in [18] when

just one double hypercone is considered, satisfy the dondiet by Theorem 2.

VI. PERFORMANCE EVALUATION

Given a particular embedding strategy, equation (8) altmwvsimerically evaluate the corresponding false negative
error exponent. In fact, the optimization problem exprdsseequation (8) is rather easy to solve numerically
given that it implies an optimization over three parametarly, namelyr, z; and z;, as the minimization over
q is equivalent to computenax(c%,7'). Similarly, the computation of the false—negative erropaent for the
optimum embedder in the general case, that, as it was meudtiabove, will not yield a universal embedder (as it
requires the knowledge of bot#®. and %), is obtained as the solution of the optimization problerscdied in
(13). In that case the number of involved parameters is ftamelyr, w;, z; andzs, since the maximum ovebs
is achieved foroy = /D — w?.

In the following, we show the results that we obtained by cotimg numerically the optimum (non—universal)
false—negative error exponent, and compare them agaméalde—negative error exponent obtained with the OBPA
embedding rule, and against those of two popular embeddileg,rnamely the sign embedder rule introduced in
[15] and the Broken Arrows strategy introduced in [18]. Hoe latter method, and through the rest of the paper,
we will focus on the particular case where just one doubleshggne is considered.

In order to be able to clearly see the differences among theusasembedding strategies, the values\afhould
be large enough, or equivalently the valuesgo$mall, as for small values of all the considered strategies are
asymptotically equivalent. Therefore, trying to analyke behavior of the various schemes for large values, of
Fig. 3 shows the false—negative error exponents when thtevadance takes a very small value, concretely= 1,
for D = 2 ando% = 1. In this plot one can see that although the Broken Arrowgesgsais slightly better than the
OBPA embedding strategy for smal| the situation completely changes for large values.aoin effect, when\ is
increased, and consequently,, is decreased, the optimal performance of the OBPA embedsdagegy in that
scenario is clearly observed. In fact, one can see that tHeAGHRrategy is asymptotically optimal for large values
of X (in the sense of those values yieldiagy,, close to zero). It is also remarkable the good behavior ofnie
embedding strategy in the full range of considered values, afot only for the large values. Finally, as expected,
the values ofE¢,, obtained for the optimal (non-universal) embedding sgwiare always the largest ones.

The scenario considered in Fig. 3 and described in the peviaragraph is not a realistic one. Typically,
0% >> D ando% >> o%. In order to assess the performance of OBPA in more praciieips, in Fig. 4 the
false—negative error exponent is plotted as a function @fheno? = 1, D = 0.1, ando% = 1. As mentioned

earlier and as intuition suggests, the maximum valug pfoviding positive false—negative error exponent is much
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Fig. 3. Comparison of the errors exponents obtained by tie einbedder described by Merhav and Sabbag [15], the Brokemwa strategy
proposed by Furon and Bas [18] when just a secret directimornsidered, the solution of (13), and the OBPA embeddingm'que.crg( =1,
D=20%=1.

1Oz

smaller in this case, implying that the angle of the doublpedngone defining the detection region is much larger.
Therefore, the differences among the embedding strategesinimal, and as a consequence, the obtained error

exponents are virtually the same for Broken Arrows, OBPAJ #re optimal embedder described by (13).

VII. CONCLUSIONS

In this paper we considered the derivation of a Neyman—Baasymptotically optimum zero-bit watermarking
scheme in a Gaussian setting, when the detector is limitédgse its decisions on second order empirical statistics
only. In particular we extended previous works in this dii@t by considering the presence of noise. The main
contributions of the paper can be summarized as follows:e)derived the false negative error exponent for any
embedding strategy; ii) we derived a min-max-min expras$iw the the optimal embedding strategy in a general
context; iii) we derived a class of universally optimum emiieg strategies in the high-SNR; iv) we proposed a
new embedding rule, chosen among the optimal embedding falethe high-SNRr regime, that is particularly
suited to the case of lowE, values; v) we derived the false negative error exponent efrtew embedding
rule and that of some previously proposed methods; vi) finalle have shown the good (though not optimal)
behavior of the new scheme in a wide range of set-ups inadutliose most relevant from a practical point of

view. Interestingly, the new embedding strategy we intasdlis very simple thus opening the door to practical
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Fig. 4. Comparison of the errors exponents obtained by tie einbedder described by Merhav and Sabbag [15], the Brokemwa strategy
proposed by Furon and Bas [18] when just a secret directimorsidered, the solution of (13), and the OBPA embeddingm'que.crg( =1,
D=0.1,0% =01

implementations. This work can be extended in many intergstirections, including non-Gaussian settings, more
complicated attacks, like de-synchronization attackq, [Z%], more detailed empirical statistics gathered by the

detector, and the introduction of security considerationthe picture [27].

REFERENCES

[1] S. I. Gelfand and M. S. Pinsker, “Coding for channel witndom parametersProblems of Information and Controlol. 9, no. 1, pp.
19-31, 1980.

[2] M. H. M. Costa, “Writing on dirty paper,1EEE Transactions on Information Theoryol. 29, no. 3, pp. 439-441, May 1983.

[3] I.J. Cox, M. L. Miller, and A. L. McKellips, “Watermarkig as communications with side informatiof®toceedings of the IEEEvol. 87,
no. 7, pp. 1127-1141, July 1999.

[4] B. Chen and G. W. Wornell, “Quantization index modulatid\ class of provably good methods for digital watermarkargl information
embedding,”IEEE Transactions on Information Theoryol. 47, no. 4, pp. 1423-1443, May 2001.

[5] M. Ramkumar and A. N. Akansu, “Signaling methods for nmédia steganography/EEE Transactions on Signal Processingl. 52,
no. 4, pp. 1100-1111, April 2004.

[6] A. Abrardo and M. Barni, “Informed watermarking by meamisorthogonal and quasi-orthogonal dirty paper codinlBEE Transactions
on Signal Processingvol. 53, no. 2, pp. 824-833, February 2005.

[7] F. Pérez-Gonzalez, C. Mosquera, M. Barni, and A. Aloar‘Rational dither modulation: a high-rate data-hidingthod invariant to gain
attack,” IEEE Transactions on Signal Processingl. 53, no. 10, pp. 3960-3975, October 2005.

[8] J. R. Hernandez, M. Amado, and F. Pérez-Gonzalez, THd@main watermarking techniques for still images: deteperformance analysis
and a new structure JEEE Transactions on Image Processingl. 9, no. 1, pp. 55-68, January 2000.

February 26, 2010 DRAFT



El

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]

(23]

[24]
[25]

[26]

[27]

23

M. Barni, F. Bartolini, A. De Rosa, and A. Piva, “A new detsr for the optimum recovery of non-additive watermarkEEE Transactions
on Image Processing/ol. 10, no. 5, pp. 755-766, May 2001.

X. Huang and B. Zhang, “Statistically robust detectiminmultiplicative spread-spectrum watermarkdiZEE Transactions on Information
Forensics and Securitywol. 2, no. 1, pp. 1-13, March 2007.

M. Noorkami and R. M. Mersereau, “A framework for robustéatermarking of H.264-encoded video with controllable edébn
performance,lEEE Transactions on Information Forensics and Secuntyl. 2, no. 1, pp. 14-23, March 2007.

W. Liu, L. Dong, and W. Zeng, “Optimum detection for spcespectrum watermarking that employs self-maskifgEE Transactions
on Information Forensics and Securityol. 2, no. 4, pp. 645-654, December 2007.

M. L. Miller, 1. J. Cox, and J. A. Bloom, “Informed embenid): Exploiting image and detector information during watark insertion,”
in IEEE International Conference on Image Processing (ICN®). 3, Vancouver, BC, Canada, September 2000, pp. 1-4.

T. Liu and P. Moulin, “Error exponents for one-bit watearking,” in IEEE International Conference on Acoustics, Speech, agdabi
Processing (ICASSPYyol. 3, Hong Kong, April 2003, pp. 65-68.

N. Merhav and E. Sabbag, “Optimal watermark embeddimgj detection strategies under limited detection resovirt€EE Transactions
on Information Theoryvol. 54, no. 1, pp. 255-274, January 2008.

T. Furon, J. Josse, and S. L. Squin, “Some theoreicaasmf watermarking detection,” iroceedings of SPIE, Security, Steganography
and Watermarking of Multimedia contents VIH. J. Delp Ill and P. W. Wong, Eds., vol. 6072. San Jose, CAAUSPIE, January 2006.
T. Furon, “A constructive and unifying framework forrebit watermarking,”IEEE Transactions on Information Forensics and Security
vol. 2, no. 2, pp. 149-163, June 2007.

T. Furon and P. Bas, “Broken arrowsEURASIP Journal on Information Securityol. 2008, pp. 1-13, 2008, doi:10.1155/2008/597040.
L. Pérez-Freire, P. Comesafa, and F. Pérez-Genzé&Detection in quantization-based watermarking: Remfmce and security issues,”
in Proceedings of SPIE, Security, Steganography, and Wat&mgaof Multimedia Contents VIIE. J. Delp Il and P. W. Wong, Eds., vol.
5681. San Jose, CA, USA: SPIE, January 2005, pp. 721-733.

H. S. Malvar and D. A. F. Floréncio, “Improved spreagspum: A new modulation technique for robust watermarRilgEE Transactions
on Signal Processingvol. 51, no. 4, pp. 898-905, April 2003.

H. V. Poor, An Introduction to Signal Detection and Estimatid@nd ed. Springer Texts in Electrical Engineering, 1994.

T. Furon, B. Macq, N. Hurley, and G. Silvestre, “JANISisi Another N-order side-Informed watermarking SchenrelEEE International
Conference on Image Processing (ICIRYI. 2, Rochester, NY, USA, September 2002, pp. 153-156.

F. Pérez-Gonzalez, F. Balado, and J. R. Hernandeerférmance analysis of existing and new methods for datadiwith known-host
information in additive channelsfJEEE Transactions on Signal Processingl. 51, no. 4, pp. 960-980, April 2003.

R. Wong, Asymptotic Approximations of IntegralsSIAM, 2001.

M. Barni, “Effectiveness of exhaustive search and tetgp matching against watermark desynchronizatidBEE Signal Processing
Letters vol. 12, no. 2, pp. 158-161, February 2005.

A. D’Angelo, M. Barni, and N. Merhav, “Expanding the sk of watermark desynchronization attacks,”Hroceedings of 9-th ACM
Multimedia Security Workshogallas, Texas, 20-21 September 2007.

M. Barni, F. Bartolini, and T. Furon, “A general framerkofor robust watermarking securitySignal Processingvol. 83, no. 10, pp.
2069-2084, October 2003.

February 26, 2010 DRAFT



24

Pedro Comeséia (M'09) received the telecommunications engineer degreitiaa Ph. D. degree in telecommunications
engineering from the University of Vigo, Vigo, Spain, in 20@nd 2006, respectively.

PLACE Currently, he is an Assistant Professor with the University/igo. In 2004, he spent six months with the Technische
PHOTO Universiteit Eindhoven, Eindhoven, The Netherlands. 10&the was with the Information Hiding Laboratory at the
HERE National University of Ireland (University College DubjirDublin, Ireland for six months. In 2007 and 2008, he was

with the Universita degli Studi di Siena, Siena, Italy, faro periods spanning ten months. His research interests are

data hiding, multimedia signal processing, and digital samications.

Dr. Comesafia was recipient of the Spanish Official Ingtibft Telecommunications Engineers Award to the the Best PihBsis in Security
and Defense, 2006.

Neri Merhav (S'86—-M'87-SM’'93—-F'99) was born in Haifa, Israel, on Marth, 1957. He received the B.Sc., M.Sc.,
and D.Sc. degrees from the Technion, Israel Institute ohiielogy, in 1982, 1985, and 1988, respectively, all in

PLACE electrical engineering.
PHOTO From 1988 to 1990 he was with AT&T Bell Laboratories, MurraillHNJ, USA. Since 1990 he has been with the
HERE Electrical Engineering Department of the Technion, whezéshnow the Irving Shepard Professor. During 1994-2000

he was also serving as a consultant to the Hewlett—Packdrdratries — Israel (HPL-I). His research interests inelud

information theory, statistical communications, andisti&al signal processing. He is especially interestechndreas

of lossless/lossy source coding and prediction/filteridationships between information theory and statistietection, estimation, as well as
in the area of Shannon Theory, including topics in joint sedchannel coding, source/channel simulation, and caslitigside information with
applications to information hiding and watermarking sysge Another recent research interest concerns the redhijgsm between Information
Theory and statistical physics.

Dr. Merhav was a co-recipient of the 1993 Paper Award of tHeHEnformation Theory Society and he is a Fellow of the IEEt6i1999. He
also received the 1994 American Technion Society Award foademic Excellence and the 2002 Technion Henry Taub PrizExXoellence in
Research. From 1996 until 1999 he served as an Associater EalitSource Coding to the IEEERANSACTIONS ONINFORMATION THEORY.
He also served as a co—chairman of the Program Committeee @01 IEEE International Symposium on Information Theétg.is currently

on the Editorial Board of BUNDATIONS AND TRENDS INCOMMUNICATIONS AND INFORMATION THEORY.

February 26, 2010 DRAFT



25

Mauro Barni graduated in electronic engineering at the University afréhce in 1991. He received the PhD in
informatics and telecommunications in October 1995. Hedaased out his research activity for over 20 years first

PLACE at the Department of Electronics and Telecommunicationhef Wniversity of Florence, then at the Department of
PHOTO Information Engineering of the University of Siena where Werks as associate Professor. During the last decade
HERE he has been studying the application of image processifmitpoes to copyright protection and authentication of

multimedia (digital watermarking). He is author/co-auttod about 250 papers published in international journald an

conference proceedings, and holds three patents in the dfettigital watermarking. He is co-author of the book

"Watermarking Systems Engineering: Enabling Digital Ass&ecurity and other Applications”.

He participated to several National and European reseanjbgps on diverse topics, including computer vision, imuidia signal processing,
remote sensing, digital watermarking, IPR protection.

He serves as associate editor of the IEEE Trans. Inform&@ensics and Security and the IEEE Trans. on Circuits astesyfor Video
Technology. He was the founding editor of the EURASIP Jouomalnformation Security. He was the general chairman of2864 edition
of IEEE workshop on Multimedia Signal Processing (MMSP’@#i the 2005 edition of the International Workshop on Digitatermarking
(IWDW'05). Prof. Barni is the chairman of the IEEE Informati Forensic and Security technical Committee (IFS-TC) ef HBEE Signal
Processing Society. He is a senior member of the IEEE and EBJRA

February 26, 2010 DRAFT



